
THE HAHN-BANACH PROPERTY

AND THE AXIOM OF CHOICE

J.Dodu and M.Morillon

Abstract. We work in the set theory without the axiom of choice: ZF. Though

the Hahn-Banach theorem cannot be proved in ZF, we prove that every Gâteaux-

differentiable uniformly convex Banach space E satisfies the following continuous
Hahn-Banach property: if p is a continuous sublinear functional on E, if F is a

subspace of E, and if f : F → R is a linear functional such that f ≤ p|F , then

there exists a linear functional g : E → R, such that g extends f and g ≤ p.
We also prove that the continuous Hahn-Banach property on a topological vector

space E is equivalent to the classical geometrical forms of the Hahn-Banach theorem

on E. We then prove that the axiom of Dependent choices (DC) is equivalent
to Ekeland’s variational principle, and that it implies the continuous Hahn-Banach

property on Gâteaux-differentiable Banach spaces. Finally, we prove that, though

separable normed spaces satisfy the continuous Hahn-Banach property, they do not
satisfy the whole Hahn-Banach property in (ZF+DC).

1 Introduction

We work in set-theory without the axiom of choice, ZF, such as sketched by
Jech, (see [9]). We denote by ω the first infinite ordinal. All vector spaces that we
consider in this paper are vector spaces over R, the field of reals.

Let E be a vector space. A sublinear functional on E is a mapping p : E →
R such that for every x, y ∈ E and λ ∈ R+ we have p(x + y) ≤ p(x) + p(y)
and p(λ.x) = λ.p(x). We say, that E satisfies the Hahn-Banach property if, for
every sublinear functional p : E → R, for every subspace F of E and every linear
functional f : F → R such that f ≤ p|F , there exists a linear functional g : E → R
that extends f and such that g ≤ p.

The Hahn-Banach axiom says that:

HB. Every vector space satisfies the Hahn-Banach property.

It is well-known that, in ZF, the axiom of choice implies HB but, Cohen’s second
model of ZF does not satisfy HB (see [9]), hence the theory ZF does not imply the
axiom HB. In fact, Pincus and Solovay (see [11]) have found a model of ZF+¬HB
which satisfies the following axiom of dependent choices:
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DC. (axiom of Dependent Choices) : If R is a binary relation on a nonempty set
E such that ∀x ∈ E ∃y ∈ E xRy, then there is a sequence (xn)n∈ω of elements of
E such that ∀n ∈ ω, xnRxn+1.

hence DC does not imply HB.

On the other hand, HB does not imply DC, since Cohen’s first model satisfies
HB but this model does not even satisfy the following countable axiom of choice:

ACω. For every family (An)n∈ω of nonempty sets we have
∏

n∈ω An 6= ∅.

which is a consequence of DC, (see [9]).

Let E be a topological vector space. We say that E satisfies the continuous Hahn-
Banach property (in abbreviated form: CHBP) if, for every continuous sublinear
functional p : E → R, for every subspace F of E, and every linear functional
f : F → R such that f ≤ p|F , there exists a linear functional g : E → R that
extends f and such that g ≤ p. The theory ZF does not imply the following
continuous axiom of Hahn-Banach:

CHB. Every topological vector space satisfies the continuous Hahn-Banach prop-
erty.

because the axiom HB is equivalent to the axiom CHB (see [6]).

Let S be the set of pairs (p, f) where p : E → R is a continuous sublinear
functional on E and f : F → R is a linear functional defined on a subspace F of E
satisfying f ≤ p|F . We say that E satisfies the effective continuous Hahn-Banach
property if, there is a function φ which is defined on the set S, and which associates
to every (p, f) ∈ S a linear functional g = φ(p, f) which is defined on E, such
that g extends f and g ≤ p; here φ is called a witness of the effective continuous
Hahn-Banach property on E.

In this paper, we prove in ZF the following theorem:
Gâteaux-differentiable uniformly convex Banach spaces satisfy the effective con-

tinuous Hahn-Banach property.
We also define the spaces Lp(µ), 1 ≤ p < +∞ when µ is a finitely additive mea-

sure and we prove that these spaces are uniformly convex and uniformly smooth
for 1 < p < +∞. We show that the continuous Hahn-Banach property on a topo-
logical vector space E is equivalent to various classical geometrical Hahn-Banach
properties on E, which deal with separation of convex subsets of E. We then
prove that the axiom of Dependent choices is equivalent to Ekeland’s variational
principle, so this last statement is neither stronger nor weaker than HB. Using
this equivalence, we prove that DC implies the continuous Hahn-Banach property
on Gâteaux-differentiable Banach spaces. Finally, we show that, though separable
normed spaces satisfy the continuous Hahn-Banach property, the theory ZF+DC
does not imply the Hahn-Banach property on separable normed spaces. We end
with some rules that imply the continuous Hahn-Banach property on some normed
spaces and we observe that the CHBP on l1(R) or l∞(ω) cannot be proved in
ZF+DC.
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2 Uniformly convex norms

Let E be a vector space and let N be a semi-norm on E. The semi-normed space
(E,N) is said to be uniformly convex if, for every real number ε > 0, there exists
a real number δ > 0 such that, for every x, y ∈ E, if N(x) ≤ 1, N(y) ≤ 1 and if
N(x− y) > ε then N(x+y

2 ) < 1− δ.

A mapping δ : R∗
+ → R∗

+ such that for every x, y ∈ E, if N(x), N(y) ≤ 1 and
N(x − y) ≥ ε then N(x+y

2 ) ≤ 1 − δ(ε) is called a witness of the uniform convexity
of the semi-norm N on E. It is easy to see that a semi-normed space is uniformly
convex with witness δ if and only if all its finite dimensional subspaces are uniformly
convex with this witness δ. For every real number ε such that 0 < ε < 2 we put

δN (ε) = inf{1−N(
x + y

2
); N(x) = N(y) = 1; N(x− y) ≥ ε}

and we call the mapping δN the modulus of convexity of (E,N). The semi-normed
space is uniformly convex if and only if for every ε such that 0 < ε < 2 we have
δN (ε) > 0 and in this case, for every witness δ of uniform convexity on (E,N) we
have δ ≤ δN ; this means that δN is the best witness of uniform convexity on (E,N).

For example, Hilbert spaces are uniformly convex (see [1] page 190) with the

modulus of convexity ε 7→ 1−
√

1− ε2

4 .

