Compactness of Helly spaces

Marianne Morillon

University of La Réunion (France)

Brno, 14-17 july 2009

We work in set-theory without the Axiom of Choice **ZF**:

AC ⇔ "Tychonov for compact spaces" Alaoglu ⇔ "Tychonov for Hausdorff compact spaces" **HB**(Hahn-Banach) There exists a non-trivial measure on ω There exists a non L-measurable subset of \mathbb{R}

References

Howard & Rubin, *Consequences of the Ax. of Choice*, AMS 1998. Jech, *The Axiom of Choice*, NHPC 1973.

Two "analytic" Hahn-Banach properties

Given a real vector space E, a mapping $p: E \to \mathbb{R}$ is sublinear if for every $x, y \in E$ and every real number $\lambda \geq 0$, $p(x+y) \leq p(x) + p(y)$ and $p(\lambda x) = \lambda p(x)$.

Hahn-Banach property (HBP) on a real vector space E:

For every sub-linear functional $p: E \to \mathbb{R}$, every vector subspace F of E, and every linear mapping $f: F \to \mathbb{R}$ such that $f \leq p_{\upharpoonright F}$, there exists a linear mapping $\tilde{f}: E \to \mathbb{R}$ extending f such that $\tilde{f} \leq p$.

Continuous Hahn-Banach property (CHBP) on a tvs E:

Similar statement but we assume that E is a topological vector space and that $p: E \to \mathbb{R}$ is continuous.

Models of **ZF** without Hahn-Banach

We denote by \mathcal{CHB} the class of normed spaces satisfying the continuous Hahn-Banach property.

Spaces not in \mathcal{CHB}

There is a model of **ZF** (see [8, Pincus & Solovay, 1977]) where every (positive) finitely additive unitary measure on $\mathbb N$ is trivial (*i.e.* discrete). Equivalently, the continuous dual of $\ell^\infty(\mathbb N)$ is $\ell^1(\mathbb N)$. In such a model, $\ell^\infty(\mathbb N)$ does not belong to $\mathcal H\mathcal B$.

Question

- 1. Which normed spaces belong to \mathcal{CHB} ?
- 2. For which topological spaces X does the normed space $C^*(X)$ belong to \mathcal{HB} ?
- 3. Given a compact Hausdorff topological space K, does the normed space C(K) belong to \mathcal{HB} ?

The class \mathcal{CHB} of normed spaces satisfying CHBP

Theorem ([4] Fossy & M. 1998, [7] M. 2009)

The following normed spaces satisfy the CHBP:

- 1. Spaces with a dense well-ordered subset $(\ell^1(\alpha))$ for α ordinal).
- 2. Spaces with a uniformly Gâteaux differentiable equivalent norm (e.g. Hilbert spaces, unif. smooth spaces).

Theorem ([5] Dodu & M. 1999)

The class CHB is closed under:

- 1. subspaces
- 2. continuous images
- 3. closure

Remark

 $\ell^{\infty}(\mathbb{N}) \in \mathcal{HB} \text{ iff } \ell^{1}(\mathbb{R}) \in \mathcal{HB}.$

The *FEP*

Finite Extension property (FEP) on a normed space E:

Similar statement but we assume that E is a normed space, F is finite dimensional and p is the norm of E.

Remark

- 1. For every set I, $\ell^{\infty}(I)$ satisfies the *FEP*.
- 2. Gâteaux-differentiable normed spaces satisfy the *FEP* ([7] M. 2009)..

Using the axiom of *Dependent Choices* (a weak form of the Axiom of Choice), G-differentiable spaces belong to \mathcal{HB} ([5] M. 1999).

Question

Do Gâteaux-differentiable (resp . Fréchet-differentiable) normed spaces belong to \mathcal{HB} in \mathbf{ZF} ?

A statement equivalent to the CHBP convex-compactness [3, Luxemburg 1969]

A subset A of a topological vector space E is *convex-compact* if for every family C of closed *convex* subsets of A satisfying the finite intersection property (*FIP*), the set $\cap C$ meets A.

Given a normed space E, we denote by E' the continuous dual of E, and by $B_{E'}$ the closed unit ball of E'.

Theorem. Given a normed space *E*:

 $E \in \mathcal{CHB} \Leftrightarrow E$ satisfies the FEP and $B_{E'}$ is weak* convex-compact.

Proof. See [3, Luxemburg 1969] or [5, 1999].

Questions

Given a compact Hausdorff space K, and denoting by $\mathcal{M}(K)$ the continuous dual of C(K):

- 1. Is the closed unit ball B(K) of $\mathcal{M}(K)$ weak* convex-compact?
- 2. For which compact Hausdorff spaces K is B(K) weak* compact?

