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ABSTRACT. We work in set-theory without the Axiom of Choice
ZF. We prove that the principle of Dependent Choices (DC) im-
plies that the closed unit ball of a uniformly convex Banach space
is weakly compact, and in particular, that the closed unit ball of a
Hilbert space is weakly compact. These statements are not provable
in ZF, and the latter statement does not imply DC. Furthermore,
DC does not imply that the closed unit ball of a reflexive space is
weakly compact.
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1. Introduction

We work in set-theory without Axiom of Choice ZF, and we denote
by ω the set of natural numbers. In this paper, normed spaces (as
defined for example in [2], Definition 1.2 p. 63) are real normed spaces,
and they are endowed with the norm metric. A metric space is said
to be complete when every Cauchy filter of this space converges (see
Remarks 6 and 7). A Banach space is a normed space which is complete.
The continuous dual of a normed space (E, ‖.‖) is the vector space E∗

of real linear functionals on E which are bounded on the closed unit
ball of E, and E∗ is endowed with the dual norm ‖.‖∗ : for every
f ∈ E∗, ‖f‖∗ := sup{f(x) : ‖x‖ ≤ 1}. The second dual of E is the
normed space E∗∗. For every x ∈ E, we denote by x̂ the evaluation
at point x, i.e. the mapping E∗ → R such that for every f ∈ E∗,
x̂(f) = f(x). The natural map jE : E → E∗∗, given by jE(x) = x̂, is
linear, and continuous since ‖jE(x)‖∗∗ ≤ ‖x‖. Using the Hahn-Banach
axiom, jE can be proved isometric, i.e. ∀x ∈ E ‖jE(x)‖∗∗ = ‖x‖ (see
[2] Corollary 6.7, p. 79), but this is not provable in ZF, since there
are models of ZF with infinite dimensional normed spaces E such that
E∗∗ = {0}, see Remark 5). The usual definition of “reflexivity” for a
normed space E (see [2] p. 89 Definition 11.2) relies on the fact that
jE is isometric, so we will reformulate this definition in ZF and we
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2 C. DELHOMMÉ, M. MORILLON

will call it “simple reflexivity”. The weak topology of E is the coarsest
topology on E for which every f ∈ E∗ is continuous : it is generated
by the sets {x ∈ E : f(x) < λ}, λ ∈ R and f ∈ E∗ and it is denoted
by σ(E, E∗) (see [2] Definition 1.1 p. 124). The weak* topology of
E∗ (see [2] Definition 1.1 pp. 124-125) is the coarsest topology on E∗

such that for every x ∈ E, x̂ is continuous : it is generated by the
sets {f ∈ E∗ : f(x) < λ}, λ ∈ R and x ∈ E, and it is denoted by
σ(E∗, E). A topological space X is compact if every non-empty set
of closed subsets of X with the finite intersection property has a non-
empty intersection. In set-theory with the Axiom of Choice ZFC, the
reflexivity of E is known to be equivalent to the compactness of its
closed unit ball for its weak topology (see [2] Theorem 4.2 p. 132), but
this equivalence is not provable in ZF (see Remarks 2, 4 and 5), so
we shall consider another notion of reflexivity, which we call “compact
reflexivity”.

Let us state these two notions of reflexivity for a normed space E :

(Simple) Reflexivity : The natural mapping jE from E to its second
dual E∗∗ is onto and isometric.

Compact Reflexivity : The closed unit ball of E is compact for the
weak topology.

Note that the classical proof of the following statement of Reflexive
Compactness relies on Alaoglu’s theorem (see [2] Theorem 3.1 pp. 130-
131), which is equivalent (within ZF) to many other classical state-
ments, e.g. the Boolean Prime Ideal Theorem (see Howard and Ru-
bin [4] pp. 21-27) ; this last statement is not provable in ZF (see
Jech [5]), hence Alaoglu’s theorem is not provable in ZF either.

RC (Reflexive Compactness) : The closed unit ball of a reflexive normed
space is compact for the weak topology.

A (Alaoglu) : The closed unit ball of the continuous dual of a normed
space is compact for the weak* topology.

We now consider some geometric properties of normed spaces. A
normed space (E, ‖.‖) is a prehilbert space when there exists an inner

product 〈., .〉 : E × E → R such that for every x ∈ E, ‖x‖ =
√
〈x, x〉.

A Hilbert space is a complete prehilbert space. A normed space E is
uniformly convex (see [1] p. 189) if the modulus of uniform convexity
of E, δE : R∗

+ −→ R+ defined below, satisfies ε > 0 ⇒ δE(ε) > 0.

