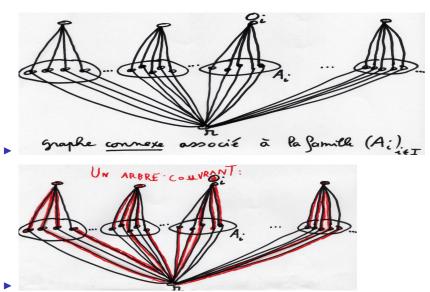
Formes linéaires et Axiomes de Choix Fini Séminaire ERMIT

Marianne Morillon

26 février 2008

Théorème (Höft et Howard 1973, [6])

AC ⇔ "Tout graphe connexe contient un arbre couvrant."



Bases et formes linéaires

Soit \mathbb{K} un corps commutatif. Considérons les conséquences suivantes de l'Axiome du Choix (**AC**).

- 4 axiomes d'algèbre linéaire.
 - 1. $D(\mathbb{K})$: Sur tout \mathbb{K} -espace vectoriel E non nul, il existe une forme linéaire $f: E \to \mathbb{K}$ non nulle.
 - 2. $DE(\mathbb{K})$: Pour tout \mathbb{K} -espace vectoriel E et tout $a \in E \setminus \{0\}$, il existe $f: E \to \mathbb{K}$ linéaire telle que f(a) = 1.
 - 3. $B(\mathbb{K})$: Tout \mathbb{K} -espace vectoriel admet une base.
 - 4. **BE**(**K**): Pour tout **K**-espace vectoriel E, tout système générateur G de E inclut une base.

Bien sûr:

$$AC \Rightarrow BE(\mathbb{K}) \Rightarrow B(\mathbb{K}) \Rightarrow DE(\mathbb{K}) \Rightarrow D(\mathbb{K}).$$

Un autre équivalent de AC

Remarque historique

Halpern (66) [5]: $\forall \mathbb{K}BE(\mathbb{K}) \Rightarrow AC$. Keremedis (96) [8]: $BE(\mathbb{Z}_2) \Rightarrow AC$.

Théorème (Howard 2007, [7])

Soit \mathbb{K} un corps commutatif. Alors $AC \Leftrightarrow BE(\mathbb{K})$.

Proof.

Howard montre qu'avec $\mathbf{BE}(\mathbb{K})$, tout graphe connexe admet un arbre couvrant (voir page suivante). Ainsi $\mathbf{BE}(\mathbb{K})$ implique \mathbf{AC} d'après le résultat précédent de Höft et Howard (1973) [6]. Pour d'autres équivalents de \mathbf{AC} formulés en termes de graphes couvrants, voir Del. et Mor. (2006) [2].

$BE(\mathbb{K}) \Rightarrow AC$: d'après la preuve de Howard

Soit G := (V, E) le graphe connexe de la page 2, où V (resp. E) désigne l'ensemble des sommets (resp. arêtes) du graphe G. On identifie E à une partie de $\mathbb{K}^{(V)}$ comme suit: pour tout sommet $x \in A := \bigsqcup_{i \in I} A_i$, on identifie l'arête $e = \{r, x\}$ au vecteur x - r de $\mathbb{K}^{(V)}$, et l'arête $e = \{x, O_i\}$ au vecteur $O_i - x$. On note W le sous-espace vectoriel de $\mathbb{K}^{(V)}$ engendré par l'ensemble des arêtes du graphe. Noter que l'espace W admet une base -dans ZF-. Avec $BE(\mathbb{K})$, soit B une base de W, incluse dans E. Soit $i_0 \in I$; alors le vecteur $O_{i_0} - r$ de $\mathbb{K}^{(V)}$ appartient à W (car pour tout $x \in A_{i_0}$) $O_{i_0} - r = \{r, x\} + \{x, O_i\}$). Considérons la décomposition dans B de $O_{i_0}-r$:

$$O_{i_0} - r = \sum_{i \in I} \left(\sum_{x \in A_i} \lambda_x(x - r) + \sum_{x \in A_i} \mu_x(O_i - x) \right)$$

ici les λ_x , μ_x sont presque tous nuls, $\lambda_x=0$ lorsque $x-r\notin B$, $\mu_x=0$ lorsque $O_i-x\notin B$.