We say that a metric space is complete if every Cauchy filter has a limit point
in this space. For example R is complete. If X is a topological space, we denote
by C∗(X) the set of real bounded continuous functions on X, equipped with the
uniform norm; it is easy to see that the normed space C∗(X) is complete. A normed
space which is complete (for Cauchy filters) is called a Banach space. Every normed
space has a completion, which is defined using the following well-known results:

. Let (X, d) be a metric space and a ∈ X. For every x ∈ X we put ja(x) =
(d(x, y)− d(a, y))y∈X : the mapping ja : X → C∗(X) is isometric and the closure
ja[X] of ja[X] in C∗(X) is a completion of X.

. If (X, ‖.‖) is a normed space, if a = 0E, then there is a unique Banach space
structure on ja[X] such that ja is linear.

We define the Cauchy-completion of a semi-normed space (E,N) as the Cauchy-
completion of the quotient normed space E/N .

We say that a normed space (E, ‖.‖) satisfies the property of Projection (in
abbreviated form property P) if and only if:

P. For every nonempty complete convex subset C of E, and every a ∈ E\C, there
exists c ∈ C such that ‖c− a‖ = inf{‖x− a‖ ;x ∈ C}.

We will use the following result (see [1] pages 194-195): uniformly convex normed
spaces satisfy the property P, and in fact, for these spaces, the element c is unique.

Remark. In set-theory with the axiom of choice, one can prove James’s sup theorem:
”A Banach space is reflexive iff every continuous linear functional attains its

norm on the closed unit ball of E.”
and one can deduce, (see [12]), that in ZFC, a Banach space satisfies the property

of projection if and only if it is reflexive.
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3 Gâteaux-differentiable and uniformly smooth norms

If O is an open subset of a topological vector space E, we say that a map-
ping f : O → R is Gâteaux-differentiable at a point a ∈ O if for all h ∈ E the
quotient f(a+th)−f(a)

t admits a limit when t 7→ 0, t ∈ R∗. We note that, if f
is convex, then for every a ∈ O and h ∈ E the previous quotient has a limit
when t 7→ 0, t > 0 and t 7→ 0, t < 0 so, we introduce the following notations:
G+

f (a, h) = limt→0+
f(a+th)−f(a)

t and G−
f (a, h) = limt→0−( f(a+th)−f(a)

t ); morover,
the functional G+

f (a, .) is continuous and sublinear, the functional −G−
f (a, .) is con-

tinuous and sublinear, for every a ∈ O and h ∈ E we have the following equality
G+

f (a, h) = −G−
f (a,−h) and the following extra inequality: G−

f (a, h) ≤ G+
f (a, h).

If N is a semi-norm on a vector space E that is Gâteaux-differentiable at a
point a we put G(a, h) = limt→0

N(a+th)−N(a)
t ; in this case, (see [1] page 179), the

function h 7→ G(a, h) is a continuous linear functional on E, with G(a, a) = ‖a‖ and
‖G(a, .)‖ = 1. We say that a semi-normed space (E,N) is Gâteaux-differentiable if
and only if the semi-norm N is Gâteaux-differentiable at every point a such that
N(a) 6= 0. It is equivalent to say that every finite dimensional subspace of E is
Gâteaux-differentiable; it implies that for every a ∈ E\{0}, the mapping G(a, .) is
the unique supporting functional at point a: here we say that a continuous linear
functional f : E → R is a supporting functional at point a if and only if ‖f‖ = 1
and f(a) = ‖a‖.

The semi-normed space (E,N) is said to be uniformly smooth if and only if it is
Gâteaux differentiable and if

lim
t→0+

(
N(a + th)−N(a)

t
− N(a− th)−N(a)

−t
) = 0

uniformly for a, h ∈ E such that N(a) = N(h) = 1. The modulus of smoothness of
the semi-normed space (E,N) is the function

ρN : t 7→ sup
N(a)=N(b)=1

{N(a + tb) + N(a− tb)
2

− 1}

It is easy to see that (E,N) is uniformly smooth if and only if limt→0+(ρN (t)
t ) = 0.

We say that a mapping ρ : R∗
+ → R∗

+ is a witness of uniform smoothness on the
semi-normed space (E,N) if and only if ρN ≤ ρ and limt→0+(ρ(t)

t ) = 0. If the space
(E,N) is uniformly smooth then ρN is the best witness of uniform smoothness on
(E,N).

We now recall Lindenstrauss’ duality formula (see [10] page 61): if (E,N) is
a finite dimensional semi-normed space, if δN is the modulus of convexity on
E, then the modulus of smoothness on the continuous dual (E′, N ′) is ρN ′ :
t 7→ sup0<ε<2{ε t

2 − δN (ε)}; morover, if (E,N) is uniformly convex then we have
limt7→0(

ρN′ (t)
t ) = 0 hence (see [5] page 132) the space (E′, N ′) is uniformly smooth

with modulus ρN ′ . It is easy to prove the following slight modification: if (E,N) is
uniformly convex and if δ is only a witness (and not the modulus) of the uniform
convexity on (E,N), then, the mapping ρ : t 7→ sup0<ε<2{ε t

2 − δ(ε)} is such that
ρN ′ ≤ ρ and, since limε 7→0(δ(ε)) = 0 a slight modification of the proof of [1] page
209-210 leads to limt7→0(

ρ(t)
t ) = 0 so (E′, N ′) is uniformly smooth with witness ρ.
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4 The spaces Lp(µ), 1 < p < +∞ are
uniformly convex and uniformly smooth

The Lebesgue measure on R cannot be proved to be σ-additive in ZF since there
exists a model of ZF in which R is a countable union of countable sets (see [9]
page 142-144). Anyhow, we now show that it is possible to define the spaces Lp(µ)
without choice, when µ is a finitely additive measure on a Boolean algebra of sets.

4.1 Integration on a measured space.
Let B be a Boolean algebra; we say that a mapping µ from B to R+ ∪ {+∞}

is a measure on B if, for every x, y ∈ B such that x ∧ y = 0, we have µ(x ∨ y) =
µ(x) + µ(y). If E is a set, if B is a sub-algebra of the Boolean algebra P(E), and
if µ is a measure on B, we say that (E,B, µ) is a measured space; we say that a
function f : E → C is simple if there exist disjoint subsets A1, . . . , Am ∈ B and
scalars λ1, . . . , λm ∈ C such that f =

∑m
i=1 λi1Ai

where 1Ai
is the characteristic

function of the set Ai. Among all the decompositions, we distinguish the canonical
decomposition, for which the λi are distinct reals.

