$UG \models CHB$

M.Morillon

CHE

AC and H

GHE

G_dift

c-compactne

00 зр

w*UR

Appendix (proof of the Theorem)

Question:

Reference

The continuous Hahn-Banach property and the Axiom of Choice

Marianne Morillon (Univ. of La Réunion, France)
http://personnel.univ-reunion.fr/mar

ICBSOS, Chern Institute of Mathematics, Nankai University, Tianjin, China, 22 july 2007

The Continuous Hahn-Banach (CHB) property

 $\mathit{UG} \models \mathit{CHB}$

M.Morillor

СНВ

C --- UI

GHE

C 4if

c-compactne

LIC spaces

w*UR

Appendix (proof of th Theorem)

Questio

Reference

sub-linear functional

Given a (real) vector space E, a mapping $p: E \to \mathbb{R}$ is sublinear if for every $x, y \in E$ $p(x+y) \le p(x) + p(y)$, and for every $\lambda \in \mathbb{R}_+$, $p(\lambda x) = \lambda p(x)$.

CHB property on a (real) topological vector space E

For every continuous sub-linear functional $p: E \to \mathbb{R}$, every vector subspace F of E, and every linear mapping $f: F \to \mathbb{R}$ such that $f \le p_{\uparrow F}$, there exists some linear mapping $g: E \to \mathbb{R}$ extending f such that $g \le p$.

The HB property on a real vector space

Similar statement but p is not assumed to be continuous.

The Axiom of Choice

 $UG \models CHB$

M.Morillor

CHI

AC and HB

GHE

- -----

UG spaces

w*UF

Appendix (proof of th Theorem)

Questions

Referen

The Axiom of Choice says:

AC : If $(A_i)_{i \in I}$ is a non-empty family of non-empty sets, there exists a mapping $f: I \to \bigcup_{i \in I} A_i$ such that for every $i \in I$, $f(i) \in A_i$.

ZFC and ZF

- In ZF+AC (set-theory with the Axiom of Choice), "Every (real) normed space satisfies CHB".
- In **ZF** (set-theory without the Axiom of Choice), ℓ^{∞}/c_0 may fail to satisfy *CHB* ([Ho-Ru], [J], [P]).

We work in set-theory without the Axiom of Choice **ZF**.

Spaces satisfying CHB (in **ZF**)

UG ⊨ CHB

Aı

AC and HI

GHB

G-aiii

c-compactnes

UG spaces

w*UR

Appendix (proof of the Theorem)

Questions

Reference

An equivalent of the CHB property ([Dodu-M])

The *CHB* property on a normed space E is equivalent (in **ZF**) to the following "geometric form": given a closed subset C of E and a point $a \in E \setminus C$, there exists f in the unit sphere of the continuous dual E' such that $f[B(a,R)] \leq f[C]$, where R := d(a,C).

The following spaces satisfy (in **ZF**) the *CHB* property:

- Normed spaces with a dense well-orderable subset (e.g. separable normed spaces): see [Fossy-M].
- Uniformly convex Gâteaux differentiable Banach spaces (e.g. Hilbert spaces): see [Dodu-M].
- Uniformly smooth Banach spaces: see [Albius-M].

UG differentiability implies CHB (in ZF)

 $UG \models CHB$

M.Morillon

СН

AC and b

GHB

w*HR

Appendix proof of th Theorem)

References

Axiom of Dependent Choices (DC)

Given a binary relation R on a non-empty set X such that $\forall x \in X \ \exists y \in X \ xRy$, there exists a sequence $(x_n)_{n \in \mathbb{N}}$ in E such that $\forall n \in \mathbb{N} \ x_nRx_{n+1}$.

Recall that $AC \Rightarrow DC \Rightarrow AC(\mathbb{N})$ (converses are false).

Theorem ([Dodu-M])

In **ZF**+**DC**, Gâteaux differentiable normed spaces satisfy the *CHB* property.

I do not know if this statement holds in **ZF** (or in **ZF**+ $AC(\mathbb{N})$).

Theorem ([M], preprint 2007)

Every uniformly Gâteaux differentiable normed space satisfies (in **ZF**) the *CHB* property.

