Rado's selection Lemma implies Hahn-Banach

Rado's selection Lemma implies Hahn-Banach

Marianne Morillon

University of La Réunion (France)

Kielce, 25-30 july 2010

Rado' selection Lemma

Rado's selection Lemma implies Hahn-Banach

M Morillor

....

RL

 $T_2 \Rightarrow RL$

;RI ⇒ To

 $RL \Rightarrow H$

RL ⇒ HB:

Notation

For every set I, we denote by $fin^*(I)$ the set of non-empty finite subsets of I.

Rado' selection Lemma

Rado's selection Lemma implies Hahn-Banach

M. Morillon

RL

 $T_2 \Rightarrow RL$

LID

 $RL \Rightarrow H$

idea

 $\mathsf{RL}\Rightarrow \mathsf{HE}$ proof

Notation

For every set I, we denote by $fin^*(I)$ the set of non-empty finite subsets of I.

Rado (1949) Axiomatic treatment of rank in infinite sets

RL: Given a family $(X_i)_{i\in I}$ of finite sets and a family $(\sigma_F)_{F\in fin^*(I)}$ such that for every $F\in fin^*(I)$, $\sigma_F\in \prod_{i\in F} X_i$, there exists $f\in \prod_{i\in I} X_i$ which "respects" $(\sigma_F)_{F\in fin^*(I)}$:

$$\forall F \in \mathit{fin}^*(I) \ \exists G \in \mathit{fin}^*(I) \ (F \subseteq G \ \mathsf{and} \ f_{\upharpoonright G} = \sigma_G)$$

Rado' selection Lemma

Rado's selection Lemma implies Hahn-Banach

Л. Morillo

RL

:RI → T₂?

...

 $RL \Rightarrow H$

RL ⇒ HB idea

RL ⇒ HE

Notation

For every set I, we denote by $fin^*(I)$ the set of non-empty finite subsets of I.

Rado (1949) Axiomatic treatment of rank in infinite sets

RL: Given a family $(X_i)_{i \in I}$ of finite sets and a family $(\sigma_F)_{F \in fin^*(I)}$ such that for every $F \in fin^*(I)$, $\sigma_F \in \prod_{i \in F} X_i$, there exists $f \in \prod_{i \in I} X_i$ which "respects" $(\sigma_F)_{F \in fin^*(I)}$:

 $\forall F \in \mathit{fin}^*(I) \ \exists G \in \mathit{fin}^*(I) \ (F \subseteq G \ \mathsf{and} \ f_{\restriction G} = \sigma_G)$

Remark

"f respects $(\sigma_F)_{F \in fin^*(I)}$ " means that the set $\{G \in fin^*(I) : f_{\upharpoonright G} = \sigma_G\}$ is cofinal in the poset $(fin^*(I), \subseteq)$.

Tychonov implies **RL**

Rado's selection Lemma implies Hahn-Banach

M. Morille

 $T_2 \Rightarrow RL$

;RL ⇒ T₂

...

 $RL \Rightarrow H$

RL ⇒ HB proof We work in set-theory **ZF** (without the Axiom of Choice **AC**).

Tychonov implies RL

Rado's selection Lemma implies Hahn-Banach

M. Morillor

 $T_2 \Rightarrow RL$

•DI → T-3

 $\xi RL \Rightarrow I_2$

HB

 $RL \Rightarrow H$

 $\mathsf{RL}\Rightarrow \mathsf{HB}$ proof

We work in set-theory **ZF** (without the Axiom of Choice **AC**).

The classical proof of **RL** relies on Tychonov's axiom for families of (finite) compact Hausdorff spaces:

 \mathbf{T}_2 : For every infinite family $(X_i)_{i \in I}$ of compact Hausdorff spaces, the topological product $\prod_{i \in I} X_i$ is compact. Thus:

$$\textbf{AC} \Rightarrow \textbf{T}_2 \Rightarrow \textbf{RL}$$

Tychonov implies RL

Rado's selection Lemma implies Hahn-Banach

M. Morillo

 $T_2 \Rightarrow RL$

DI 🗅

idea

 $\mathsf{RL}\Rightarrow \mathsf{HI}$

We work in set-theory **ZF** (without the Axiom of Choice **AC**).

The classical proof of **RL** relies on Tychonov's axiom for families of (finite) compact Hausdorff spaces:

 \mathbf{T}_2 : For every infinite family $(X_i)_{i \in I}$ of compact Hausdorff spaces, the topological product $\prod_{i \in I} X_i$ is compact. Thus:

$$AC \Rightarrow T_2 \Rightarrow RL$$

Consider the following consequence of T_2 :

AC^{fin}: "Every infinite family of finite non-empty sets has a non-empty product."