Though the algebra B is not stable for countable unions and µ is not countably
additive, it is possible to define the integral of a simple function as usual:

-if f : E → R+ is a positive simple function, and if f =
∑m

i=1 λi1Ai
=∑n

i=1 νi1Bi
are two decompositions of f with λ1, . . . , λm, ν1, . . . , νn ∈ R+, we have∑m

i=1 λiµ(Ai) =
∑n

i=1 νiµ(Bi) and we define
∫

f.dµ =
∑m

i=1 λiµ(Ai) with the usual
conventions: 0×(+∞) = 0, if λ > 0 then λ×(+∞) = +∞ and (+∞)×(+∞) = +∞;

-if f : E → R is a simple function, and if
∫
| f | .dµ < +∞ we put

∫
f.dµ =∫

f+.dµ−
∫

f−.dµ where f+ = sup(f, 0) and f− = sup(−f, 0).

The set E(E,B, µ) of simple µ-integrable functions is a vector subspace of RE

and the mapping f 7→
∫

f.dµ is linear on E(E,B, µ); hence, for every real number
p ≥ 1, the function Np : f 7→ (

∫
| f |p .dµ)

1
p is a semi-norm on E(E,B, µ); we

call Lp(E,B, µ) the Banach space which is the Cauchy-completion of the semi-
normed space (E(E,B, µ), Np) and we denote by | . |p the norm on the Banach
space Lp(E,B, µ).

If p > 1 and if q = p
p−1 then for all a, b ∈ C we have:

-if 2 ≤ p < +∞ then | a + b |p + | a− b |p≤ 2p−1(| a |p + | b |p)
-if 1 < p ≤ 2 then | a + b |p + | a− b |p≤ 2(| a |p + | b |p)

hence the following Clarkson’s inequalities hold for all f, g ∈ E(E,B, µ), and by
density, they hold for all f, g ∈ Lp(E,B, µ):

-if 2 ≤ p < +∞ then | f+g
2 |pp + | f−g

2 |pp ≤
|f |pp+|g|pp

2

-if 1 < p ≤ 2 then | f+g
2 |qp + | f−g

2 |qp ≤ ( |f |
p
p+|g|pp
2 )

1
p−1

hence the Banach space Lp(µ) is uniformly convex: for 2 ≤ p < +∞ we obtain the
following witness of uniform convexity: δp(ε) = 1 − (1 − ( ε

2 )p)
1
p and for 1 < p ≤ 2

we obtain the following witness: δp(ε) = 1 − (1 − ( ε
2 )q)

1
q . These two formula lead

to the same formula δp(ε) = 1− (1− ( ε
2 )r)

1
r where r = max(p, q). We note that if

p = 2 the two formula give δ2(ε) = 1−
√

1− ε2

4 which is the modulus of convexity
for Hilbert spaces.
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4.2 Examples of measured spaces.
-For every set I, the Banach space lp(I) is uniformly convex and a witness is

δp, because the counting measure on I is a (countably additive) measure on the
algebra P(I).

-Let B be the Boolean algebra P({0, 1}) and let µ be the uniform probability on
B; for every set I, let BI be the coproduct ⊗i∈IB and let µ be the coproduct measure
⊗i∈Iµi on BI ; then the normed space Lp({0, 1}I , BI , µI) is uniformly convex.

-If p is a real number such that p ≥ 1, if m ∈ ω and 1 ≤ m, for all positive
real numbers α1, . . . , αm, we call lmp (α1, . . . , αm) the space Rm equipped with the
following semi-norm N : (x1, . . . , xm) 7→

∑m
i=1 αi | xi |p. The semi-normed space

lmp (α1, . . . , αm) is in fact the space E(m,P(m), µ) associated to the measured space
(m,P(m), µ) where µ is the measure on the set m = {0, . . . , m − 1} such that
µ({i}) = αi. Hence the semi-normed space lmp (α1, . . . , αm) is uniformly convex
and δp witnesses this uniform convexity.

4.3 The spaces Lp(µ), 1 < p < +∞ are uniformly smooth.
-Let p be a real number such that p > 1, let m ∈ ω such that 1 ≤ m, and let

α1, . . . , αm ∈ R+. Let q = p
p−1 . The continuous dual of the semi-normed space

lmq (α1, . . . , αm) is the semi-normed space lmp (α1, . . . , αm) so, by Lindenstrauss’
duality formula, the space lmp (α1, . . . , αm) is uniformly smooth and the function
ρp : t 7→ sup0<ε<2{ε t

2 − δq(ε)} is a witness of this uniform smoothness. With some
calculus, we obtain that ρp(t) = −1 + (1 + ts)

1
s with s = min(p, q).

-Hilbert spaces are Gâteaux-differentiable: just take G(a, h) =< a
‖a‖ , h >; in

fact, the continuous dual of a finite dimensional Hilbert space is a Hilbert space
so every Hilbert space is uniformly smooth with modulus of smoothness ρ2(t) =
sup0<ε<2{ε t

2 − δ2(ε)} = −1 +
√

1 + t2.
-If p is a real number such that 1 < p < +∞, if (E,B, µ) is a measured space,

then the semi-normed space E(E,B, µ) is Gâteaux-differentiable and, for all a, h ∈
E(E,B, µ), if Np(a) 6= 0 we have G(a, h) = (Np(a))1−p µ(| a |p−1 sgn(a) h)
where sgn is the signum function. If B is finite then (E(E,B, µ), Np) is isometric
to lmp (α1, . . . , αm) where m is the number of atoms of B and α1, . . . , αm are the
measures of these atoms. If F is a finite dimensional subspace of (E(E,B, µ), Np)
then F is isometric to a subspace of (E(E,A, µ), Np) where A is the finite sub-
algebra of B generated by the elements of B which occur in the decompositions of
elements of F . Hence every finite dimensional subspace of E(E,B, µ) is isomorphic
to some subspace of lmp (α1, . . . , αm), hence the semi-normed space E(E,B, µ) is
uniformly smooth with a smoothness witness t → ρp(t) = −1 + (1 + ts)

1
s with

s = min(p, q) so its completion Lp(E,B, µ) is also uniformly smooth with the same
witness of smoothness.