$BE(\mathbb{K}) \Rightarrow AC$: suite

On regroupe selon la base canonique de $\mathbb{K}^{(V)}$:

$$O_{i_0} - r = \sum_{x \in A} (\lambda_x - \mu_x) \cdot x + \sum_{i \in I} (\sum_{x \in A_i} \mu_x) \cdot O_i - (\sum_{x \in A} \lambda_x) \cdot r$$

L'ensemble $Z_{i_0}:=\{x\in A_{i_0}:\lambda_x\neq 0\}$ est un singleton: en effet, pour tout $x\in A$, $\lambda_x=\mu_x$, et $\sum_{x\in A_{i_0}}\mu_x=1$. Ces égalités montrent que Z_{i_0} est non vide. Si Z_{i_0} contenait au moins deux points distincts x,y, alors les 4 arêtes $\{r,x\}$, $\{x,O_{i_0}\}$, $\{O_{i_0},y\}$ et $\{r,y\}$ appartiendraient à la base B de W: c'est contradictoire puisqu'elles forment un système lié.

Exemples d'axiomes de "choix fini"

3 axiomes de choix fini pour n entier ≥ 2 :

- 1. ACⁿ: Toute famille $(A_i)_{i \in I}$ d'ensembles finis non vides ayant au plus n éléments a un produit non vide."
- 2. AC_{wo}^n : Pour tout ordinal α et toute famille $(A_i)_{i \in \alpha}$ d'ensembles finis non vides ayant au plus n éléments, le produit $\prod_{i \in \alpha} A_i$ est non vide."
- 3. PACⁿ (Partial ACⁿ): Pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'ensembles finis non vides ayant au plus n élements, il existe une partie infinie I de \mathbb{N} telle que $\prod_{i\in I} A_i$ est non vide.

Un équivalent de AC dans ZF (voir Jech 73 [4])

MC ("Multiple Choice"): Pour toute famille $(A_i)_{i\in I}$ d'ensembles non vides, il existe une famille $(F_i)_{i\in I}$ d'ensembles finis non vides tels que pour tout $i\in I$, $F_i\subseteq A_i$.

Existe-t-il un corps \mathbb{K} tel que $\mathbf{B}(\mathbb{K})$ implique \mathbf{AC} ?

Quelques faits connus à propos de $B(\mathbb{K})$.

- 1. Blass 84 ([3]): $(\forall \mathbb{K}B(\mathbb{K}) \Rightarrow MC)$ -d'où $(\forall \mathbb{K}B(\mathbb{K}) \Rightarrow AC)$ -.
- 2. Keremedis 01 ([9]): $\mathbf{B}(\mathbb{Q})$ implique $\forall n \in \mathbb{N}^* \mathbf{PAC}^n$.
- 3. Howard 07 ([7]): $\mathbf{B}(\mathbb{Z}_2)$ implique \mathbf{AC}_{wo}^2 .

La question de savoir s'il existe un corps commutatif $\mathbb K$ tel que $B(\mathbb K)$ implique AC est (en février 2008) ouverte.

Quelle est la force de $\mathbf{B}(\mathbb{Z}_2)$?

Axiome D_{bool} :

Sur toute algèbre de Boole (AB) non nulle (vue comme \mathbb{Z}_2 -espace vectoriel), il existe une forme linéaire non nulle.

Axiome C(p) pour $p \in PRIME$:

Pour toute famille $(A_i)_{i\in I}$ d'ensembles finis non vides, il existe une famille $(F_i)_{i\in I}$ d'ensembles finis tels que pour tout $i\in I$, $F_i\subseteq A_i$, et p ne divise pas $|F_i|$.

Noter que C(2) implique AC^2 . On va renforcer légèrement le résultat précédent de Howard:

Théorème

- 1. Si $p \in PRIME$, alors $DE(\mathbb{Z}_p) \Rightarrow C(p)$.
- 2. $B(\mathbb{Z}_2) \Rightarrow DE(\mathbb{Z}_2) \Rightarrow D(\mathbb{Z}_2) \Rightarrow \boxed{D_{bool} \Rightarrow C(2)} \Rightarrow AC^2$.
- 3. $(\forall^{PRIME} p \ C(p)) \Rightarrow \forall^{\mathbb{N}} n \geq 2 \ \mathbf{AC}^n$.

$$\mathsf{DE}(\mathbb{Z}_p) \Rightarrow \mathsf{C}(p)$$

Théorème

Soit K un corps commutatif. Les énoncés suivants sont équivalents:

- 1. $\mathsf{DE}(\mathbb{K})$
- 2. La "version multiple" du précédent: "Si $(E_i)_{i\in I}$ est une famille de \mathbb{K} -espaces vectoriels, si $(a_i)_{i\in I}$ est une famille telle que pour tout $i\in I$, $a_i\in E_i\setminus\{0\}$, alors il existe une famille $(f_i)_{i\in I}$ telle que pour tout $i\in I$, $f_i:E_i\to\mathbb{K}$ est linéaire et $f_i(a_i)=1$ ".