$G^+(a,.)$ and $G^-(a,.)$ in a normed space $(E,\|.\|)$

 $UG \models CHB$

M.Morillor

CHE

AC and H

GHE

G-diff

c-compactife

w*UR

Appendix (proof of the Theorem)

Questions

Referen

Definition

Given $a \in E \setminus \{0\}$ and $h \in E$, let

$$G^{\pm}(a,h) := \lim_{t \to 0^{\pm}} \frac{\|a + th\| - \|a\|}{t}$$

The mapping $G^+(a,.)$ (resp. $G^-(a,.)$) is sub-linear (resp. super-linear) and continuous, and $G^-(a,.) \leq G^+(a,.)$.

- -The norm $\|.\|$ is Gâteaux differentiable (G-diff.) at point a if $G^-(a,.) = G^+(a,.)$.
- -The normed space E is G-differentiable if its norm is G-diff. at each non-null point.

If E is G-diff at a point $a \in E \setminus \{0\}$, then G(a, .) is the unique norming form at point a.

The FE property on a normed space E

 $UG \models CHB$

M.Morillo

CH

C and H

GHI

G-diff

c-compactnes

UG spaces

w*UF

Appendix (proof of th Theorem)

Questions

Definition

E satisfies the *Finite Extension* (FE) property if for every finite dim. subspace V of E, and every linear form $f:V\to\mathbb{R}$, there exists a linear form $g:E\to\mathbb{R}$ extending f with $\|g\|=\|f\|$.

Lemma

If E is G-differentiable, then E satisfies the FE property.

Proof.

Let V be a finite dimensional vector subspace of E. Let $f:V\to\mathbb{R}$ be some non null linear mapping. Since V is finite dimensional, the closed unit ball of V is compact, thus f attains its norm at a point a in the unit sphere of V. Since G(a,.) is the unique norming form at point a, it extends $\frac{f}{\|f\|}$; thus $\|f\|.G(a,.)$ extends f and has the same norm as f.

Convex compactness

 $UG \models CHB$

M.Morillor

CHE

AC and H

GHI

G_diff

c-compactness

w*UF

Appendix (proof of the Theorem)

Questions

Reference

Centered family

A non-empty family C of sets is *centered* if every finite intersection of elements of C is non-empty.

c-compactness

Given a (real) vector space E, a topology \mathcal{T} on E, and a convex subset C of E, say that C is *convex-compact* if for every family of \mathcal{T} -closed convex subsets \mathcal{C} of E, if $\{C \cap A : A \in \mathcal{C}\}$ is centered, then $C \cap \cap \mathcal{C}$ is non-empty.

Another equivalent of CHB on a normed space E

 $UG \models CHB$

M.Morillor

CHE

AC and H

GHE

G-dif

c-compactness

. . .

w*UF

Appendix (proof of th Theorem)

Questions

Reference

We denote by $B_{E'}$ the closed unit ball of the continuous dual E' of E.

Theorem 2 ([Fossy-M])

The following statements are equivalent:

- The normed space E satisfies the CHB property.
- E satisfies the FE property and $B_{E'}$ is c-compact in the weak* topology of E'.

Uniformly Gâteaux differentiable normed spaces

 $UG \models CHB$

M.Morillon

CHI

C and H

GHR

C 110

UG spaces

*110

Appendix (proof of th Theorem)

Questions

References

Definition

A normed space $(E, \|.\|)$ is uniformly Gâteaux differentiable (UG) if E is G-differentiable, and if, for every $h \in E$, $\lim_{t \to 0, t \neq 0} \left(\frac{\|a+th\|-\|a\|}{t} - G(a,h) \right) = 0$ uniformly for $a \in S_E$.

Normed space E with a w*UR dual ball

 $UG \models CHB$

M.Morillon

CHE

C and H

СНЕ

~ ··~

w*UR

Appendix (proof of th Theorem)

Questions

References

Proposition (classical)

If a normed space is UG, then its dual ball is w*UR.

Notation

Given a normed space E, and some $h \in E$, we denote by $d_h : E' \times E' \to \mathbb{R}_+$ the pseudo-metric associating to each $(f,g) \in E' \times E'$ the real number |f(h) - g(h)|.