5 Gâteaux-differentiability + property P imply the Mazur property

A topological vector space E is said to satisfy the Mazur property (in abbreviated
form MP) if, for every nonempty closed convex subset C of E, and every point
a ∈ E\C, there exists a continuous linear functional f : E → R such that f(a) <
infC f .

We recall that the weak topology on E is the topology which is generated by the
sets {x ∈ E/f(x) < α} where f ∈ E′ and α ∈ R. If E satisfies the Mazur property,
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then every closed convex subset C of E is weakly closed. The converse is also true
thanks to the following lemma:

Lemma 1. Let E be a topological vector space, let C be a convex subset of E and
let a ∈ E\C. If there are f1, ..., fm ∈ E′\{0} and α1, ..., αm ∈ R such that the weak
open set O =

⋂m
i=1{x ∈ E/fi(x) < αi} satisfies O ∩ C = ∅ and a ∈ O then there

exists f ∈ E′ such that f(a) < infC f .

proof. Let V =
⋂m

i=1 Ker(fi), let F be a finite dimensional subspace of E such that
V ⊕F = E and let p : E → F be the projection on F with kernel V . Let K = p[C]
and U = p[O]; the convex subsets K and U are disjoint in F and U is open in F
hence, since F is finite dimensional, there is g ∈ F ′ such that g[U ] < g[K] and we
deduce that g(p(a)) < infK g. Let f = g ◦ p; we now have f(a) < infC f . �

The space E is said to satisfy the effective Mazur property if, there is a mapping
which associates to every nonempty closed convex subset C of E, and every point
a ∈ E\C continuous linear functional f : E → R such that f(a) < infC f .

It has been proved by Ishihara (see [8]), in a constructive way, that if E is a
separable uniformly convex Banach space, if f is a continuous linear functional
which is defined on a Gâteaux-differentiable subspace of E, then there is a unique
functional g : E → R which extends f and such that ‖g‖ = ‖f‖. Following
Ishihara’s idea, we now prove, that Gâteaux-differentiable uniformly convex Banach
spaces satisfy the effective Mazur property.

Lemma 2. Let (E, ‖.‖) be a normed space, let C be a nonempty closed convex
subset of E and a ∈ E\C, let ρ = inf{‖x− a‖ ;x ∈ C}. If there exists x ∈ C such
that ‖x− a‖ = ρ and if ‖.‖ is Gâteaux-differentiable at point x− a, then the affine
functional f : E → R which associates to every z ∈ E the number G(x − a, z − a)
satisfies f [B(a, ρ)] ≤ ρ, f(a) = 0, and f [C] ≥ ρ.

proof. Since G(x−a, .) is a linear functional with norm 1, it is clear that f is affine
and that f [B(a, ρ)] ≤ ρ and f(a) = 0. Let z ∈ C. For every real number t ∈ [0, 1]
we have x + t(z − x) = (1 − t)x + tz ∈ C hence ‖x + t(z − x)− a‖ ≥ ρ and since
the norm ‖.‖ is Gâteaux-differentiable at x − a, we get: f(z) = G(x − a, x − a) +
G(x − a, z − x) = ‖x− a‖ + limt→0+

‖x−a+t(z−x)‖−‖x−a‖
t ≥ ‖x− a‖ = ρ hence we

deduce that f [C] ≥ ρ. �

Theorem 1. i) If a Gâteaux-differentiable normed space satisfies property P then
it also satisfies the Mazur property.

ii) Gâteaux-differentiable uniformly convex Banach spaces satisfy the effective
Mazur property.

proof. i) Let E be a Gâteaux-differentiable normed space which satisfies property
P. Let C be a nonempty closed convex subset of E and a ∈ E\C. Using property
P, let x ∈ C such that inf{‖z − a‖ ; z ∈ C} = ‖x− a‖. The linear functional z 7→
G(x−a, z) satisfies f(a) = G(x−a, a) hence f [C] ≥ ρ+G(x−a, a) > G(x−a, a)

ii) Let E be a Gâteaux-differentiable uniformly convex Banach space, let C be a
nonempty closed convex subset of E and a ∈ E\C: since C is complete (for Cauchy
filters) let x be the unique element in C such that inf{‖z − a‖ ; z ∈ C} = ‖x− a‖.
Let f be the linear functional G(x − a, .). Then g = f|E is a continuous linear
functional on E such that g(a) < infC g. �
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6 The geometrical Hahn-Banach properties
and the continuous Hahn-Banach property

We now show that the classical geometrical forms of the Hahn-Banach axiom
on a topological vector space E are equivalent to the continuous Hahn-Banach
property on E.

Lemma 3. Let E be a topological vector space. i) The continuous Hahn-Banach
property on E is equivalent to the following property:

For every continuous sublinear functional p : E → R, there exists a linear func-
tional f : E → R such that f ≤ p.

ii) The effective CHBP on E is equivalent to the following form:
There is a mapping which associates to every continuous sublinear functional

p : E → R a linear functional f : E → R such that f ≤ p.

proof. see [6]. �

Lemma 4. Let E be a vector space, let p : E → R be a sublinear functional on E,
and let f : E → R be a linear functional on E. Let O = {x ∈ E/p(x) < −1}, let
C = {x ∈ E ; p(x) ≤ −1} and let α = supC f . If O 6= ∅ and if ∀x ∈ O f(x) < 0
then α < 0 and f ≤ −αp.

proof. First we note that α ≤ 0 because if x ∈ C, then 2x ∈ O hence f(x) < 0.
For every x ∈ E the following implications hold: p(x) ≤ −1 ⇒ f(x) ≤ α;
∀t > 0 (p(x) ≤ −t ⇒ f(x) ≤ αt) Hence we obtain:

∀x ∈ E (p(x) < 0 ⇒ f(x) ≤ −αp(x))

Let ε > 0. Let z ∈ C such that f(z) ≥ α− ε. Let a = z
−p(z) . We have p(a) = −1

and f(a) ≥ α−ε
−p(z) ≥ α − ε because α − ε < 0 and p(z) ≤ −1. For every x ∈ E

such that p(x) ≤ 0 we have: p(x + a) ≤ p(x) + p(a) ≤ −1 hence x + a ∈ C so
f(x+a) ≤ α therefore f(x) ≤ −f(a)+α ≤ ε. This last inequality is true for every
ε > 0 hence f(x) ≤ 0. Hence we deduce:

∀x ∈ E (p(x) ≤ 0 ⇒ f(x) ≤ 0)

Let x ∈ E such that p(x) = 1: we have p(x+a) ≤ 1+p(a) = 0 hence f(x+a) ≤ 0
so f(x) ≤ −f(a) ≤ ε − α; this last inequality is true for every ε > 0 whence
f(x) ≤ −α. Hence we obtain:

∀x ∈ E (p(x) > 0 ⇒ f(x) ≤ −αp(x))

and finally:

∀x ∈ E f(x) ≤ −αp(x)

We have α 6= 0 because if α = 0 then f ≤ 0 hence f = 0 and this is contradictory!
�

We now consider the following properties on a topological vector space E:
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HB1. If C is an affine subspace of E and if O is an nonempty open convex subset
in E such that C ∩ O = ∅ then there exists a linear functional f on E such that
∀x ∈ O f(x) < infC f .

