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We work in set-theory without the Axiom of Choice ZF:
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Two “analytic” Hahn-Banach properties

Given a real vector space E, a mapping p : E — R is sublinear if
for every x,y € E and every real number A > 0,

p(x +y) < p(x) + p(y) and p(Ax) = Ap(x).
Hahn-Banach property (HBP) on a real vector space E:

For every sub-linear functional p : E — R, every vector subspace F
of E, and every linear mapping f:F — R such that f < PIF, there
exists a linear mapping f : E — R extending f such that f < p.

Continuous Hahn-Banach property (CHBP) on a tvs E:

Similar statement but we assume that E is a topological vector
space and that p: E — R is continuous.
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Models of ZF without Hahn-Banach

We denote by CHB the class of normed spaces satisfying the
continuous Hahn-Banach property.

Spaces not in CHB

There is a model of ZF (see [8, Pincus & Solovay, 1977]) where
every (positive) finitely additive unitary measure on N is trivial (i.e.
discrete). Equivalently, the continuous dual of £>°(N) is /1(N). In
such a model, ¢>°(N) does not belong to HB.

Question

1. Which normed spaces belong to CHB?

2. For which topological spaces X does the normed space C*(X)
belong to HB?

3. Given a compact Hausdorff topological space K, does the
normed space C(K) belong to H5?
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The class CHB of normed spaces satisfying CHBP

Theorem ([4] Fossy & M. 1998, [7] M. 2009)
The following normed spaces satisfy the CHBP:

1. Spaces with a dense well-ordered subset ({*(c) for o ordinal).

2. Spaces with a uniformly Giteaux differentiable equivalent
norm (e.g. Hilbert spaces, unif. smooth spaces).

Theorem ([5] Dodu & M. 1999)
The class CHB is closed under:

1. subspaces

2. continuous images

3. closure

Remark
(*(N) € HB iff /*(R) € HB.
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The FEP

Finite Extension property (FEP) on a normed space E:

Similar statement but we assume that E is a normed space, F is
finite dimensional and p is the norm of E.

Remark

1. For every set I, £°°(]) satisfies the FEP.

2. Gateaux-differentiable normed spaces satisfy the FEP ([7] M.
2009)..

Using the axiom of Dependent Choices (a weak form of the Axiom
of Choice), G-differentiable spaces belong to HB ([5] M. 1999).

Question
Do Géateaux-differentiable (resp. Fréchet-differentiable) normed
spaces belong to HB in ZF?
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A statement equivalent to the CHBP
convex-compactness [3, Luxemburg 1969]

A subset A of a topological vector space E is convex-compact if for
every family C of closed convex subsets of A satisfying the finite
intersection property (FIP), the set NC meets A.

Given a normed space E, we denote by E’ the continuous dual of
E, and by Bg/ the closed unit ball of E’.
Theorem. Given a normed space E:

E € CHB < E satisfies the FEP and Bg: is weak*
convex-compact.

Proof. See [3, Luxemburg 1969] or [5, 1999].

Questions

Given a compact Hausdorff space K, and denoting by M(K) the
continuous dual of C(K):

1. Is the closed unit ball B(K) of M(K) weak* convex-compact?

2. For which compact Hausdorff spaces K is B(K) weak*
combpact? 7/18



Spaces C(K) for a linearly ordered compact space K

Our aim is to prove the following results:

Theorem
Let (X, <) be a linearly ordered set (for short, say a “line”). The
following closed subset of [0,1]X is compact:

HX0.1) = () {fel01*:f(x)<f(y)}

x,y€X; x<y

Corollary

If K is a complete line, then the dual ball B(K) of C(K) is weak*
compact.

Corollary

If K is a complete line, then the normed space C(K) satisfies the
CHBP.
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The Helly space H(X, L)

Lexicographic lines

Given an ordinal «, the lexicographic line L, := {0,1}“ endowed
with the order topology is complete and thus (Loeb-)compact.
Given two lines X, L, we denote by H(X, L) the set of ascending
mappings u : X — L. We endow L with the order topology, and
H(X, L) with the topology induced by the product space LX.

