Compacité faible et Axiome du Choix Séminaire ERMIT

Marianne Morillon

12 et 19 février 2007

Questions

Etant donné un espace normé E, on note par défaut $\|.\|$ sa norme, B_E sa boule unité large: $B_E := \{x \in E : \|x\| \le 1\}$.

Compacité de la boule unité large?

La boule B_E est-elle:

- compacte pour la topologie de la norme?
- compacte pour une topologie moins fine "agréable"?
- quasi-compacte pour une topologie moins fine "agréable"?

Diverses réponses possibles

Quelles réponses dans **ZFC**? dans **ZF**? (ou autres théories . . .) Cas où *E* est un Banach uniformément convexe.

Cadre ensembliste

On se place dans **ZF**.

Définition de la topologie faible

Etant donné un espace normé E, on note E' son dual continu.

Topologie faible sur *E*

C'est la moins fine des topologies sur E, rendant continues les applications $f \in E'$. On la note $\sigma(E, E')$.

Description des ouverts faibles

- ▶ demi-espace strict: toute partie de E du type $(f < \lambda)$, où $f \in E' \setminus \{0\}$ et $\lambda \in \mathbb{R}$.
- polyhèdre strict: toute intersection finie de demi-espaces stricts.
- ouvert faible: union de polyhèdres stricts.

Comparaison top. faible/top. norme

En dimension finie, topologies faible et forte coincident.

En dimension infinie:

- un polyhèdre strict non vide n'est pas borné (inclut une variété affine de codimension finie)
- un ouvert faible non vide n'est pas borné
- ▶ l'adhérence faible de la sphère unité inclut la boule large correspondante
- ▶ top. faible ⊊ top. forte

Produits de compacts

"Boolean Prime ideal" axiom (alias BPI)

Toute algèbre de Boole non nulle admet un idéal premier.

Théorème ("folklore")

Les énoncés suivants sont équivalents:

- BPI
- ► Tout filtre sur un ensemble est inclus dans un ultrafiltre.
- ► Tychonov: Tout produit de compacts (séparés) est compact.
- ▶ pour tout ensemble I, $[0,1]^I$ est compact.
- ▶ pour tout ensemble I, $\{0,1\}^I$ est compact.
- Alaoglu.

Statut de BPI

Théorème

- ► AC → BPI
- ► BPI → AC

Proof.

Le résultat $BPI \not\rightarrow AC$ est dû à Halpern et Levy(67), [4].

Forme analytique de "Hahn-Banach"

Soit E un \mathbb{R} -espace vectoriel.

Forme sous-linéaire sur *E*:

Toute application $p: E \to \mathbb{R}$ telle que

- $\forall x, y \in E \ p(x+y) \le p(x) + p(y) \ (sous-additivité)$
- ▶ $\forall x \in E \ \forall \lambda \in \mathbb{R}_+ \ p(\lambda.x) = \lambda p(x)$ (homogénéité positive)

Axiome **HB**

"Si $p: E \to \mathbb{R}$ est une forme sous-linéaire, si F est un sev de E, si $f: F \to \mathbb{R}$ est une forme linéaire majorée par p, alors il existe une forme linéaire $g: E \to \mathbb{R}$, prolongeant f et majorée par p".

Statut de HB

Théorème

- ► BPI → HB
- ► HB → BPI
- **► ZF // HB**.

Proof.

 $HB \not\rightarrow BPI$: voir Pincus(72b), [7]. Pour $ZF \not\vdash HB$: voir Pincus(72c), [8].

Equivalents de **HB**

Théorème

Chacun des énoncés suivants équivaut à **HB**:

- ▶ Le dual continu d'un espace normé non nul est non nul.
- ▶ Tout convexe fermé d'un espace normé est faiblement fermé.
- La topologie faible sur un espace normé est séparée.
- ➤ Toute algèbre de Boole non nulle admet une mesure finiement additive non nulle à valeurs dans [0, 1].
- Sur un evn de dimension infinie, la topologie faible n'est pas grossière.
- **.** . . .

Une alternative à la topologie faible

Topologie convexe sur un espace normé

C'est la topologie la moins fine pour laquelle les convexes fortement fermés sont fermés.

Treillis convexe d'un espace normé E

C'est le treillis T_E engendré par les convexes fortement fermés. Les éléments de T_E sont les unions finies de convexes fortement fermés. Les fermés de la topologie convexe sont les intersections d'éléments de T_E .