HB2. If C is a nonempty convex subset of E and if O is a nonempty open convex
subset in E such that C ∩O = ∅ then there exists a linear functional f on E such
that ∀x ∈ O f(x) < infC f .

HB3. If a ∈ E and if O is a nonempty open convex subset in E such that a 6∈ O
then there exists a linear functional f on E such that ∀x ∈ O f(x) < f(a).

HB4. If C and O are two nonempty disjoint convex subsets of E, and if O is open
then there exist a linear functional f on E such that f [O] < f [C].

HB5. If C and O are two nonempty disjoint open convex subsets of E, then there
exist a linear functional f on E such that f [O] < f [C].

HB6. If C is a nonempty closed convex subset of E and if K is a nonempty compact
convex subset of E then there exists a linear functional f on E such that supK f <
infC f .

Theorem 2. On every topological vector space E, the following properties are
equivalent: CHBP, HB1, HB2, HB3, HB4, HB5.

proof. CHBP ⇒ HB1 and HB1 ⇒ HB2: see [4], EVT II p. 39-41. The sublinear
functional p used by Bourbaki is dominated by 1 on the nonempty open set O,
hence p is continuous (see [4], EVTII.20, proposition 21). The proof of HB2 ⇒
HB3 is obvious. HB3 ⇒ HB4: we apply HB3 to the open convex set O − C
which does not contain 0. The implication HB4 ⇒ HB5 is obvious.

HB5 ⇒ CHBP: Let p : E → R be a continuous sublinear functional. We want
to define a linear functional f : E → R such that f ≤ p. If p ≥ 0 then we take f = 0
else, let O = {x ∈ E/p(x) < −1} and C = {x ∈ E/p(x) > −1}; the open convex
sets are nonempty and disjoint so let f : E → R be a linear functional such that
f [O] < f [C]; we deduce that ∀x ∈ O f(x) < 0. We put C = {x ∈ E; p(x) ≤ −1}
and α = supC f and thanks to lemma 4 we obtain α < 0 and f

−α ≤ p. �

Theorem 3. Let E be a topological vector space. If E satisfies the (resp. effec-
tive) Mazur property, then E satisfies the (resp. effective) continuous Hahn-Banach
property.

proof. The proof is similar: let p : E → R be a continuous sublinear functional;
if p ≥ 0 then we take f = 0 and we are done! Else, C = {x ∈ E / p(x) ≤ −1}
is a nonempty closed convex subset of E such that 0 6∈ C; thanks to the Mazur
property on E, we take a linear functional f : E → R such that supC f = −1 and
we get f ≤ p thanks to lemma 4. �

Corollary 1. Gâteaux-differentiable uniformly convex Banach spaces satisfy the
effective continuous Hahn-Banach property.

proof. See theorem 1 and theorem 3. �
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In particular, if p is a real number such that 1 < p < +∞, if (E,B, µ) is a mea-
sured space, then Lp(E,B, µ) satisfies the effective CHBP because it is both uni-
formly convex and uniformly smooth. We will see in section 10 that, if µ(1B) < +∞
then L1(E,B, µ) also satisfies the effective CHBP, though it is neither uniformly
convex nor Gâteaux- differentiable.

Corollary 2. If E is a locally convex topological vector space, then the following
properties are equivalent on E: CHBP, HB6, MP.

proof. CHBP ⇒ HB6: see [4], EVT II.41, proposition 4: here we use the fact
that E is locally convex. The implication HB6 ⇒ MP is clear and MP ⇒ CHBP
comes from theorem 3. �

If a topological vector space satisfies the Mazur property, then all its subspaces
also satisfy this property. Therefore, and thanks to corollary 2, we obtain the
following result:

Corollary 3. If E is a locally convex topological vector space that satisfies the
continuous Hahn-Banach property, then all its subspaces also satisfy this property.

In particular, if a normed space satisfies the CHBP then its subspaces also
satisfy the CHBP.

7 Ekeland’s variational principle

We first prove that DC is equivalent to Ekeland’s variational principle and that
it implies the principle of uniform boundedness on Banach spaces. We will use
these two principles to prove the continuous Hahn-Banach property on Gâteaux-
differentiable Banach spaces.

Let us consider the following weak form of the axiom of dependent choices:

DMC. (axiom of Dependent Multiple Choice) If E is a nonempty set and if R is
a binary relation on E which satisfies the condition ∀x ∈ E ∃y ∈ E xRy, then
there is a sequence (Fn)n∈ω of finite nonempty subsets of E such that ∀n ∈ ω ∀x ∈
Fn ∃y ∈ Fn+1 xRy.

It is known that the axiom DC is equivalent to the statement ”Complete metric
spaces are Baire spaces” (see [2]) and the axiom DMC, which was introduced by
Blass (see [3]), is equivalent (see [6]) to the following statement:

BC. (Baire for Compact Hausdorff spaces) Compact Hausdorff spaces are Baire.

It is easy to see that DC implies DMC, and it is known that, in set theory
without the axiom of foundation (ZFA), the axiom DMC does not imply DC
because Fraenkel’s second model of ZFA satisfies DMC but does not satisfy DC
(see [9]). As far as we know, the question ”Does DMC imply DC in set theory
ZF” is open.

On the other hand, the axiom HB does not imply DMC since the stronger axiom
BPI, the Boolean Prime Ideal axiom, does not imply BC: in fact, BPI+BC is
equivalent to BPI+DC (see [7]) and BPI does not imply DC since Cohen’s first
model satisfies BPI+¬ DC.