δE(ε) := inf
{

1−
∥∥∥∥x + y

2

∥∥∥∥ : x, y ∈ ΓE and ‖x− y‖ ≥ ε
}
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Every prehilbert space is uniformly convex (see [1] pp. 189-190). We
now consider Reflexive Compactness particularized to uniformly convex
Banach spaces, and particularized further to Hilbert spaces :

RCuc (Reflexive compactness for uniformly convex Banach spaces) :
The closed unit ball of a uniformly convex Banach space is weakly com-
pact.

RCh (Reflexive Compactness for Hilbert spaces) : The closed unit ball
of a Hilbert space is weakly compact.

Remark 1. Using projections on closed convex subsets in a Hilbert
space (see Lemma 3 in [3]), one can prove in ZF that every Hilbert
space is simply reflexive. Hence RC implies RCh ; in particular RCh
does not imply DC.

In Fossy and Morillon [3], it is proved that RCh implies the following
set-theoretic axiom ACfin

ω which is not provable in ZF (see [5]) ; in
particular, the statements RC and RCh are not provable in ZF either.

ACfin
ω (Countable Axiom of Choice for finite sets) : If (An)n∈ω is a

sequence of non-empty finite sets, then
∏

n∈ω An 6= ∅.

Remark 2. Thus, though in ZF every Hilbert space is simply reflexive,
there are models of ZF in which some Hilbert spaces are not compact
reflexive. Hence simple reflexivity does not imply compact reflexivity.

Now the following question is natural :

Question. Is there a principle of “Countable Choice” which implies
the axiom RCh ?

In this paper, we prove that the following principle of Dependent
Choices implies RCuc (thus it implies RCh too) :

DC (principle of Dependent Choices) : If E is a non-empty set and R
is a binary relation on E satisfying

∀x ∈ E ∃y ∈ E xRy,

then there exists a sequence (xn)n∈ω such that for every n ∈ ω, xnRxn+1.

We shall also observe that the principle of Dependent Choices does
not imply RC (see Remark 4).

Note that BPI does not imply DC, and that DC does not imply BPI
(see [4], or [5]).
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2. The principle of Dependent Choices implies RCuc

Notation. Consider a (real) normed space (E, ‖ · ‖). For each non-
negative real number r, Γ(0, r) denotes the closed ball of center 0 and
radius r, i.e. {z ∈ E : ‖z‖ ≤ r} ; the closed unit ball Γ(0, 1) is
denoted by ΓE. Given two real numbers r and r′ such that 0 ≤ r ≤ r′,
the crown {z ∈ E : r ≤ ‖z‖ ≤ r′} is denoted by D(0; r, r′).

Given a normed space E, we denote by TE the set of finite unions
of closed convex subsets of ΓE. Notice that (TE,∩,∪) is a lattice of
subsets of ΓE and that each closed set of ΓE for the weak topology
is an intersection of elements of TE. A filter of TE is any non-empty
set F of non-empty elements of TE such that the intersection of any
two elements of F is in F and such that any element of TE which is a
superset of an element of F is in F too.

For each set F of subsets of ΓE, let

R(F) = inf
{

r ∈ R : 0 ≤ r ≤ 1 and ∀F ∈ F , Γ(0, r) ∩ F 6= ∅
}

.

When F has the finite intersection property, F ∪ {Γ(0, r) : R(F) <
r ≤ 1} generates a filter Fc of TE, called the circled filter associated to
F .

The following lemma is an easy consequence of the definitions :

Lemma 1. Let E be a normed space and F be a filter of TE.
— For every real numbers r and r′ such that 0 ≤ r < R(F) < r′, there
exists F ∈ Fc such that F ⊆ D(0; r, r′).
— For any filter F ′ of TE extending Fc : R(F ′) = R(F) and (F ′)c =
F ′. �

Lemma 2. Given a uniformly convex normed space E with modulus of
uniform convexity δE, consider real numbers η > 0 and r, r′ such that
0 < r < r′ and r ≥

(
1 − δE( η

r′ )
)
r′. Then the diameter of any convex

subset C of the crown D(0; r, r′) is less than or equal to η.

Proof. Assume by contradiction that some convex subset C of D(0; r, r′)
contains two points x and y such that ‖x − y‖ > η. Then, from the
definition of δE, it follows that

∥∥x+y
2

∥∥ <
(
1−δE( η

r′ )
)
r′ ; but

∥∥x+y
2

∥∥ ≥ r,
since C is convex. �

Theorem. Given a uniformly convex Banach space E, let F be a filter
of TE. The principle of Dependent Choices implies that the set ∩F is
non-empty.
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Proof. We prove the existence of a Cauchy filter G of TE (i.e. a filter
containing sets of arbitrary small diameter) extending the circled filter
Fc associated to F (thus, since the elements of G are closed and E
is complete, ∩G 6= ∅ and a fortiori, ∩F 6= ∅). Denote by δE the
modulus of uniform convexity of E. Let R = R(F). If R = 0, then
Fc is already Cauchy. Now assuming that R > 0, for each n ∈ ω,
let rn and r′n be positive real numbers such that rn < R < r′n and
rn ≥