Comparaison

Soit *E* est un espace normé de dimension infinie.

- "top. faible ⊆ top. convexe ⊊ top. forte" (voir appendice pour l'inclusion stricte).
- ▶ Dans ZF+HB, "top. faible = top. convexe".

Axiome du choix dépendant et consorts

Axiome DC

Si R est une relation binaire sur un ensemble non vide E, et si pour tout $x \in E$ il existe $y \in E$ satisfaisant xRy, alors il existe une suite $(x_n)_{n \in \mathbb{N}}$ de E telle que pour tout $n \in \mathbb{N}$, x_nRx_{n+1} .

Axiome $AC(\mathbb{N})$

Toute suite $(A_n)_{n\in\mathbb{N}}$ d'ensembles non vides a un produit non vide.

Axiome $AC(\mathbb{N}, fin)$

Toute suite $(A_n)_{n\in\mathbb{N}}$ d'ensembles *finis* non vides a un produit non vide.

Statut des axiomes **DC** et Cie

Théorème

 $AC \to (BPI+DC) \to DC \to AC(\mathbb{N}) \to AC(\mathbb{N}, fin)$, et réciproques fausses. De plus $ZF \not\vdash AC(\mathbb{N}, fin)$.

Proof.

 $(BPI+DC) \not\rightarrow AC$: voir Pincus(77b), [9]. $AC(\mathbb{N}) \not\rightarrow DC$: Jensen(67)? voir aussi le livre de Jech(73b), [5].

 $AC(\mathbb{N}, fin) \not\to AC(\mathbb{N})$: voir par exemple le "1er modèle de Cohen" du livre de Jech. **ZF** $\not\vdash$ $AC(\mathbb{N}, fin)$: Voir le "2ième modèle de Cohen" du même livre.

Espaces métriques complets

On suppose que X est un espace métrique.

Filtres de Cauchy

Un filtre $\mathcal F$ d'un treillis T de parties de X est dit de Cauchy lorsque pour tout réel $\varepsilon>0$, il existe $F\in\mathcal F$ dont le diamètre soit $<\varepsilon$.

Espace complet

L'espace métrique est dit *complet* lorsque tout filtre de Cauchy de son treillis de fermés a une intersection non vide.

Diverses notions de complétude

Soit X un espace métrique.

Proposition

Considérons les prop. suivantes:

- 1. L'espace métrique X est complet.
- 2. Si $(F_n)_{n\in\mathbb{N}}$ est une suite décroissante de fermés de X dont les diamètres tendent vers 0, alors $\cap_n F_n$ est non vide.
- 3. Toute suite de Cauchy de X converge.

Alors $1 \Rightarrow 2 \Rightarrow 3$. Et **AC**(\mathbb{N}) implique les réciproques.

Uniforme convexité d'un evn E

Stricte convexité de E

Tout segment inclus dans la sphère unité est un singleton. Autrement dit, pour tous $x, y \in S_E$, $x \neq y \Rightarrow \|\frac{x+y}{2}\| < 1$.

Uniforme convexité de E

Version quantitative forte de la stricte convexité. Pour tout réel $\varepsilon>0$, il existe $\delta>0$ tel que pour tous $x,y\in B_E$, $\|x-y\|>\varepsilon\Rightarrow \|\frac{x+y}{2}\|<1-\delta$.

Exemples

Tout Hilbert est u-convexe. Soit $p\in]1,+\infty[$. Pour tout ens. I, l'espace $\ell^p(I)$ est u-convexe. Si $\mathcal B$ est une alg. de Boole et $\nu:\mathcal B\to [0,1]$ fin. additive, alors $L^p(\nu)$ est u-convexe. Si A est une alg. de Gelfand, et si $f\in A'$ est positive, alors $L^p(A,f)$ est u-convexe.

Thm. principal

versions "light" d'Alaoglu: AUc, AH et AH_b

- ▶ **AUc**: La boule unité large d'un Banach uniformément convexe est compacte pour la topologie convexe.
- ► AH: (Hilbert) La boule unité large d'un Hilbert est faiblement compacte.
- ▶ **AH**_b: (Hilbert à base hilbertienne) Pour tout ens. I, la boule unité large de $\ell^2(I)$ est faiblement compacte.