If every Cauchy sequence of a metric space (E, d) has a limit point we say that
(E, d) is sequentially complete. We now recall Ekeland’s variational principle:
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Ek. If (E, d) is a nonempty sequentially complete metric space, if f : E → R is
lower semi-continuous and bounded bellow, if ε ∈ R∗

+, then there exists a ∈ E such
that: ∀x ∈ E f(a) ≤ f(x) + εd(x, a).

and we introduce the following weaker axiom:

WEk. If C is a nonempty sequentially complete convex subset of a normed space
(E, ‖.‖) and if f : C → R is lower semi-continuous, convex and bounded bellow, if
ε ∈ R∗

+, then there exists a ∈ C such that: ∀x ∈ E f(a) ≤ f(x) + εd(x, a).

Lemma 5. i) DC implies Ek.
ii) DMC implies WEk.

proof. i) We follow the classical proof and we define by recursion a sequence (xn)n∈ω

of points of E and a sequence (En)n∈ω of subsets of E. Let x0 ∈ E and E0 = E.
Using axiom DC, we define a sequence (En, xn)n∈ω such that for every n ∈ ω
the following three conditions are satisfied: En+1 = {y ∈ E/f(y) ≤ f(xn) −
εd(xn, y)}, xn+1 ∈ En+1 and f(xn+1) ≤ f(xn)+inf {f(x); x∈En+1}

2 . The sequence
(f(xn))n∈ω is decreasing and it is bounded below hence it converges; since we
have d(xn, xn+1) ≤ f(xn)−f(xn+1)

ε we deduce that for every n, p ∈ ω we have:
d(xn, xn+p) ≤ f(xn)−f(xn+p)

ε , hence the sequence (xn)n∈ω is a Cauchy sequence:
let x = limn→+∞(xn). We have

⋂
n∈ω En = {x}: in fact, x ∈

⋂
n∈ω En because the

En are closed and the sequence (En)n∈ω is decreasing; and if y ∈
⋂

n∈ω En, then
we have for every n ∈ ω:

2f(xn+1)− f(xn) ≤ inf
En+1

f ≤ f(y) ≤ f(xn)− εd(xn, y)

It follows that:

lim
n→+∞

f(xn) ≤ f(y) ≤ lim
n→+∞

f(xn)− εd(x, y)

hence d(x, y) = 0 and x = y. Let y ∈ E such that y 6= x; then, there exists
N ∈ ω such that for all n ≥ N, f(xn) < f(y)+ εd(xn, y); hence for n → +∞ we get
f(x) ≤ f(y) + εd(x, y).

ii) We first take x0 ∈ E and E0 = E, then, using DMC, for every n ∈ ω, we put
En+1 = {y ∈ E/f(y) ≤ f(xn) − εd(xn, y)} and we take a finite nonempty subset
F ⊆ En+1 such that for all y ∈ F we have f(y) ≤ f(xn)+inf {f(x); x∈En+1}

2 ; then

we put xn+1 =
∑

y∈F y

|F | where | F | is the cardinal of F ; we get xn+1 ∈ En+1 and

f(xn+1) ≤ f(xn)+inf {f(x); x∈En+1}
2 because f and d(xn, .) are convex; the end of the

proof goes through without changes. �

In the spirit of ”reverse mathematics”, we now prove that the axiom Ek implies
DC.

Theorem 4. Ek ⇔ DC

proof. We follow Blair (see [2]). Let R be a binary relation on a nonempty set E
such that ∀x ∈ E ∃y ∈ E xRy. We denote by δ the discrete distance on E; we know
that Eω equipped with the usual distance: d((xn)n∈ω, (yn)n∈ω) =

∑
n∈ω

δ(xn,yn)
2n

is a complete metric space. Let α be a set such that α 6∈ E and Z = E ∪ {α}.
11



Let P = {(xn)n∈ω ∈ Zω;x0 6= α and (∀n ∈ ω xn = α or xnRxn+1)}: since P is a
closed subset of E, P is a complete metric space.

We suppose that for every (xn)n∈ω ∈ P , there exists n ∈ ω such that xn = α;
for every x = (xn)n∈ω ∈ P , we put f(x) = 1

λ(x) where λ(x) is the first element
of the set {n ∈ ω/xn = α}. Using Ekeland’s variational principle with ε = 1,
since f is continuous and bounded below by 0, let m = (mn)n∈ω ∈ P such that
∀x ∈ P f(m) ≤ f(x)+d(m,x); let y ∈ P such that for all k ∈ ω such that k < λ(m)
we have y(k) = m(k) and λ(y) > 2λ(m)λ(m)

2λ(m)−λ(m)
; then we have f(m) > f(y) + d(m, y)

hence a contradiction! �

8 The axiom DC implies the Mazur property
on Gâteaux-differentiable Banach spaces

On a Gâteaux-differentiable normed space E, one can extend each linear func-
tional f which is defined on a finite dimensional subspace F of E, to a linear
functional g defined on E, with ‖g‖ = ‖f‖: in fact, if f 6= 0, by compacity of the
closed unit ball Γ of F , there exists a ∈ Γ such that f(a) = ‖f‖, and since ‖.‖ is dif-
ferentiable at a, we have f = ‖f‖G(a, .)|E , and the linear functional g = ‖f‖G(a, .)
is defined on E, extends f , and ‖g‖ = ‖f‖.

Our aim is now to prove the Mazur property for Gâteaux-differentiable Banach
spaces, using the axiom of Dependent choices. We say that a normed space E
satisfies the bounded Mazur property if for every nonempty bounded closed convex
subset C of E and every a ∈ E\C there is f ∈ E′ such that f(a) < infC f ; using
lemma 1, the bounded Mazur property on E is equivalent to say that every bounded
closed convex subset of E is weakly closed.

We now consider the two following axioms:

SM. Gâteaux-differentiable Banach spaces satisfy the Mazur property.

SBM. Gâteaux-differentiable Banach space satisfy the bounded Mazur property.