Blass noticed that:

$$\mathsf{T}_2 \Leftrightarrow (\mathsf{RL} + \mathsf{AC}^\mathsf{fin})$$

Rado's selection Lemma implies Hahn-Banach

M Morillor

RL

$$T_2 \Rightarrow RL$$

$$iRL \Rightarrow T_2$$

. . . .

 $RL \Rightarrow H$

 $RL \Rightarrow HB$

Let *R* be the following bi-partite graph ("play-boy graph"):

$$R = \{(i+1,i) : i \in \mathbb{N}\} \cup \{(0,i) : i \in \mathbb{N}\}$$

For every $F \in \mathit{fin}^*(\mathbb{N})$, consider a R-marriage $\sigma_F : F \to \mathbb{N}$.

Rado's selection Lemma implies Hahn-Banach

M. Morillor

KL

 $T_2 \Rightarrow RL$

HB

 $RL \Rightarrow HB$

 $\mathsf{RL}\Rightarrow \mathsf{HE}$

Let *R* be the following bi-partite graph ("play-boy graph"):

$$R = \{(i+1,i) : i \in \mathbb{N}\} \cup \{(0,i) : i \in \mathbb{N}\}$$

For every $F \in fin^*(\mathbb{N})$, consider a R-marriage $\sigma_F : F \to \mathbb{N}$. Consider the family $(X_i)_{i \in \mathbb{N}}$ defined by $X_0 = \mathbb{N}$ and $X_{i+1} = \{i\}$ for every $i \in \mathbb{N}$. There is no element $f \in \prod_{i \in \mathbb{N}} X_i$ which respects the family $(\sigma_F)_{F \in fin^*(\mathbb{N})}$.

Remark

Rado's selection Lemma implies Hahn-Banach

M. Morillo

KL

 $T_2 \Rightarrow RL$

 $i_{\rm RL} \Rightarrow T_2$

HB

 $RL \Rightarrow HB$

 $\mathsf{RL}\Rightarrow\mathsf{HE}$

Let *R* be the following bi-partite graph ("play-boy graph"):

$$R = \{(i+1,i) : i \in \mathbb{N}\} \cup \{(0,i) : i \in \mathbb{N}\}$$

For every $F \in fin^*(\mathbb{N})$, consider a R-marriage $\sigma_F : F \to \mathbb{N}$. Consider the family $(X_i)_{i \in \mathbb{N}}$ defined by $X_0 = \mathbb{N}$ and $X_{i+1} = \{i\}$ for every $i \in \mathbb{N}$. There is no element $f \in \prod_{i \in \mathbb{N}} X_i$ which respects the family $(\sigma_F)_{F \in fin^*(\mathbb{N})}$.

Remark

1 T_2 implies Hall's infinite marriage axiom H.

Rado's selection Lemma implies Hahn-Banach

M. Morillor

RL

 $T_2 \Rightarrow RL$

¿RL ⇒ I2

HB

 $RL \Rightarrow HB$

 $\mathsf{RL}\Rightarrow \mathsf{HI}$

Let *R* be the following bi-partite graph ("play-boy graph"):

$$R = \{(i+1,i) : i \in \mathbb{N}\} \cup \{(0,i) : i \in \mathbb{N}\}$$

For every $F \in fin^*(\mathbb{N})$, consider a R-marriage $\sigma_F : F \to \mathbb{N}$. Consider the family $(X_i)_{i \in \mathbb{N}}$ defined by $X_0 = \mathbb{N}$ and $X_{i+1} = \{i\}$ for every $i \in \mathbb{N}$. There is no element $f \in \prod_{i \in \mathbb{N}} X_i$ which respects the family $(\sigma_F)_{F \in fin^*(\mathbb{N})}$.

Remark

- **I** T_2 implies Hall's infinite marriage axiom H.
- 2 In turn, **H** implies that in a vector space (or more generally in a finitary matroid), all bases are equipotent (one of the aims of Rado's paper [3]).

Rado's selection Lemma implies Hahn-Banach

M. Morillon

KL

I₂ ⇒ KL

 ${}_{\dot{c}}RL\Rightarrow T_2?$

LID

 $RL \Rightarrow H$

 $RL \Rightarrow HB$

Let **ZFA** be the set-theory without **AC** and with atoms: thus **ZF** is (**ZFA**+ "There are no atoms"), and **ZFA** is weaker (*i.e.* has less axioms) than **ZF**.

Theorem (P. Howard (1984), [2])

There is a model of **ZFA** where **RL** holds and T_2 does not hold.

