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We work in set-theory without the Axiom of Choice ZF:

AC⇔ “Tychonov for compact spaces”

		
Alaoglu⇔ “Tychonov for Hausdorff compact spaces”

OO




HB(Hahn-Banach)

OO

��

��

There exists a non-trivial measure on ω

?
��

There exists a non L-measurable subset of R
References
Howard & Rubin, Consequences of the Ax. of Choice, AMS 1998.
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Two “analytic” Hahn-Banach properties

Given a real vector space E , a mapping p : E → R is sublinear if
for every x , y ∈ E and every real number λ ≥ 0,
p(x + y) ≤ p(x) + p(y) and p(λx) = λp(x).

Hahn-Banach property (HBP) on a real vector space E :

For every sub-linear functional p : E → R, every vector subspace F
of E , and every linear mapping f : F → R such that f ≤ p�F , there
exists a linear mapping f̃ : E → R extending f such that f̃ ≤ p.

Continuous Hahn-Banach property (CHBP) on a tvs E :

Similar statement but we assume that E is a topological vector
space and that p : E → R is continuous.
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Models of ZF without Hahn-Banach

We denote by CHB the class of normed spaces satisfying the
continuous Hahn-Banach property.

Spaces not in CHB
There is a model of ZF (see [8, Pincus & Solovay, 1977]) where
every (positive) finitely additive unitary measure on N is trivial (i.e.
discrete). Equivalently, the continuous dual of `∞(N) is `1(N). In
such a model, `∞(N) does not belong to HB.

Question

1. Which normed spaces belong to CHB?

2. For which topological spaces X does the normed space C ∗(X )
belong to HB?

3. Given a compact Hausdorff topological space K , does the
normed space C (K ) belong to HB?
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The class CHB of normed spaces satisfying CHBP

Theorem ([4] Fossy & M. 1998, [7] M. 2009)

The following normed spaces satisfy the CHBP:

1. Spaces with a dense well-ordered subset (`1(α) for α ordinal).

2. Spaces with a uniformly Gâteaux differentiable equivalent
norm (e.g. Hilbert spaces, unif. smooth spaces).

Theorem ([5] Dodu & M. 1999)

The class CHB is closed under:

1. subspaces

2. continuous images

3. closure

Remark
`∞(N) ∈ HB iff `1(R) ∈ HB.
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The FEP

Finite Extension property (FEP) on a normed space E :

Similar statement but we assume that E is a normed space, F is
finite dimensional and p is the norm of E .

Remark

1. For every set I , `∞(I ) satisfies the FEP.

2. Gâteaux-differentiable normed spaces satisfy the FEP ([7] M.
2009)..

Using the axiom of Dependent Choices (a weak form of the Axiom
of Choice), G-differentiable spaces belong to HB ([5] M. 1999).

Question
Do Gâteaux-differentiable (resp. Fréchet-differentiable) normed
spaces belong to HB in ZF?
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A statement equivalent to the CHBP
convex-compactness [3, Luxemburg 1969]

A subset A of a topological vector space E is convex-compact if for
every family C of closed convex subsets of A satisfying the finite
intersection property (FIP), the set ∩C meets A.

Given a normed space E , we denote by E ′ the continuous dual of
E , and by BE ′ the closed unit ball of E ′.

Theorem. Given a normed space E :

E ∈ CHB ⇔ E satisfies the FEP and BE ′ is weak*
convex-compact.

Proof. See [3, Luxemburg 1969] or [5, 1999].

Questions
Given a compact Hausdorff space K , and denoting by M(K ) the
continuous dual of C (K ):

1. Is the closed unit ball B(K ) ofM(K ) weak* convex-compact?

2. For which compact Hausdorff spaces K is B(K ) weak*
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Spaces C (K ) for a linearly ordered compact space K

Our aim is to prove the following results:

Theorem
Let (X ,≤) be a linearly ordered set (for short, say a “line”). The
following closed subset of [0, 1]X is compact:

H(X , [0, 1]) :=
⋂

x ,y∈X ; x≤y

{f ∈ [0, 1]X : f (x) ≤ f (y)}

Corollary

If K is a complete line, then the dual ball B(K ) of C (K ) is weak*
compact.

Corollary

If K is a complete line, then the normed space C (K ) satisfies the
CHBP.
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The Helly space H(X , L)

Lexicographic lines

Given an ordinal α, the lexicographic line Lα := {0, 1}α endowed
with the order topology is complete and thus (Loeb-)compact.

Given two lines X , L, we denote by H(X , L) the set of ascending
mappings u : X → L. We endow L with the order topology, and
H(X , L) with the topology induced by the product space LX .