Bien sûr, $AUc \Rightarrow AH \Rightarrow AH_b$.

Théorème

 $AC(\mathbb{N}) \Rightarrow AUc.$

Proof.

Voir la suite.

Preuve: préliminaires

Soit T un treillis de parties d'un ensemble X, \mathcal{F} un filtre de T.

Ensembles \mathcal{F} -stationnaires

Si $S \in T$, S est \mathcal{F} -stationnaire lorsqu'il rencontre tout élément de \mathcal{F} . On note $\mathcal{S}(\mathcal{F})$ l'ensemble des éléments \mathcal{F} -stationnaires.

Enrichissement d'un filtre \mathcal{F} de T

- ▶ Si $\mathcal{A} \subseteq \mathcal{S}(\mathcal{F})$, et si \mathcal{A} est une chaîne, alors $\mathcal{A} \cup \mathcal{F}$ engendre un filtre.
- ▶ Soient $F_1, ..., F_m \in T$. Si $F_1 \cup \cdots \cup F_m \in \mathcal{S}(\mathcal{F})$, alors l'un des F_i est \mathcal{F} -stationnaire.

Critère de quasi-compacité

Soit X un espace top., et T un treillis de fermés de X. Si tout fermé de X est intersection d'éléments de T et si tout filtre de T a une intersection non vide, alors X est quasi-compact.

Preuve: suite

Preuve du th.

Soit T le treillis convexe de E. Soit \mathcal{F} un filtre de T. contenant la boule unité large de E. Il s'agit de montrer que $\cap \mathcal{F}$ est non vide. Soit $R := \inf\{r \in \mathbb{R}_+ : B(0,r) \in \mathcal{S}(\mathcal{F})\}$. L'ensemble $\mathcal{F} \cup \{B(0,r): r > R\}$ engendre un filtre \mathcal{G} de T. Si R = 0, alors $0 \in \cap \mathcal{F}$. Si R > 0, pour tout $\varepsilon > 0$, il existe des éléments du filtre \mathcal{G} inclus dans la couronne $D(0, R - \varepsilon, R + \varepsilon)$. Par **AC**(\mathbb{N}), on choisit pour tout $n \in \mathbb{N}$, un ensemble fini F_n de convexes fermés de E dont la réunion appartient à \mathcal{G} et est incluse dans la couronne $D(0, R - \frac{1}{n+1}, R + \frac{1}{n+1})$. Par $AC(\mathbb{N}, fin)$, l'ensemble $\bigcup_n F_n$ est dénombrable. On peut donc définir (par récurrence) une suite $(C_n)_n \in \prod_{n \in \mathbb{N}} F_n$ telle que pour tout $n \in \mathbb{N}$, $\mathcal{G} \cup \{C_i : i < n\}$ engendre un filtre \mathcal{G}_n et $\mathcal{C}_n \in \mathcal{S}(\mathcal{G}_n)$. Par uniforme convexité de E, le filtre $\bigcup_{n\in\mathbb{N}}\mathcal{G}_n$ est de Cauchy. Par complétude de E, il admet pour intersection un singleton $\{a\}$. Alors $a \in \cap \mathcal{G} \subseteq \cap \mathcal{F}$.

Cas Hilbertien

Résumé

$$\mathsf{DC} o \mathsf{AC}(\mathbb{N}) o \mathsf{AUc} o \mathsf{AH} o \mathsf{AH}_b o \mathsf{AC}(\mathbb{N},\mathsf{fin})$$

Proof.

La dernière implication se trouve dans Fossy/Morillon(98), [2]. L'implication $DC \to AUc$ avait été prouvée dans Del/Morillon(99), [1], laissant ouvertes les questions $AC(\mathbb{N}) \to AUc$? et

 $AC(\mathbb{N}) \to AH$? Une preuve de $AC(\mathbb{N}) \to AH$ figure dans Fremlin(06), [3], chap. 56, Section 566P.

Question: réciproques?

Les implications suivantes sont-elles prouvables: $AH \rightarrow AUc$?, $AH_b \rightarrow AH$?, $AC(\mathbb{N}, fin) \rightarrow AH_b$?

