DANGER !
In the following papers, we work in set theory without the axiom of choice, ZF.
L'Axiome du Choix en bande dessinée... (a cartoon about AC)
A la recherche d'un ensemble infini
Commutative rings
[Mo86] Divers axiomes de choix, Séminaire d'Analyse
de Clermont-Ferrand II, 1985-
1986. Abstract
[Mo87] Une forme géométrique de l'axiome
de l'idéal premier, Séminaire
d'Analyse de Clermont-Ferrand II, 1986-1987.
Abstract
Lexicographic orders
[Mo88a] Ensembles totalement ordonnés et axiome du choix,
Séminaire d'Analyse de Clermont-Ferrand II, 1987-1988.
Abstract
Zbl 0714.03044
Thesis
[Mo88b] Topologie, Analyse non-standard et axiome du choix,
Université de Clermont-Ferrand II, Thèse de 3ième cycle, Juin 1988. Abstract
Topology of linearly ordered sets
[Ha-Mo] with L.Haddad,
L'axiome de normalité pour les espaces totalement
ordonnés, J. of Symbolic Logic, Vol. 55, No 1,
p.277-283, 1990. Abstract
[Mo91] Extreme choices on complete lexicographic orders,
Zeitschr. f. math. Logik und Grundlagen d. Math,
Bd.37, S.353-355 (1991). Abstract
Measure and integration
[Mo90] Algèbres de Boole mesurées et axiome du choix,
Séminaire d'Analyse de
Clermont-Ferrand II, 1989-1990. Abstract
[Mo91] Alèbres de Gelfand mesurées,
Séminaire d'Analyse, Université Blaise-
Pascal, Clermont-Ferrand II, 1990-1991. Abstract
General topology
[Mo92] Duaux continus et axiome du choix,
Séminaire d'Analyse, Université Blaise-
Pascal, Clermont-Ferrand II, 1991-1992. Abstract
[Mo94]
Les compacts extrêmement discontinus sont finis!,
(Extremally discontinuous compact topological spaces are finite!).
Semin. Anal., Univ. Blaise Pascal, Clermont II , 1993-1994,
Exp. No.11, 13 p. (1994). [ISSN 0985-0732]
Abstract
Zbl 970.18738 pdf file
[Fo-Mo] with J.Fossy,
The Baire category property and some notions of compactness,
Journal of the London Mathematical
Society, (2) 57 (1998), 1-19. Abstract
Theoretical Informatics
[Bu-Mo1] with
S.Burckel,
Three Generators for Minimal Writing Space Computations,
Theoretical Informatics and Applications , 34, 2000,131-138
[Bu-Mo2] with
S.Burckel,
Quadratic sequential computations
of boolean mappings,
Theory of Computing Systems, 37, p.519-525 (2004),
pdf file.
Hahn-Banach and the Axiom of Choice
[Do-Mo] with J.Dodu,
The Hahn-Banach property and the axiom of choice,
Mathematical Logic Quarterly , 45 (3), 299-314 (1999).
Abstract or pdf file
[Al-Mo] with E.Albius,
Uniform smoothness entails Hahn-Banach,
Quaestiones Mathematicae 24 (2001), p.425-439,
Abstract or pdf file .
[De-Mo] with
C.Delhommé ,
Dependent Choices and weak compactness,
Notre-Dame Journal of Formal Logic, vol.40, No4 (1999)
Abstract ,
download .
Note de synthèse
[Mo04b]
On the rôle of the Axiom of Choice in topology
and functional analysis (december 2004).
James sequences and James's sup Theorem
[Mo04]
James sequences and Dependent Choices,
Mathematical Logic Quarterly, vol.51, p.171-186, No2 (2005)
Abstract or pdf version .
[Mo05]
A new proof of James' sup theorem ,
preprint in arXiv (functional analysis) or
published version in Extracta
Mathematicae, vol.20, No 3, (2005).
Weak compactness and Axiom of Choice
[Mo07b]
[Mo08c]
- Uniform Eberlein spaces and the finite Axiom of Choice or
arXiv preprint.
- Compacité faible dans l^2(I) et axiome du
choix (séminaire ERMIT, mai 2008) .
- Uniform Eberlein Compactness and the Axiom of Choice,
Abstract,
Set Theory, Topology and Banach Spaces (Second International Topology Conference in Kielce, Poland)
July 7-11, 2008.
- Notions of Compactness for special subsets of IR^I and some Weak Forms of
the Axiom of Choice , Journal of Symbolic Logic , Volume 75, Issue 1 (2010), 255-268.