Notation
Given x ∈ X and t ∈ L, we define the following subset of H(X , L):

F (x , t) := {u ∈ H(X , L) : u(x) = t}
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If X is a line, then H(X , L2) is (Loeb-)compact

Proof.
Let F be a filter of the lattice L of closed subsets of H(X , L2). Let
S(F) := {G ∈ L : ∀F ∈ F F ∩ G 6= ∅}. We define the following
subset of X :

I := {x ∈ X : F (x , 0) ∈ S(F)}

Then I is an initial section of X , and for every x ∈ X\I , Fx ,1 ∈ F .
Let u : X → L2 be the indicator function of X\I . Let us check
that u ∈ ∩F . Let F ∈ F . Let us show that every neighbourhood
N of u meets F . We may assume that
N = ∩x∈AF (x , 0) ∩ ∩x∈BF (x , 1) where A (resp. B) is a finite
subset of I (resp. X\I ). If A = ∅ then N = ∩x∈BF (x , 1) ∈ F so
N meets F , else ∩x∈AF (x , 0) = F (max A, 0) ∈ S(F) so
N ∩ F = F (max A, 0) ∩

(
∩x∈B F (x , 1) ∩ F

)
6= ∅.

More generally:

If a line L is finite, then H(X , L) is Loeb-compact, a witness of
Loeb-compactness beeing definable from the lines X and L.
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Lω is the projective limit of the sequence (Ln)n∈ω

τn,m : Ln → Lm for m ≤ n ≤ ω

τn,m is the “truncature mapping” σ 7→ σ�m. Notice that τn,m is
ascending, continuous and onto.

Lω

τω,n

��

τω,m

  B
BB

BB
BB

B

Ln τn,m
// Lm

lim
Given a sequence (σk)k∈ω such that for every m ≤ n ∈ ω, σn ∈ Ln

and τn,m(σn) = σm, we denote by lim((σn)n∈ω) the (unique)
element σ of Lω such that for every n ∈ ω, τω,n(σ) = σn.
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If (X ,≤) is a line, then H(X , Lω) is Loeb-compact

Proof.
Let F be a filter of the lattice L of closed subsets of H(X , Lω).
We define an ascending sequence (Fn)n∈ω of filters of L such that
F0 = F and, denoting by F∗n the filter τω,n[Fn], ∩F∗n is a singleton
{un} of Ln. Having defined (Fi )i≤n for some n ∈ ω, then
F∗n = {Z ∈ LLn : τ−1

ω,n[Z ] ∈ Fn}; using the Loeb-compactness of
H(X , Ln), let un ∈ ∩Fn; then Fn := τ−1

ω,n[un] ∈ S(Fn); let Fn+1 be
the filter generated by Fn and Fn. By definition of (un)n∈ω, for
every n ∈ ω, τn+1,n(un+1) = un, thus we may define
u := lim((un)n∈ω). Then u ∈ ∩F .
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If (X ,≤) is a line, then H(X , [0, 1]) is Loeb-compact

Proof.
Consider a continuous ascending onto mapping π : Lω → [0, 1].
Then the mapping π∗ : H(X , Lω)→ H(X , [0, 1]) associating to
every u ∈ H(X , Lω) the mapping π ◦ u is continuous and onto.
Thus H(X , [0, 1]) = π∗[H(X , Lω)] is Loeb-compact.
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Gap-full lines

Given a line (X ,≤), let DX be the set of elements x ∈ X such that
x = supX or x has a successor in X . For every x ∈ DX , the
indicator function fx of the interval ←, x ] is continuous.

Definition
A line (X ,≤) is gap-full if the set DX is dense in X .

Proposition

Let (X ,≤) be a gap-full complete line. Then the vector space
generated by the subset {fx : x ∈ DX} of C (X ) is dense in C (X ).

Proof.
It is a consequence of the Stone-Weierstrass Theorem (which is
choiceless).
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The continuous dual of C (X ) for a gap-full line X
If the line X has a first element a, let

H0(X , [0, 1]) := {u ∈ H(X , [0, 1]) : u(a) = 0}

Given a compact Hausdorff space K , denote byM+(K ) the set of
positive linear forms on C (K ). Let B+(K ) := B(K ) ∩M+(K ) be
the “positive dual ball” of K .

Theorem (Stieltjes measures on a gap-full complete line)

Let (X ,≤) be a gap-full complete line. We endow B(X ) with the
weak* topology.

1. For every u ∈ H0(X , [0, 1]), there exists a unique element
µu ∈M(X ) such that for every x ∈ DX , µu(fx) = u(x).
Moreover µu ∈ B+(X ).

2. Let Φ : H0(X , [0, 1])→ B+(X ) be the mapping u 7→ µu.
Then Φ is continuous and onto.

Thus B+(X ) (and also B(X )) is (Loeb-)compact.
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Splitted lines
Given a complete line (X ,≤), we denote by S(X ) the “splitted”
line X ×lex L2 endowed with the lexicographic order: this space is
gap-full. We denote by πX : S(X ) � X the mapping (x , ε) 7→ x .

Lemma
Let (X ,≤) be a complete line.

1. The mapping π∗X : C (X ) ↪→ C (S(X )) associating to each
f ∈ C (X ) the mapping f ◦ πX is linear and isometrical.

2. The transposed mapping π∗X
t :M(S(X )) �M(X ) is linear,

weak*-continous and onto.

3. The induced mapping π∗X
t : B+(S(X )) � B+(X ) is

continuous and onto.

Theorem
Given a complete line X , B(X ) is weak* (Loeb)-compact.

Corollary

Given a complete line X , C (X ) ∈ HB.
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