Lemma 6. WEk ⇒ SBM

proof. Let (E, ‖.‖) be a Gâteaux-differentiable normed space: we prove the Mazur
property on E. Let C be a nonempty closed bounded convex subset of E and let
a ∈ E\C. Let ρ = d(a,C); let R be the diameter of the set C. For every z ∈ C we
put f(z) = ‖z − a‖. Let ε = ρ

2R . Using WEk, let m ∈ C such that

∀z ∈ C ‖m− a‖ ≤ ‖z − a‖+ ε ‖z −m‖
Let g = G(m − a, .) the Gâteaux-differential at point m − a. If z ∈ C, h ∈ E and
t ∈ R∗

+ then
‖m + t(z −m)− a‖ − ‖m− a‖ ≥ −εt ‖z −m‖

hence
‖m− a + t(z −m)‖ − ‖m− a‖

t
≥ −ε ‖z −m‖ ≥ −ρ

2
so it follows that g(z −m) ≥ −ρ

2 whence

g(z − a) = g(m− a) + g(z −m) ≥ ρ

2
> 0

we deduce that g[C] ≥ g(a) + ρ
2 > g(a). �

We now recall the following principle of uniform boundedness:
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. If (ui)i∈I is a family of continuous linear functionals on a normed space E, if E
is a Baire space, if C is an open bounded subset of E, and if for every x ∈ C we
have sup{| ui(x) |; i ∈ I} < +∞ then supx∈C;i∈I{| ui(x) |; i ∈ I} < +∞.

The proof is classical: let u = sup(| ui |); the function u is sublinear and lower
continuous; for every n ∈ ω we put Cn = {x ∈ C/u(x) ≤ n}; we have C =

⋃
n∈ω Cn

and each Cn is closed; since C is open in a Baire space, C is also a Baire space so,
let n0 ∈ ω, a ∈ C and ρ > 0 such that ∀x ∈ E (‖x− a‖ < ρ ⇒ u(x) ≤ n0); since u
is sublinear we deduce that there is M ∈ R such that ∀x ∈ E u(x) ≤ M ‖x‖; since
C is bounded we deduce that supx∈C;i∈I{| ui(x) |; i ∈ I} < +∞ .

If (E, d) is a metric space, if a ∈ E and ρ ∈ R∗
+, we denote by B(a, ρ) the open

ball {z ∈ E; d(a, z) < ρ}. We say that a subset A of a topological vector space E
is weakly bounded if and only if for every f ∈ E′, the set f [A] is bounded in R.

Lemma 7. Let E be a normed space. If for every x ∈ E we have

‖x‖ = sup{u(x);u ∈ E′ and ‖u‖ < 1}

and if E′ is a Baire space then every subset of E which is weakly bounded is strongly
bounded.

proof. Let A be a nonempty subset of E which is weakly bounded. Let I =⋃
a∈A B(a, 1); the set I is open in E and weakly bounded in E. Let C = {u ∈

E′; ‖u‖ < 1}: since C is open in the Baire space E′, the space C is also a Baire
space. We now have

sup{‖i‖ ; i ∈ I} = sup
u∈C;i∈I

{u(i)} = sup
u∈C;i∈I

{δi(u)}

where δi : E′ → R is the evaluating form at i; using the principle of uniform
boundedness, we deduce that I is strongly bounded so A is also strongly bounded.
�

Lemma 8. Let E be a normed space such that each weakly bounded subset of
E is strongly bounded. If C is a subset of E, and if for every n ∈ ω the set
Cn = {z ∈ C/ ‖z‖ ≤ n} is weakly closed, then C is weakly closed.

proof. Let (I,≤) be a poset and let (xi)i∈I be a family of C such that (xi)i∈I

weakly converges to a point x ∈ E. For every u ∈ E′, the family (u(xi))i∈I is
weakly bounded hence strongly bounded: let n ∈ ω such that for every i ∈ I we
have xi ∈ Cn; since Cn is weakly closed we deduce that x ∈ Cn hence x ∈ C. �

We deduce the following theorem:

Theorem 5. DC ⇒ SM.

proof. Let C be a closed convex subset of a Gâteaux-differentiable Banach space E.
Using WEk, which is a consequence of DC, for every n ∈ ω the set {z ∈ C/ ‖z‖ ≤
n} is weakly closed; using DC, the Banach space E′ is a Baire space, and since E
is Gâteaux-differentiable, for every x ∈ E\{0} there is a supporting functional at
x hence ‖x‖ = sup{u(x); u ∈ E′ and ‖u‖ < 1} so, using the two previous lemmas,
the set C is weakly closed. �
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Since HB implies the Mazur property on every normed space, and since HB
does not imply DC, we deduce that SM does not imply DC. We do not know the
answers to the following questions:

Question 1. Does a Gâteaux-differentiable Banach space satisfy the Mazur prop-
erty in ZF? the bounded Mazur property?

Question 2. Does the bounded Mazur property on a normed space imply the Mazur
property on this space?

9 The Hahn-Banach property on separable
spaces implies non-trivial measures on ω

We now show that there is a great difference between the continuous Hahn-
Banach property, which holds on every separable normed space, and the Hahn-
Banach property, which cannot be proved in ZF+DC, for separable spaces.

If a topological vector space E has a dense subset which is well-orderable, then
E satisfies the continuous Hahn-Banach property, and the proof relies on some
transfinite recursion and the following classical lemma:

Lemma 9. If E is a vector space, if p : E → R is a sublinear functional, if
F is a subspace of E, if a ∈ E\F , if m = supx∈F {f(x) − p(x − a)} and M =
infx∈F {p(x + a) − f(x)} then m ≤ M and for every real α ∈ [m,M ], the linear
functional g : E ⊕ Ra → R, which extends f and such that g(a) = α, satisfies the
inequality g ≤ p.

In particular, separable normed spaces satisfy the continuous Hahn-Banach prop-
erty.

Let B be a Boolean algebra. We say that an element a ∈ B is an atom of the
Boolean algebra B if a is a minimal element of B\{0B}. Let m be a measure on
B; if a ∈ B we say that a is an atom of the measure m if m(a) > 0 and for every
x ∈ B, x < a ⇒ m(x) = 0. We say that m is purely atomic if there is a nonempty
set D of atoms of B, and (λi)i ∈ l1(D) such that ∀x ∈ B m(x) =

∑
i∈D λiεi(x)

where εi(x) = 1 if i ≤ x else εi(x) = 0. We say that the measure m is unitary if
m(1B) = 1. For example, if a = (ai)i∈I ∈ l1(I) and if

∑
i∈I | ai |= 1 then the

mapping m : P(I) → [0, 1] which associates to every subset A of I the real number∑
i∈A | ai | is a unitary measure on I, which is purely atomic. The authors Pincus

and Solovay (see [11]) have described a model of ZF+DC in which all unitary
measures on ω are purely atomic; in this model, all ultrafilters on ω are trivial.