Proof.

Utiliser le Lemme d'algèbre en page suivante.

Un Lemme pour passer aux formes multiples

Lemme

Etant donnée une famille $(E_i)_{i\in I}$ de \mathbb{K} -ev, et une famille $(a_i)_{i\in I}$ telle que chaque $a_i\in E_i\setminus\{0\}$, il existe un \mathbb{K} -ev E, un $a\in E\setminus\{0\}$, et une famille $(f_i:E_i\to E)_{i\in I}$ de morphismes de \mathbb{K} -ev tels que pour tout $i\in I$, $f_i(a_i)=a$.

Preuve. (J-P Aubry, voir [1].) Soit $F=\oplus_{i\in I}E_i$ la "somme directe" des E_i . Soit, pour tout $i\in I$, $j_i:E_i\to F$ l'injection canonique et $e_i:=j_i(a_i)$. Soit R le sev de F engendré par les divers e_i-e_j , lorsque $i\neq j\in I$. Soit $\pi:F\to E:=F/R$ le morphisme quotient et, pour tout $i\in I$, $f_i:=\pi\circ j_i$. Tous les $f_i(a_i)=\pi(e_i)$ sont égaux à un même élément a de E. Il reste à voir que $a\neq 0$. Il suffit de trouver une forme linéaire nulle sur E mais non nulle en les E0 considérer la forme "somme des coordonnées" sur le sev de E1 engendré par le système libre E2 el E3 de E5.

$\mathsf{DE}(\mathbb{Z}_p) \Rightarrow \mathsf{C}(p)$: suite

Corollaire

 $\mathsf{DE}(\mathbb{Z}_p) \Rightarrow \mathsf{C}(p).$

Proof.

Soit $(A_i)_{i\in I}$ une famille d'ensembles finis non vides. Pour tout $i\in I$, soit E_i le \mathbb{Z}_p -espace vectoriel \mathbb{K}^{A_i} ; on note aussi a_i l'élément 1_{A_i} de E_i . Soit, par la forme multiple de $\mathbf{DE}(\mathbb{Z}_p)$, une famille $(f_i)_{i\in I}$ telle que pour tout $i\in I$, $f_i: E_i\to \mathbb{Z}_p$ est linéaire et $f_i(a_i)=1$. Alors $f_i(a_i)=\sum_{t\in\{0...p-1\}}t|F_i(t)|$, où, pour tout $i\in I$, et tout $t\in\{0...p-1\}$, $F_i(t):=\{x\in A_i: f_i(x)=t\}$. Si $i\in I$, il existe $t\in\{0...p-1\}$ tel que $|F_i(t)|$ n'est pas multiple de p-car p ne divise pas $1=f_i(a_i)$ -. Soit t_i le premier tel élément de $\{0...p-1\}$; alors $F_i:=F_i(t_i)$ est une partie de A_i de cardinal non divisible par p. \square

$D_{bool} \Rightarrow C(2)$

Théorème

Les énoncés suivants sont équivalents à **D**_{bool}:

- 1. Pour toute AB \mathcal{B} et tout $0 \neq a \in \mathcal{B}$, il existe $f : \mathcal{B} \to \mathbb{Z}_2$ linéaire tel que f(a) = 1.
- 2. "Si $(\mathcal{B}_i, a_i)_{i \in I}$ est une famille d'AB munies d'éléments non nuls, il existe une famille $(f_i)_{i \in I}$ telle que pour tout $i \in I$, $f_i : \mathcal{B}_i \to \mathbb{Z}_2$ est linéaire et $f_i(a_i) = 1$.

Preuve. $\mathbf{D}_{bool} \Rightarrow 1$. L'application $x \mapsto x \land a$ de \mathcal{B} sur $\mathcal{B}_a := \{x \in \mathcal{B} : x \leq a\}$ est un morphisme d'AB donc r est linéaire. On applique ensuite \mathbf{D}_{bool} à l'AB \mathcal{B}_a . $1. \Rightarrow 2$. Pour tout $i \in I$, l'application $r_i : x \mapsto x \land a_i$ est un morphisme d'AB de \mathcal{B}_i sur l'AB $\mathcal{B}'_i := \{x \in \mathcal{B}_i : x \leq a_i\}$. On applique ensuite 1) au coproduit $(\mathcal{B}, j_i : \mathcal{B}'_i \to \mathcal{B})_i$ (voir page suivante) des AB $(\mathcal{B}'_i, a_i)_i$.