Rado's selection Lemma implies Hahn-Banach

M. Morillon

....

RL

 $T_2 \Rightarrow RL$

 $_{i}RL \Rightarrow T_{2}?$

...

idea → HI

 $\mathsf{RL}\Rightarrow \mathsf{HB}$

Let **ZFA** be the set-theory without **AC** and with atoms: thus **ZF** is (**ZFA**+ "There are no atoms"), and **ZFA** is weaker (*i.e.* has less axioms) than **ZF**.

Theorem (P. Howard (1984), [2])

There is a model of **ZFA** where **RL** holds and T_2 does not hold.

Rado's selection Lemma implies Hahn-Banach

M. Morillon

T → DI

 $iRL \Rightarrow T_2$?

....

 $RL \Rightarrow H$

ıdea

Let **ZFA** be the set-theory without **AC** and with atoms: thus **ZF** is (**ZFA**+ "There are no atoms"), and **ZFA** is weaker (*i.e.* has less axioms) than **ZF**.

Theorem (P. Howard (1984), [2])

There is a model of **ZFA** where **RL** holds and T_2 does not hold.

Remark

We do not know whether **RL** implies T_2 in **ZF**.

Rado's selection Lemma implies Hahn-Banach

M. Morillon

T → DI

 $iRL \Rightarrow T_2$?

....

 $RL \Rightarrow H$

ıdea

Let **ZFA** be the set-theory without **AC** and with atoms: thus **ZF** is (**ZFA**+ "There are no atoms"), and **ZFA** is weaker (*i.e.* has less axioms) than **ZF**.

Theorem (P. Howard (1984), [2])

There is a model of **ZFA** where **RL** holds and T_2 does not hold.

Remark

We do not know whether **RL** implies T_2 in **ZF**.

Rado's selection Lemma implies Hahn-Banach

M. Morillon

DI

 $T_2 \Rightarrow RL$

нв

RL ⇒ HE

RL ⇒ HE

Let **ZFA** be the set-theory without **AC** and with atoms: thus **ZF** is (**ZFA**+ "There are no atoms"), and **ZFA** is weaker (*i.e.* has less axioms) than **ZF**.

Theorem (P. Howard (1984), [2])

There is a model of **ZFA** where **RL** holds and T_2 does not hold.

Remark

We do not know whether **RL** implies T_2 in **ZF**.

We shall prove in **ZF** (and even in **ZFA**) that **RL** implies the Hahn-Banach axiom **HB**, a consequence of T_2 .

Rado's selection Lemma implies Hahn-Banach

M. Morillo

....

...

$$T_2 \Rightarrow RL$$

ن $RL \Rightarrow T_2$

нв

 $RL \Rightarrow H$

RL ⇒ HB

Given a boolean algebra \mathcal{B} , a *measure* on \mathcal{B} is a mapping $m: \mathcal{B} \to [0,1]$ such that for every $x,y \in \mathcal{B}$:

$$x \wedge y = 0_{\mathcal{B}} \Rightarrow m(x \vee y) = m(x) + m(y)$$

If moreover $m(1_B) = 1$, the measure m is said to be *unitary*.

Rado's selection Lemma implies Hahn-Banach

M. Morillor

ΚL

. 2 / ..-

 $_{i}\text{RL} \Rightarrow \mathsf{T}_{2}?$

HB

 $RL \Rightarrow H$ idea

RL ⇒ HE

Given a boolean algebra \mathcal{B} , a *measure* on \mathcal{B} is a mapping $m: \mathcal{B} \to [0,1]$ such that for every $x,y \in \mathcal{B}$:

$$x \wedge y = 0_{\mathcal{B}} \Rightarrow m(x \vee y) = m(x) + m(y)$$

If moreover $m(1_B) = 1$, the measure m is said to be *unitary*.

Uniform probability on a finite non-trivial bool. algebra ${\cal B}$

We denote by $P_{\mathcal{B}}$ the unitary measure on \mathcal{B} giving the same measure to all atoms of \mathcal{B} .

Rado's selection Lemma implies Hahn-Banach

M. Morillo

IVI. IVIOITIIO

IX.

:RI → T₂?

НВ

...

 $RL \Rightarrow HE$ idea

RL ⇒ HE

Given a boolean algebra \mathcal{B} , a *measure* on \mathcal{B} is a mapping $m: \mathcal{B} \to [0,1]$ such that for every $x,y \in \mathcal{B}$:

$$x \wedge y = 0_{\mathcal{B}} \Rightarrow m(x \vee y) = m(x) + m(y)$$

If moreover $m(1_B) = 1$, the measure m is said to be *unitary*.