Notation
Given x € X and t € L, we define the following subset of H(X, L):
F(x,t):={ue H(X,L): u(x) =t}
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If X is a line, then H(X, L,) is (Loeb-)compact

Proof.
Let F be a filter of the lattice £ of closed subsets of H(X, L»). Let
S(F):={Ge L:VFeFFnG# }. We define the following
subset of X:

I :={xe X:F(x,0) € S(F)}

Then [ is an initial section of X, and for every x € X\/, Fx1€ F.
Let u: X — Lj be the indicator function of X\/. Let us check
that v € NF. Let F € F. Let us show that every neighbourhood
N of u meets F. We may assume that

N = NxeaF(x,0) NNyegF(x,1) where A (resp. B) is a finite
subset of | (resp. X\I). If A= & then N = NyepgF(x,1) € F so
N meets F, else NyeaF(x,0) = F(max A,0) € S(F) so

NN F =F(maxA,0)N(Nkes F(x,1)NF) # 2.

]

More generally:

If a line L is finite, then H(X, L) is Loeb-compact, a witness of
Loeb-compactness beeing definable from the lines X and L.
10/18



L., is the projective limit of the sequence (L,)qew

Tom : Ln — Ly for m<n<w

Tn,m is the “truncature mapping” o + on,. Notice that 7, , is
ascending, continuous and onto.

Tw,m
Tw,n

Lp—=—1Lm
Thn,m

lim

Given a sequence (0k)kew such that for every m < n € w, o, € L,
and 7p.m(0n) = om, we denote by lim((c,)new) the (unique)
element o of L, such that for every n € w, 7, ,(0) = oy.
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If (X, <) is a line, then H(X, L) is Loeb-compact

Proof.
Let F be a filter of the lattice £ of closed subsets of H(X, L,,).

We define an ascending sequence (F,)ne, of filters of £ such that
Fo = F and, denoting by F; the filter 7, ,[Fn], NF; is a singleton
{un} of L,. Having defined (F;)i<, for some n € w, then
Fr={Z € Ly, : 7;}1Z] € Fp}; using the Loeb-compactness of
H(X,Lp), let u, € NFy; then Fp, = T‘;’,l,[u,,] € S(Fn); let Fnyq be
the filter generated by F,, and F,. By definition of (up)necw, for
every N € w, Tni1,n(Unt1) = Up, thus we may define
u:=lim((un)new). Then u e NF. O
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If (X, <) is a line, then H(X, ][0, 1]) is Loeb-compact

Proof.

Consider a continuous ascending onto mapping 7 : L, — [0, 1].
Then the mapping 7* : H(X, L,,) — H(X, [0, 1]) associating to
every u € H(X, L,) the mapping 7 o u is continuous and onto.
Thus H(X,[0,1]) = 7*[H(X, L,)] is Loeb-compact. O
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Gap-full lines

Given a line (X, <), let Dx be the set of elements x € X such that
x = sup X or x has a successor in X. For every x € Dx, the
indicator function 7, of the interval <, x| is continuous.

Definition

A line (X, <) is gap-full if the set Dx is dense in X.

Proposition

Let (X, <) be a gap-full complete line. Then the vector space
generated by the subset {f, : x € Dx} of C(X) is dense in C(X).

Proof.
It is a consequence of the Stone-Weierstrass Theorem (which is
choiceless). O
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The continuous dual of C(X) for a gap-full line X

If the line X has a first element a, let
Ho(X. [0,1]) := {u € H(X,[0,1]) : u(a) = 0}

Given a compact Hausdorff space K, denote by M (K) the set of
positive linear forms on C(K). Let B (K) := B(K) N M4 (K) be
the “positive dual ball” of K.

Theorem (Stieltjes measures on a gap-full complete line)

Let (X, <) be a gap-full complete line. We endow B(X) with the

weak* topology.

1. For every u € Hyo(X,[0,1]), there exists a unique element
wy € M(X) such that for every x € Dx, py(f) = u(x).
Moreover p, € B (X).

2. Let & : Hy(X,[0,1]) — BT(X) be the mapping u — ji,,.
Then ® is continuous and onto.

Thus B*(X) (and also B(X)) is (Loeb-)compact.
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Splitted lines

Given a complete line (X, <), we denote by S(X) the “splitted”
line X Xex Lo endowed with the lexicographic order: this space is
gap-full. We denote by 7x : S(X) — X the mapping (x,¢) — x.
Lemma
Let (X, <) be a complete line.
1. The mapping 7y : C(X) — C(S(X)) associating to each
f € C(X) the mapping f o mx is linear and isometrical.
2. The transposed mapping m5* : M(S(X)) - M(X) is linear,
weak*-continous and onto.
3. The induced mapping 75" : BL(S(X)) = B+(X) is
continuous and onto.

Theorem

Given a complete line X, B(X) is weak* (Loeb)-compact.
Corollary

Given a complete line X, C(X) € HB.
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