(
1−δE( 1

(n+1)r′
n
)
)
r′n (for example consider αn > 0 such that 2αn

αn+R
≤

δE( 1
2(n+1)R

) and let rn = R − αn and r′n = R + αn). Let S denote the

set of finite mappings s ⊂ ω × TE such that
i/ for every n ∈ domain(s), s(n) ⊆ D(0; rn, r

′
n),

ii/ Fc ∪ range(s) has the finite intersection property.
Every element of S admits a proper extension in S : given s ∈ S and
n /∈ domain(s), it follows from Lemma 1 that some element F of the
filter Fs of TE generated by Fc ∪ range(s) is a subset of D(0; rn, r

′
n) ;

then, given closed convex subsets C1, . . . , Cm of E such that F = C1 ∪
. . .∪Cm, observe that for some i ∈ {1, · · · , m}, Ci meets every element
of Fs, so that s ∪ {(n, Ci)} is a proper extension of s in S. Now,
invoking DC, get an increasing sequence (w.r.t. proper extension)
(sn)n∈ω of TE, and observe that, given s = ∪{sn : n ∈ ω}, Lemma 2
implies that Fc ∪ range(s) generates a Cauchy filter of TE. �

Corollary. DC =⇒ RCuc.

Proof. Given a uniformly convex Banach space E, letH be a non-empty
set of weakly closed sets of ΓE with the finite intersection property.
Since each such closed set is an intersection of elements of TE, ∩H =
∩F , where F = {F ∈ TE : F ⊇ H, for some H ∈ H} ; but F is a
filter of TE, hence ∩F 6= ∅, according to the theorem above. �

Remark 3. RCuc does not imply A, since RCuc follows from DC,
which does not imply BPI, and hence, does not imply A either.

Remark 4. Pincus and Solovay [6] have built a modelM of (ZF+DC)
in which every finitely additive measure is trivial. This means that,
given any set I, for every finitely additive mapping m : P(I) → R,
there exists a family (λi)i∈I of real numbers such that, for every subset
A of I : m(A) =

∑
i∈A λi. It follows that the continuous dual of `∞(I)

is equal to `1(I). Thus, in this model M, every `1(I) is a reflexive
normed space.

Besides, the closed unit ball Γ of `1(I) is never weakly compact when
I is infinite : in fact, denoting by Pf (I) the set of finite subsets of I,
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for each H ∈ Pf (I), let

FH =
{

f ∈ Γ :
∑
k∈I

f(k) = 1 and ∀k ∈ H, f(k) = 0
}

.

Each FH is a weakly closed set of Γ, and when I is infinite, the
family {FH : H ∈ Pf (I)} has the finite intersection property, but⋂
{FH : H ∈ Pf (I)} is empty.
Summing up, in the model M, the space `1(ω) is reflexive and sep-

arable but its closed unit ball is not weakly compact. Hence “simple
reflexivity” does not imply “compact reflexivity”, even in the case of
separable spaces. Moreover, since the model M satisfies DC, DC does
not imply RC, even for separable reflexive spaces.

Remark 5. “Compact reflexivity” does not imply “simple reflexivity”
since, in every model of ZF where Hahn-Banach Theorem fails (for in-
stance the modelM above), there exists an infinite dimensional normed
space E such that E∗ = {0} : such an E is not reflexive although ΓE

is weakly compact.

Let us now consider the following consequence of DC :

ACω (Countable Axiom of Choice) : If (An)n∈ω is a sequence of non-
empty sets, then

∏
n∈ω An 6= ∅.

Remark 6. Say that a metric space (X, d) is sequentially complete
when every Cauchy sequence converges. So every complete metric space
is sequentially complete. In (ZF+ACω), hence in (ZF+DC), every
sequentially complete metric space is complete.

Remark 7. A set X is Dedekind-finite when there exists no one-to-one
mapping from ω to X. There are models of ZF (for example Cohen’s
first model, see [5]) with a Dedekind-finite dense subset A of R. The
metric subspace A is sequentially complete but it is not complete.

We know no answer to the following questions :

Question 1. Are the statements A and RC equivalent ?

Question 2. Does ACω imply RCh or RCuc ?

Question 3. Are RCh and RCuc equivalent ?
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Note : Uniformly convex spaces are simply reflexive (work in progress). Thus RC implies

RCuc ; in particular, like RCh, RCuc fails to imply DC. (Cf. Abstract and Remark 1.)
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