Weak* Uniformly Rotund dual ball

Say that the dual ball $B_{E'}$ of E is w^*UR if for every $h \in E$, and every $\varepsilon > 0$, there exists some $\delta \in]0,1[$ such that for every $a \in S_E$, the d_h -diameter of the set $C_a := \{f \in B_{E'} : f(a) > \delta\}$ is $< \varepsilon$.

Convex-compactness of a w*UR dual ball

 $UG \models CHB$

M.Morillor

СН

AC and H

GHB

G-dif

c-compactnes

UG spaces

w*UR

Appendix (proof of th Theorem)

Question

Referen

Theorem 3 ([M], preprint 2007)

If the dual ball $B_{E'}$ of E is w^*UR , then $B_{E'}$ is convex-compact in the weak* topology.

Proof.

The proof relies on a purely topological criterion of compactness in complete gauge spaces with a sub-basis of closed sets which are small in thin crowns.

Corollary

Every UG normed space satisfies the CHB property.

Smallness in thin crowns

 $UG \models CHB$

M.Morillor

CHI

C and H

GHB

G-dif

c-compactne

UG space

Appendix (proof of the Theorem)

Questions

References

Definition

Let X be a space and let d, d' be two pseudo-metrics on X. Let $a \in X$. A set $\mathcal C$ of subsets of X satisfies the of d'-smallness in thin d-crowns centered at a if for every $R \in \mathbb R_+^*$, for every $\varepsilon > 0$ there exists $\eta \in]0, R[$ such that for every $C \in \mathcal C$,

$$C \subseteq D_d(a, R - \eta, R + \eta) \Rightarrow \operatorname{diam}_{d'}(C) < \varepsilon$$

If $(X, (d_i)_{i \in I})$ is a gauge space, \mathcal{C} satisfies the property of $(d_i)_{i \in I}$ -smallness in thin d-crowns centered at a if for every $i \in I$, \mathcal{C} satisfies the property of d_i -smallness in thin d-crowns centered at a.

A criterion of compactness

 $UG \models CHB$

M.Morillon

СНЕ

AC and HI

GHB

G-diff

c-compactne

UG spaces

w*UR

Appendix (proof of the Theorem)

Questions

Referen

Theorem

Let $(X,(d_i)_{i\in I})$ be a Hausdorff complete gauge space. Let $\mathcal T$ be a topology on X which is included in the associated gauge topology, and let $\mathcal C$ be a sub-basis of closed sets of $(X,\mathcal T)$ which is closed by finite intersections. Let $a\in X$. Let d be a metric on X such that d-closed balls centered at a belong to $\mathcal C$, and such that $\mathcal T$ is included in the topology $\mathcal T_d$ associated to d. If $\mathcal C$ satisfies the property of $(d_i)_{i\in I}$ -smallness in thin d-crowns centered at a, then every every large d-ball with center a (and thus, every d-bounded element of $\mathcal C$) is closely $\mathcal C$ -compact.

Proof.

See [6] or a sketch of proof in next frame.

Proof of the criterion of compactness

 $UG \models CHB$

M.Morillon

CHE

C and H

GHD

w*UR

Appendix (proof of the Theorem)

Questic

References

Sketch of the Proof

Let \mathcal{L} be the lattice generated by \mathcal{C} . Let $\rho > 0$ and let B be the large d-ball $B_d(a, \rho)$. Let \mathcal{A} be subset of non-empty elements \mathcal{C} which is closed by finite intersection and such that $B \in \mathcal{A}$. Let us show (in **ZF**) that $\cap A$ is non-empty. Let \mathcal{F} be the filter of \mathcal{L} generated by \mathcal{A} . Let $R := \inf\{r \in \mathbb{R}_+ : B_d(a,r) \in \mathcal{S}(\mathcal{F})\}$. Denote by \mathcal{A}' the set $\{A \cap B_d(a,r) : A \in \mathcal{A} \text{ and } r > R\}$. If R=0 then $a\in \cap \mathcal{A}$. If R>0, then for every $\varepsilon>0$, there exists some element of A' which is included in the crown $D_d(a, R - \varepsilon, R + \varepsilon)$. Since C satisfies the property of $(d_i)_{i \in I}$ -smallness in thin d-crowns centered at a, the centered family \mathcal{A}' is Cauchy in the gauge space $(X,(d_i)_{i\in I})$; since this gauge space is complete and Hausdorff, $\cap A'$ is a singleton $\{a\}$. This singleton is **ZF**-definable from $(X,(d_i)_{i\in I})$, d,\mathcal{C} and \mathcal{A} whence the close c-compactness.