We now consider the following axiom:

HBω. Every separable normed space satisfies the Hahn-Banach property.

Theorem 6. The axiom HBω implies that there exists a unitary measure on the
set ω, without any atom.

proof. We consider the following norm M on l∞(ω); for every x = (xk)k∈ω ∈ l∞(ω)
we put M(x) =

∑
k∈ω

|xk|
(k+1)2 . The normed space (l∞(ω),M) is separable because

Q(ω) is dense in (l∞(ω),M). For every x = (xk)k∈ω ∈ l∞(ω) we put p(x) = lim(xk):
14



we obtain a sublinear functional p : l∞(ω) → R; using axiom HBω, let f : l∞(ω) →
R be a linear functional such that f ≤ p. Since p(1) = 1 and p(−1) = −1 we have
f(1) = 1. For every finite subset A ⊆ ω we have p(1A) = 0 hence f(1A) = 0. Hence
f is in the continuous dual of l∞(ω) but f 6∈ l1(ω). For every subset A ⊆ ω we
put m(A) = f(1A). Then the measure m : P(ω) → [0, 1] is unitary and has has no
atoms. �

Corollary 4. The Hahn-Banach property for separable normed spaces is not prov-
able in ZF+DC.

proof. The vector space l∞(ω) equipped with the previous norm M is separable;
we take a model of ZF+DC where all unitary measures on ω are purely atomic:
the normed space (l∞(ω),M) does not satisfy the Hahn-Banach property in this
model. �

10 Which normed spaces satisfy the
continuous Hahn-Banach property?

Topological vector spaces that satisfy the continuous Hahn-Banach property,
obey the following rules:

-a/ Gâteaux-differentiable uniformly convex Banach spaces satisfy the CHBP;
-b/ Topological vector spaces which have a dense well-orderable subset satisfy

the CHBP;
-c/ If a dense subspace of a topological vector space E satisfies the CHBP, then

E also satisfies the CHBP;
-d/ If a topological vector space satisfies the Mazur property, then all its sub-

spaces satisfy this property, hence if a locally convex topological vector space sat-
isfies the CHBP then all its subspaces satisfy this property.

-e/ If two topological vector spaces E and F satisfy the CHBP then the topo-
logical vector space E ⊕ F also satisfies this property.

Here is an other rule:

Theorem 7. Let E,F be two vector spaces and let u : E → F be a linear functional.
i) If E satisfies the Hahn-Banach property then u[E] also satisfies this property.
ii) If E and F are topological vector spaces, if E satisfies the continuous Hahn-

Banach property and if u is continuous then u[E] also satisfies this property.

proof. i) Let p : u[E] → R be a sublinear functional. Then q = p ◦ u is a sublinear
functional; thanks to the Hahn-Banach property on E, let g : E → R be a linear
functional such that g ≤ q; for every x ∈ Ker(u) we have g(x) ≤ q(x) = 0 hence
g|Ker(u) = 0 hence there exists a unique linear functional f : u[E] → R such that
f ◦ u = g; it is clear that f ≤ p.
ii) Proof similar to i). �

It follows that, if a normed space E satisfies the CHBP, and if F is a closed
subspace of E, then the normed space E/F also satisfies the CHBP.

Let (E, T ) be a topological vector space, and let X be a dense subspace of E.
If there is a topology T ′ on X such that (X, T ′) is a topological vector space that
satisfies the CHBP (resp. effective CHBP), and if T|X ⊆ T ′, then the topological
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vector space (E, T ) also satisfies this property. In particular, for every set I, the
space c0(I) = {x ∈ RI ; ∀ε > 0 ∃F ∈ Pf (I) ∀i ∈ I\F | xi |≤ ε} equipped with the
uniform norm ‖.‖ satisfies the continuous Hahn-Banach property, because, the set
l2(I) is dense in c0(I), and the Banach space (l2(I), N2) is Gâteaux-differentiable
and uniformly convex, and the norm N2 is such that ‖.‖ ≤ N2.

For the same reasons, if µ(1B) < +∞ then L1(E,B, µ) also satisfies the effective
CHBP because ∀f ∈ E(E,B, µ) N1(f) ≤

√
µ(1B)N2(f) so L2(E,B, µ) is a dense

subspace of L1(E,B, µ) and L2(E,B, µ) satisfies the effective CHBP.

Corollary 5. Let (E, ‖.‖) be a Banach space. If D is a dense subset of the closed
unit ball of E, and if the normed space l1(D) satisfies the continuous Hahn-Banach
property, then E also satisfies this property.

proof. If (λe)e∈S ∈ l1(S) then
∑

e∈S ‖ λe.e ‖< +∞; hence, since E is complete,
we can define: u((λe)e∈S) =

∑
e∈S λe.e. It is clear that u : l1(S) → E is linear;

it is also continuous since ‖u((λe)e∈S)‖ =
∥∥∑

e∈S λe.e
∥∥ ≤

∑
e∈S | λe |. Hence

u[l1(D)] = E and E satisfies the continuous Hahn-Banach property. �

In particular, if E is a set such that l1(E) satisfies the continuous Hahn-Banach
property, and if ‖.‖ is a norm on E such that (E, ‖.‖) is a Banach space, then E
also satisfies the CHBP. We know (see [11]), that in some models of ZF+DC,
the continuous dual of l∞(ω) is l1(ω), so the continuous Hahn-Banach property
on l∞(ω) cannot be proved in ZF+DC; but there is a bijection between the sets
l∞(ω) and R, so the continuous Hahn-Banach property on l1(R) cannot be proved
in ZF+DC.

If α is an ordinal which is not countable, it is known, (see [5] page 59), that
there is no Gâteaux-differentiable norm on l1(α) which is equivalent to the norm
of l1(α), but l1(α) satisfies the continuous Hahn-Banach property because Q(α) is
a dense well-orderable subset of l1(α), hence there are normed spaces which satisfy
the CHBP, but which do not have an equivalent Gâteaux-differentiable norm.

We have seen that, in some models of ZF, there are separable normed spaces
without the Hahn-Banach property, so we ask the following question:

Question 3. Is there a model of ZF in which there is a separable Banach space
which does not satisfy the Hahn-Banach property?

A positive answer to the next question would solve the question 3:

Question 4. If a vector space satisfies the Hahn-Banach property, do its subspaces
also satisfy this property?
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