Rado's selection lemma
- [Rado2010]
Rado's selection lemma implies Hahn-Banach,
Abstract,
25th Summer Conference on Topology and its Applications,
July 25-30, 2010, Kielce Poland.
- [Rado2012]
Some consequences of Rado's selection lemma,
Archive for Mathematical Logic, vol.51, no7, p.739-749, 2012.
The continuous Hahn-Banach property
- Compactness of generalized Helly spaces ,
Abstract,
talk at the 24th Summer Conference on Topology and Its Applications,
(Brno, Czech Republic), July 2009.
- Helly spaces and Radon measures on complete lines, Order,
vol.29, no3, p.419-441,2012.
download.
We show in ZF that for every complete line L (thus L endowed with the order topology
is a compact Hausdorff space), the Banach space C(L) satisfies the (multiple)
continuous Hahn-Banach property, and that the dual ball of C(L) is compact in the weak* topology.
- A remark on the continuous Hahn-Banach
property., 26th Summer Conference on Topology and Its Applications,
July 26-29, 2011, City College of CUNY New York, NY, USA.
- Three-space type Hahn-Banach properties,, Mathematical Logic
Quarterly, vol.63, no5, p.320-333 (2017).
We show in ZF that the continuous Hahn-Banach property is a ``three-space type property''. We deduce that for
every scattered compact Hausdorff topological space K, the Banach space C(K) satisfies the continuous Hahn-Banach property.
We also prove in ZF Rudin's theorem: ``Every Radon measure on a scattered compact Hausdorff
topological space is discrete.'' The following question stays open: "Given a compact Hausdorff topological space K,
does the Banach space C(K) satisfy the continuous Hahn-Banach property in ZF?''
Discrete mathematics
- with C.Delhommé ,
Spanning Trees and the Axiom of Choice, Reports on Mathematical Logic, 2006.
download.
- with P.Spinelli, Nash equilibria and values through modular partitions in infinite games.
Discrete Mathematics 312(6): 1201-1212 (2012).
download.
Existence of linear forms and Axiom of Choice
- Formes linéaires et axiomes de choix fini ,
Exposé au séminaire ERMIT, février 2008.
-
Puissances réduites et existence de formes
linéaires ,
Exposé au séminaire ERMIT, septembre 2008.
- Linear forms and axioms of choice,
Commentationes Mathematicae Universitatis Carolinae, 50,3 (2009) 421-431.
- Linear extenders and the Axiom of Choice, Commentationes Mathematicae Universitatis Carolinae, vol.58 no4, p.419-434 (2017).
We consider for every commutative field IK the statement D(IK): ``Every
non null IK-vector space has a non null linear form.'' The statement
D(IK) is not provable in ZF. We show that for every field IK, the
statement D(IK) implies the following stronger statement: ``Every vector
subspace of a IK-vector space has a linear extender.'' Here, given a
vector subspace F of a vector space E, a ``linear extender'' on F is a
linear mapping associating to every linear form f on F, a linear
mapping g on E extending f. We also introduce for each spherically
complete valued field (IK,|.|) a ``Hahn-Banach''-type statement
D(IK,|.|) (Ingleton's statement) and
we prove that D(IK,|.|) is equivalent to the existence of isometric
linear extenders for vector subspaces of ultrametric normed spaces over
the valued field (IK,|.|).
- Multiple Choices imply the Ingleton and Krein-Milman axioms,
Journal of Symbolic Logic (2020). In set theory without the Axiom of Choice, we consider
Ingleton's axiom which is the counterpart in ultrametric analysis of the Hahn-Banach axiom. We show that in ZFA, set theory without the Axiom of Choice weakened to allow "atoms", Ingleton's axiom does not imply the Axiom of Choice: this solves in ZFA a question raised by van Rooij (1992).
We also prove that in ZFA, the "Multiple Choice" axiom implies the Krein-Milman axiom. We deduce that, in ZFA, the conjunction of the Hahn-Banach, Ingleton and Krein-Milman axioms does not imply the Axiom of Choice.
- Hyperplanes in matroids and the Axiom of Choice,
Commentationes Mathematicae Universitatis Carolinae, (2022), vol. 63, issue 4, pp. 423-441.
Banach-Tarski decompositions
Equilibres dans les graphes orientés,
Semaine des Mathématiques, Conférence pour les professeurs de mathématiques du 4 avril 2018.
Ingleton's theorem and the Axiom of Choice,
33rd Summer Conference on Topology and its Applications, July 17-20, 2018, Western Kentucky University, Bowling Green, Kentucky, USA
Marianne Morillon