The weak* topology on E'

 $UG \models CHB$

M.Morillor

CHE

C and H

CUE

C 110

w^UF

Appendix (proof of the Theorem)

Question

Reference

Let E be a normed space.

Evaluation functionals

Given some $a \in E$, we denote by $\tilde{a} : E' \to \mathbb{R}$ the linear form $f \mapsto f(a)$.

Topology $\sigma(E', E)$

We denote by $\sigma(E', E)$ the weakest topology on E' for which all evaluation functionals \tilde{a} , $a \in E$ are continuous.

Proposition

The topology $\sigma(E',E)$ on E is the topology associated to the gauge space $(E,(d_a)_{a\in E})$.

*-polyhedras of the continuous dual E'

 $UG \models CHB$

Appendix (proof of the Theorem)

polyhedras of a (real) tvs E

A strict (resp. large) hemi-space of E is a subset of E of the form $(f < \lambda)$ (resp. $(f \le \lambda)$) where $f \in E'$. A strict (resp. large) polyhedra of E is a finite intersection of strict (resp. large) hemi-spaces.

*polyhedras of the continuous dual of a normed space E

A strict (resp. large) *-polyhedra of E' is a polyhedra of the tvs E' endowed with the weak* topology.

We denote by \mathcal{P} the class of large *-polyhedras of E': \mathcal{P} is a sub-basis of closed subsets of $\sigma(E', E)$, which is closed by finite intersection.

A **ZF**-provable form of Hahn-Banach

UG ⊨ CHB

IVI.IVIOITIIOI

CIID

AC and HI

.

UG space

w*UR

Appendix (proof of the Theorem)

Questions

References

Theorem (Dodu-M, Lemma 1)

Let E be a Hausdorff tvs. If C is a convex subset of E, and if P is a strict polyhedra of E disjoint from C, then there exists $f \in E'$ such that f[P] < f[C].

Beginning of the proof.

P is of the form $P = \bigcap_{i=1}^m \{x \in E : f_i(x) < \alpha_i\}$. where $f_1, ..., f_m \in E' \setminus \{0\}$ and $\alpha_1, ..., \alpha_m \in \mathbb{R}$. Let $V := \bigcap_{i=1}^m Ker(f_i)$, let F be a finite dimensional subspace of E such that $V \oplus F = E$ and let $p : E \to F$ be the projection on F with kernel V. Since the f_i are continuous, $p : E \to F$ is continuous. Moreover, since the $tvs\ E$ is Hausdorff, its finite dimensional subspace F is isomorphic with the usual space \mathbb{R}^d where d is the dimension of F.

A **ZF**-provable form of Hahn-Banach (continued)

 $UG \models CHB$

M.Morillor

CHE

AC and H

GHF

C diff

c-compactne

116

w*IIE

w·UK

Appendix (proof of the Theorem)

Question

Reference

End of the proof.

The finite dimensional *tvs* F satisfies the various classical geometrical Hahn-Banach properties. Let K := p[C] and U := p[P]; the convex subsets K and U are disjoint in F, and U is open in F hence, since F is finite dimensional, there is $g \in F'$ such that g[U] < g[K]. Let $f := g \circ p$. Then f[P] < f[C].

Separating convex sets and *polyhedras

 $UG \models CHB$

M.Morillo

CHE

AC and H

GHB

G_diff

c-compactne

116

...*IID

v*UR

Appendix (proof of the Theorem)

Question

Referen

weak* continuous forms (classical)

Given a Banach space E, weak* continuous linear mappings $\phi: E' \to \mathbb{R}$ are evaluation mappings $\tilde{a}: E' \to \mathbb{R}$ for $a \in E$.