$D_{bool} \Rightarrow C(2)$:suite

Corollaire

 $D_{bool} \Rightarrow C(2)$.

Preuve. Si $(A_i)_{i \in I}$ est une famille d'ensembles finis non vides, considérer pour tout i l'A.B. $\mathcal{B}_i := \mathcal{P}(A_i)$ et utiliser \mathbf{D}_{bool} .

Coproduit d'algèbres de Boole

Etant donnée une famille $(\mathcal{B}_i)_{i\in I}$ d'algèbres de Boole, il existe une algèbre de Boole \mathcal{B} et une famille $(j_i:\mathcal{B}_i\to\mathcal{B})_{i\in I}$ de morphismes d'algèbres de Boole (avec $j_i(1)=1$) tels que, pour toute alg. de Boole \mathcal{C} , et toute famille $(g_i:\mathcal{B}_i\to\mathcal{C})_{i\in I}$ de morphismes d'alg. de Boole, il existe un unique morphisme $g:\mathcal{B}\to\mathcal{C}$ tel que $g\circ j_i=g_i$.

Preuve. voir [11]. Ebauche: on traite d'abord le cas où les alg. \mathcal{B}_i sont égales à $\mathcal{P}(\mathbb{N})$, puis celui ou elles sont sous-algèbre d'une puissance réduite de $\mathcal{P}(\omega)$ (ce qui est le cas général avec les méthodes décrites par Luxemburg 67 [10]).

Annexe:
$$(\forall^{PRIME} p \ C(p)) \Rightarrow \forall^{\mathbb{N}} n \geq 2 \ \mathbf{AC}^n$$
.

Soit n un entier ≥ 1 et $(A_i)_{i\in I}$ une famille d'ensembles non vides ayant chacun au plus n éléments. Soit $E:=\cup_{i\in I}\mathcal{P}(A_i)\backslash\varnothing$: E est un ensembles de parties non vides ayant chacune au plus n éléments. On applique successivement chacun des axiome C_p , pour p premier $\leq n$; on en déduit une application $\phi: E \to E$ telle que pour tout $A \in E$, si 1 < |A| alors $\phi(A) \subsetneq A$, d'où une fonction de choix sur E et aussi pour la famille $(A_i)_{i\in I}$.

Axiome du choix fini

ACfin: Toute famille d'ensembles finis non vides a un produit non vide.

Attention!

L'axiome $\forall n \in \mathbb{N}^* AC^n$ n'implique pas AC^{fin} .

Références citées

- 1. J.P. Aubry, Communication personnelle.
- 2. Delhommé and Morillon, Spanning graphs and the axiom of choice, Reports on Mathematical Logic, 40, 2006, 165–180.
- 3. Blass, Andreas, Existence of bases implies the axiom of choice, Axiomatic set theory (Boulder, Colo., 1983), Contemp. Math., 31, 31–33, Amer. Math. Soc., 1984.
- 4. Jech, The Axiom of Choice, NHPC, 1973.
- 5. Halpern, James D., Bases in vector spaces and the axiom of choice, Proc. Amer. Math. Soc., 17, 1966, 670–673.
- Höft, Hartmut and Howard, Paul, A graph theoretic equivalent to the axiom of choice, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 19, 1973, 191.

Références citées: suite

- 7. Howard, Paul, Bases, spanning sets, and the axiom of choice, Mathematical Logic Quarterly, 53, 2007, 3, 247–254.
- 8. Keremedis, Kyriakos, Bases for vector spaces over the two-element field and the axiom of choice, Proc. Amer. Math. Soc., 124, 1996, 8, 2527–2531.
- 9. Keremedis, Kyriakos, The vector space Kinna-Wagner principle is equivalent to the axiom of choice, MLQ Math. Log. Q., 47, 2001, 2, 205–210.
- Luxemburg, W.A.J., "Reduced powers of the real number system and equivalents of the Hahn- Banach extension theorem", Appl. Model Theory Algebra, Anal., Probab., Proc. Int. Sympos. Calif. Inst. Technol., 1969, 123-137.
- 11. Morillon, Algèbres de Boole mesurées et Axiome du choix, Séminaire U. Blaise Pascal, Clermont-Ferrand 1990.