Borsuk-Ulam

Borsuk-Ulam(1933)

Soit $n \in \mathbb{N}$ et N une norme sur \mathbb{R}^{n+1} . Soit S la sphère unité associée. Soit $f: S \to \mathbb{R}^n$ une application continue. Alors il existe $u \in S$ tel que f(u) = f(-u).

Proof.

Voir une preuve par exemple dans [6].

Lusternik-Schnirelmann

Lusternik-Schnirelmann(1930)

Soit $n \in \mathbb{N}^*$. Soit N une norme sur \mathbb{R}^n . Soit S la sphère unité correspondante. Si S est incluse dans la réunion de n fermés, l'un de ces fermés contient deux points antipodaux.

Proof.

On suppose $n \geq 2$. Soient F_1, \ldots, F_n ces n fermés. Soit $f: S \to \mathbb{R}^{n-1}$ l'application associant à tout $x \in S$ le (n-1)-uple $(d(x,F_1),\ldots,d(x,F_{n-1}))$. Soit par Borsuk-Ulam un point $u \in S$ tel que f(u)=f(-u). Si l'une au moins des coordonnées u_{i_0} de u est nulle, alors u et -u appartiennent tous deux à F_{i_0} ; sinon, u et -u n'appartiennent pas à $\bigcup_{1 \leq i < n} F_i$, donc u et -u appartiennent tous deux à F_n .

antipodies

a-antipodie

Etant donné un espace normé E, et un point $a \in E$ de norme < 1, appelons a-antipodie l'application de S dans lui-même, qui à tout $x \in S$ associe le point $x' \in S$ tel que $(ax) \cap S = [x, x']$.

- -La a-antipodie est une involution continue de S.
- -On peut généraliser les énoncés de Borsuk-Ulam et Lusternik-Schnirelmann avec des *a*-antipodies (au lieu de 0-antipodies).

Adhérence de la sphère pour la top. convexe

Adhérence de la sphère

Soit *E* un espace normé qui n'est pas de dimension finie. Alors, l'adhérence de la sphère unité pour la topologie convexe est la boule unité large correspondante.

Proof.

L'adhérence de cette sphère S vis-à-vis de la top. convexe est incluse dans la boule unité large correspondante. Réciproquement, soit $a \in E$ tel que $\|a\| < 1$. Soit un ensemble fini $\{C_i : 1 \le i \le n\}$ de convexes fermés de E tel que le fermé de base (pour la top. convexe) $F := \bigcup_{1 \le i \le n} C_i$ inclut S. Il s'agit de voir que $a \in F$. Considérons un $sev\ V$ de E, contenant a, de dimension $\ge n$. Le Corollaire de Lust.-Schnir. montre que l'un des fermés $C_i \cap V$ contient deux points a-antipodaux de S, et donc aussi a par convexité de C_i .

Théorème de Riesz

Soit *E* un espace normé.

Version "recouvrements"

Les conditions suivantes sont équivalentes:

- 1. L'espace *E* est de dimension finie
- 2. La boule B_E est compacte (pour la topologie de la norme)

Version "séquentielle"

Les conditions suivantes sont équivalentes:

- 1. L'espace E ne contient pas de suite infinie libre
- 2. La boule B_E est séquentiellement compacte (pour la topologie de la norme)

Références citées

- 1. Dehommé and Morillon, Dependent choices and weak compactness., Notre Dame J. Formal Logic, 1999.
- Fossy and Morillon, The Baire category property and some notions of compactness, J. Lond. Math. Soc., II. Ser., 1998.
- Fremlin, D., Measure Theory, volume 5, http://www.essex.ac.uk/maths/staff/fremlin/mt.htm, 2006.
- Halpern, J. D. and Lévy, A., The Boolean prime ideal theorem does not imply the axiom of choice. , (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967),
- 5. Jech, The Axiom of Choice, NHPC, 1973.

Références citées: suite

- Matousek, Topological Methods in Combinatorics and Geometry, Lecture Notes, 2002.
- 7. Pincus, David, Independence of the prime ideal theorem from the Hahn-Banach theorem, Bull. Amer. Math. Soc., 1972.
- 8. Pincus, David, The strength of the Hahn-Banach theorem, Victoria Symposium on Nonstandard Analysis (Univ. Victoria, Victoria, B.C.), 1972.
- 9. Pincus, David, Adding dependent choice to the prime ideal theorem, Logic Colloquium 76 (Oxford, 1976).