Uniform probability on a finite non-trivial bool. algebra $\ensuremath{\mathcal{B}}$

We denote by $P_{\mathcal{B}}$ the unitary measure on \mathcal{B} giving the same measure to all atoms of \mathcal{B} .

HB (Hahn-Banach in the "boolean" setting)

Given an infinite boolean algebra \mathcal{B} , there exists a unitary measure $\mu: \mathcal{B} \to [0,1]$.

Rado's selection Lemma implies Hahn-Banach

M. Morillo

....

 $_{i}RL \Rightarrow T_{2}?$

НВ

 $RL \Rightarrow HE$ idea

RL ⇒ HE

Given a boolean algebra \mathcal{B} , a *measure* on \mathcal{B} is a mapping $m: \mathcal{B} \to [0,1]$ such that for every $x,y \in \mathcal{B}$:

$$x \wedge y = 0_{\mathcal{B}} \Rightarrow m(x \vee y) = m(x) + m(y)$$

If moreover $m(1_B) = 1$, the measure m is said to be *unitary*.

Uniform probability on a finite non-trivial bool. algebra ${\cal B}$

We denote by $P_{\mathcal{B}}$ the unitary measure on \mathcal{B} giving the same measure to all atoms of \mathcal{B} .

HB (Hahn-Banach in the "boolean" setting)

Given an infinite boolean algebra \mathcal{B} , there exists a unitary measure $\mu: \mathcal{B} \to [0,1]$.

Rado's selection Lemma implies Hahn-Banach

l. Morillo

RI

12 ⇒ KL •DI → T-3

HB

 $\mathsf{RL}\Rightarrow\mathsf{HE}$ idea

RL ⇒ HB: proof Given a boolean algebra \mathcal{B} , a measure on \mathcal{B} is a mapping $m:\mathcal{B}\to [0,1]$ such that for every $x,y\in\mathcal{B}$:

$$x \wedge y = 0_{\mathcal{B}} \Rightarrow m(x \vee y) = m(x) + m(y)$$

If moreover $m(1_B) = 1$, the measure m is said to be *unitary*.

Uniform probability on a finite non-trivial bool. algebra $\ensuremath{\mathcal{B}}$

We denote by $P_{\mathcal{B}}$ the unitary measure on \mathcal{B} giving the same measure to all atoms of \mathcal{B} .

HB (Hahn-Banach in the "boolean" setting)

Given an infinite boolean algebra \mathcal{B} , there exists a unitary measure $\mu: \mathcal{B} \to [0,1]$.

Luxembourg (see [1], 1969) proved the **HB** is equivalent (in **ZF**) to the classical forms of the Hahn-Banach property (analytic form).

Rado's selection Lemma implies Hahn-Banach

. iviorilio

RL

 $T_2 \Rightarrow RL$

нв

RL ⇒ HB: dea

RL ⇒ HB: proof Given a boolean algebra \mathcal{B} , a *measure* on \mathcal{B} is a mapping $m:\mathcal{B}\to [0,1]$ such that for every $x,y\in\mathcal{B}$:

$$x \wedge y = 0_{\mathcal{B}} \Rightarrow m(x \vee y) = m(x) + m(y)$$

If moreover $m(1_B) = 1$, the measure m is said to be *unitary*.

Uniform probability on a finite non-trivial bool. algebra $\ensuremath{\mathcal{B}}$

We denote by $P_{\mathcal{B}}$ the unitary measure on \mathcal{B} giving the same measure to all atoms of \mathcal{B} .

HB (Hahn-Banach in the "boolean" setting)

Given an infinite boolean algebra \mathcal{B} , there exists a unitary measure $\mu: \mathcal{B} \to [0,1]$.

Luxembourg (see [1], 1969) proved the **HB** is equivalent (in **ZF**) to the classical forms of the Hahn-Banach property (analytic form). Notice that $T_2 \Rightarrow HB$.

RL implies HB: a first idea

Rado's selection Lemma implies Hahn-Banach

NA NASCILI

IVI. IVIOIIII

RL

 $I_2 \Rightarrow KL$

RL ⇒ HB:

idea → HE

RL ⇒ HB:

Rado's selection Lemma implies Hahn-Banach

NA NASSILS

IVI. IVIOITII

KL

. 2 -> ...

 $i_{RL} \Rightarrow I_2$

нв

 $RL \Rightarrow HB$: idea

 $RL \Rightarrow HB$: proof

Rado's selection Lemma implies Hahn-Banach

M. Morillo

RL

 $T_2 \Rightarrow RL$

 $RL \Rightarrow T_2$?