Spaces C(K) for a linearly ordered compact space K

Our aim is to prove the following results:

Theorem

Let (X, \leq) be a linearly ordered set (for short, say a "line"). The following closed subset of $[0,1]^X$ is compact:

$$H(X,[0,1]) := \bigcap_{x,y \in X; \ x \le y} \{ f \in [0,1]^X : f(x) \le f(y) \}$$

Corollary

If K is a complete line, then the dual ball B(K) of C(K) is weak* compact.

Corollary

If K is a complete line, then the normed space C(K) satisfies the CHBP.

The Helly space H(X, L)

Lexicographic lines

Given an ordinal α , the lexicographic line $L_{\alpha} := \{0,1\}^{\alpha}$ endowed with the order topology is complete and thus (Loeb-)compact.

Given two lines X, L, we denote by H(X,L) the set of ascending mappings $u: X \to L$. We endow L with the order topology, and H(X,L) with the topology induced by the product space L^X .

Notation

Given
$$x \in X$$
 and $t \in L$, we define the following subset of $H(X, L)$:

$$F(x, t) := \{u \in H(X, L) : u(x) = t\}$$

If X is a line, then $H(X, L_2)$ is (Loeb-)compact

Proof.

Let \mathcal{F} be a filter of the lattice \mathcal{L} of closed subsets of $H(X, L_2)$. Let $\mathcal{S}(\mathcal{F}) := \{G \in \mathcal{L} : \forall F \in \mathcal{F} \ F \cap G \neq \emptyset\}$. We define the following subset of X:

$$I := \{x \in X : F(x,0) \in \mathcal{S}(\mathcal{F})\}\$$

Then I is an initial section of X, and for every $x \in X \setminus I$, $F_{x,1} \in \mathcal{F}$. Let $u: X \to L_2$ be the indicator function of $X \setminus I$. Let us check that $u \in \cap \mathcal{F}$. Let $F \in \mathcal{F}$. Let us show that every neighbourhood $K \cap I$ of $K \cap I$ of $K \cap I$ where $K \cap I$ is a finite subset of $K \cap I$ of $K \cap I$ in $K \cap I$ in $K \cap I$ of $K \cap I$ of $K \cap I$ in $K \cap I$ of $K \cap I$ of $K \cap I$ in $K \cap I$ of $K \cap I$ of $K \cap I$ of $K \cap I$ is an initial section of $K \cap I$ in $K \cap I$ of $K \cap I$

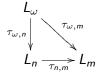
More generally:

If a line L is finite, then H(X,L) is Loeb-compact, a witness of Loeb-compactness beeing definable from the lines X and L.

L_{ω} is the projective limit of the sequence $(L_n)_{n\in\omega}$

$$\tau_{n,m}: L_n \to L_m \text{ for } m \leq n \leq \omega$$

 $\tau_{n,m}$ is the "truncature mapping" $\sigma \mapsto \sigma_{\upharpoonright m}$. Notice that $\tau_{n,m}$ is ascending, continuous and onto.



lim

Given a sequence $(\sigma_k)_{k\in\omega}$ such that for every $m\leq n\in\omega$, $\sigma_n\in L_n$ and $\tau_{n,m}(\sigma_n)=\sigma_m$, we denote by $\lim((\sigma_n)_{n\in\omega})$ the (unique) element σ of L_ω such that for every $n\in\omega$, $\tau_{\omega,n}(\sigma)=\sigma_n$.

If (X, \leq) is a line, then $H(X, L_{\omega})$ is Loeb-compact

Proof.

Let \mathcal{F} be a filter of the lattice \mathcal{L} of closed subsets of $H(X, L_{\omega})$. We define an ascending sequence $(\mathcal{F}_n)_{n\in\omega}$ of filters of \mathcal{L} such that $\mathcal{F}_0=\mathcal{F}$ and, denoting by \mathcal{F}_n^* the filter $\tau_{\omega,n}[\mathcal{F}_n]$, $\cap \mathcal{F}_n^*$ is a singleton $\{u_n\}$ of L_n . Having defined $(\mathcal{F}_i)_{i\leq n}$ for some $n\in\omega$, then $\mathcal{F}_n^*=\{Z\in\mathcal{L}_{L_n}:\tau_{\omega,n}^{-1}[Z]\in\mathcal{F}_n\}$; using the Loeb-compactness of $H(X,L_n)$, let $u_n\in\cap\mathcal{F}_n$; then $F_n:=\tau_{\omega,n}^{-1}[u_n]\in\mathcal{S}(\mathcal{F}_n)$; let \mathcal{F}_{n+1} be the filter generated by \mathcal{F}_n and F_n . By definition of $(u_n)_{n\in\omega}$, for every $n\in\omega$, $\tau_{n+1,n}(u_{n+1})=u_n$, thus we may define $u:=\lim((u_n)_{n\in\omega})$. Then $u\in\cap\mathcal{F}$.