Theorem

Let E be a normed space, let C be a convex subset of E'. If P is a strict *-polyhedra of E' which is disjoint from C, then there exists $a \in E$ such that $\tilde{a}[C] < \tilde{a}[P]$.

smallness of *polyhedras in a w*UR dual ball

UG ⊨ CHB

M.Morillo

CLI

AC and

GHE

G-dill

- ----

w*IIR

Appendix (proof of the Theorem)

Questions

Theorem

Let E be a normed space. Let d be the distance given by the dual norm on E'. Let $(d_h)_{h\in E}$ be the canonical gauge space of the weak* topology on E'. If E has a w*UR dual norm, then the class $\mathcal{P}_b := \{P \cap B(0,r) : P \in \mathcal{P} \text{ and } r \in \mathbb{R}_+\}$ has the property of $(d_h)_{h\in E}$ -smallness in thin d-crowns centered at $0_{E'}$.

Proof.

Let $h \in E$. Let $\varepsilon > 0$. Since the dual norm of E' is w*UR, let $\eta > 0$ such that for every $a \in S_E$, and for every $f, g \in C_{a,\eta}$, $|f(h) - g(h)| < \varepsilon$. Let $P \in \mathcal{P}$ such that $P \cap B(0, 1 - \eta) = \varnothing$. Using the previous **ZF**-provable consequence of **HB**, there exists $a \in S_E$ such that $\tilde{a}[B(0, 1 - \eta)] < \tilde{a}[P]$, thus $(P \cap B_E) \subseteq C_{a,\eta}$, thus for every $f, g \in (P \cap B_E)$, $|f(h) - g(h)| < \varepsilon$.

Some open questions

 $UG \models CHB$

M.Morillor

СНІ

C and H

GHB

G-diff

c-compactne

UG spaces

...*!!!D

Appendix (proof of th Theorem)

Questions

Referer

Question 1

Does a Gateaux (or Frechet) differentiable normed (or Banach) space satisfy the *CHB* property in **ZF**? in **ZF**+**AC**(\mathbb{N}) (where **AC**(\mathbb{N}) is the "countable axiom of choice")?

Equivalently, is the dual ball of a G-diff (or F-diff) normed space weak* c-compact?

Question 2 (Bell and Fremlin, 1972)

In **ZF**+**AC**, given a real locally convex topological vector space *E*, "Every non-empty c-compact convex subset *C* of *E* has an extremal point". Does this statement imply **AC** in **ZF**?

Some open questions (continued)

 $UG \models CHB$

M.Morillor

СН

C and H

C. . . .

C 4:f

c compostno

....

...*!!!

w*UR

Appendix (proof of th Theorem)

Questions

Referenc

Question 3

Which closed subsets of $[0,1]^I$ are c-compact (resp. compact) in **ZF**? For example, if F is Corson (i.e. every element of F has a countable support), is F compact in **ZF**+**DC**? in **ZF**+**AC**(\mathbb{N})?

Question 4 (van Rooij, [R])

In *p*-adic functional analysis, Ingleton's theorem is a statement analogous to the Hahn-Banach theorem, which holds for Banach spaces over a spherically complete field. Does Ingleton's theorem imply **AC**?

Références

 $UG \models CHB$

M.Morillo

CHE

AC and F

GHE

c.compactne

116

w*UF

Appendix (proof of th Theorem)

Questions

References

[Albius-M] Albius and Morillon, Uniform smoothness entails Hahn-Banach, Quaestiones Mathematicae, 2001.

[Dodu-M] Dodu and Morillon, The Hahn-Banach property and the axiom of choice, Math. Log. Q., 1999.

[Fossy-M] Fossy and Morillon, The Baire category property and some notions of compactness, J. Lond. Math. Soc., II. Ser., 1998.

[Ho-Ru] Howard and Rubin, Consequences of the Axiom of Choice, AMS, 1998.

[Je] Jech, The Axiom of Choice, NHPC, 1973.

References (continued)

 $UG \models CHB$

M.Morillor

CHE

C and HI

GHB

c compactno

- -----

Appendix

Questions

References

[M] Morillon, Uniform Gâteaux differentiability yields Hahn-Banach, preprint 2007.

[P] Pincus, David, The strength of the Hahn-Banach theorem, Victoria Symposium on Nonstandard Analysis (Univ. Victoria, Victoria, B.C.), 1972.

[R] van Rooij, A. C. M., The axiom of choice in *p*-adic functional analysis, *p*-adic functional analysis (Laredo, 1990), Lecture Notes in Pure and Appl. Math., 137, 151–156, Dekker, New York, 1992.