If (X, \leq) is a line, then H(X, [0, 1]) is Loeb-compact

Proof.

Consider a continuous ascending onto mapping $\pi: L_{\omega} \to [0,1]$. Then the mapping $\pi^*: H(X,L_{\omega}) \to H(X,[0,1])$ associating to every $u \in H(X,L_{\omega})$ the mapping $\pi \circ u$ is continuous and onto. Thus $H(X,[0,1]) = \pi^*[H(X,L_{\omega})]$ is Loeb-compact.

Gap-full lines

Given a line (X, \leq) , let D_X be the set of elements $x \in X$ such that $x = \sup X$ or x has a successor in X. For every $x \in D_X$, the indicator function f_X of the interval \leftarrow, x] is continuous.

Definition

A line (X, \leq) is gap-full if the set D_X is dense in X.

Proposition

Let (X, \leq) be a gap-full complete line. Then the vector space generated by the subset $\{f_x : x \in D_X\}$ of C(X) is dense in C(X).

Proof.

It is a consequence of the Stone-Weierstrass Theorem (which is choiceless).

The continuous dual of C(X) for a gap-full line X

If the line X has a first element a, let

$$H_0(X,[0,1]) := \{u \in H(X,[0,1]) : u(a) = 0\}$$

Given a compact Hausdorff space K, denote by $\mathcal{M}_+(K)$ the set of positive linear forms on C(K). Let $B_+(K) := B(K) \cap \mathcal{M}_+(K)$ be the "positive dual ball" of K.

Theorem (Stieltjes measures on a gap-full complete line)

Let (X, \leq) be a gap-full complete line. We endow B(X) with the weak* topology.

- 1. For every $u \in H_0(X,[0,1])$, there exists a unique element $\mu_u \in \mathcal{M}(X)$ such that for every $x \in D_X$, $\mu_u(f_x) = u(x)$. Moreover $\mu_u \in \mathcal{B}_+(X)$.
- 2. Let $\Phi: H_0(X, [0,1]) \to B^+(X)$ be the mapping $u \mapsto \mu_u$. Then Φ is continuous and onto.

Thus $B^+(X)$ (and also B(X)) is (Loeb-)compact.

Splitted lines

Given a complete line (X, \leq) , we denote by S(X) the "splitted" line $X \times_{lex} L_2$ endowed with the lexicographic order: this space is gap-full. We denote by $\pi_X : S(X) \twoheadrightarrow X$ the mapping $(x, \varepsilon) \mapsto x$.

Lemma

Let (X, \leq) be a complete line.

- 1. The mapping $\pi_X^* : C(X) \hookrightarrow C(S(X))$ associating to each $f \in C(X)$ the mapping $f \circ \pi_X$ is linear and isometrical.
- 2. The transposed mapping $\pi_X^{*t}: \mathcal{M}(S(X)) \twoheadrightarrow \mathcal{M}(X)$ is linear, weak*-continous and onto.
- 3. The induced mapping $\pi_X^{*t}: B_+(S(X)) \to B_+(X)$ is continuous and onto.

Theorem

Given a complete line X, B(X) is weak* (Loeb)-compact.

Corollary

Given a complete line X, $C(X) \in \mathcal{H}B$.

References I

Howard, Paul and Rubin, Jean E.

Consequences of the Axiom of Choice.

American Mathematical Society, 1998.

Luxemburg, W.A.J.

Reduced powers of the real number system and equivalents of the Hahn-Banach extension theorem.

Holt. 1969.

Fossy, J. & Morillon, M.,

The Baire category property and some notions of compactness..

J. Lond. Math. Soc., II. Ser., 1998.

References II

- Dodu, J. & Morillon, M.,

 The Hahn-Banach property and the axiom of choice.

 Math. Log. Quart., 1999.
- Läuchli, H.

 Auswahlaxiom in der Algebra.
 Comment. Math. Helv., 1962.
 - Morillon, M.,
 Uniform Gâteaux differentiability yields Hahn-Banach.
 Quaestiones Mathematicae, to appear.
- Pincus, D. & Solovay, R., Definability of measures and ultrafilters. JSL 1977.