ШΒ

 $RL \Rightarrow HB$: idea

 $RL \Rightarrow HB$

RL implies HB: a first idea

Given an infinite boolean algebra \mathcal{B} , for every $F \in fin^*(\mathcal{B})$, denote by bool(F) the boolean sub-algebra of \mathcal{B} which is generated by F, and consider the mapping $\sigma_F : F \to [0,1]$ which is the restriction of $P_{bool(F)}$.

Rado's selection Lemma implies Hahn-Banach

M. Morillor

RL

 $T_2 \Rightarrow RL$

;RL ⇒ To?

_

пь

 $RL \Rightarrow HB$: idea

 $\mathsf{RL}\Rightarrow \mathsf{HB}$ proof

RL implies HB: a first idea

Given an infinite boolean algebra \mathcal{B} , for every $F \in fin^*(\mathcal{B})$, denote by bool(F) the boolean sub-algebra of \mathcal{B} which is generated by F, and consider the mapping $\sigma_F : F \to [0,1]$ which is the restriction of $P_{bool(F)}$. If we could apply \mathbf{RL} to the product of *infinite* sets $[0,1]^{\mathcal{B}}$, we would obtain a mapping $m: \mathcal{B} \to [0,1]$ respecting the family $(\sigma_F)_{F \in fin^*(\mathcal{B})}$.

Rado's selection Lemma implies Hahn-Banach

M. Morillor

T → DI

 $i RL \Rightarrow T_2$?

RL ⇒ HB:

idea → HI

 $RL \Rightarrow HE$

RL implies HB: a first idea

Given an infinite boolean algebra \mathcal{B} , for every $F \in fin^*(\mathcal{B})$, denote by bool(F) the boolean sub-algebra of \mathcal{B} which is generated by F, and consider the mapping $\sigma_F : F \to [0,1]$ which is the restriction of $P_{bool(F)}$. If we could apply \mathbf{RL} to the product of infinite sets $[0,1]^{\mathcal{B}}$, we would obtain a mapping $m: \mathcal{B} \to [0,1]$ respecting the family $(\sigma_F)_{F \in fin^*(\mathcal{B})}$. Such a mapping would be a unitary measure on \mathcal{B} : indeed, given $x,y \in \mathcal{B}$ such that $x \wedge y = 0_{\mathcal{B}}$, consider some $G \in fin(\mathcal{B})$ containing $\{x,y,x \vee y,1_{\mathcal{B}}\}$ such that $m_{\mathbb{F}G} = \sigma_G$;

Rado's selection Lemma implies Hahn-Banach

M. Morillor

T- → RI

:RI → T₂?

RL ⇒ HB:

idea

 $RL \Rightarrow HE$

RL implies HB: a first idea

Given an infinite boolean algebra \mathcal{B} , for every $F \in fin^*(\mathcal{B})$, denote by bool(F) the boolean sub-algebra of \mathcal{B} which is generated by F, and consider the mapping $\sigma_F : F \to [0,1]$ which is the restriction of $P_{bool(F)}$. If we could apply \mathbf{RL} to the product of infinite sets $[0,1]^{\mathcal{B}}$, we would obtain a mapping $m:\mathcal{B}\to [0,1]$ respecting the family $(\sigma_F)_{F\in fin^*(\mathcal{B})}$. Such a mapping would be a unitary measure on \mathcal{B} : indeed, given $x,y\in\mathcal{B}$ such that $x\wedge y=0_{\mathcal{B}}$, consider some $G\in fin(\mathcal{B})$ containing $\{x,y,x\vee y,1_{\mathcal{B}}\}$ such that $m_{|G}=\sigma_G$; then $m(1_{\mathcal{B}})=\sigma_G(1_{\mathcal{B}})=1$;

Rado's selection Lemma implies Hahn-Banach

M. Morillor

T → DI

iRL ⇒ Tっ?

RL ⇒ HB:

idea → HI

 $RL \Rightarrow HE$

RL implies HB: a first idea

Given an infinite boolean algebra \mathcal{B} , for every $F \in fin^*(\mathcal{B})$, denote by bool(F) the boolean sub-algebra of \mathcal{B} which is generated by F, and consider the mapping $\sigma_F: F \to [0,1]$ which is the restriction of $P_{bool(F)}$. If we could apply **RL** to the product of *infinite* sets $[0,1]^{\mathcal{B}}$, we would obtain a mapping $m: \mathcal{B} \to [0,1]$ respecting the family $(\sigma_F)_{F \in fin^*(\mathcal{B})}$. Such a mapping would be a unitary measure on \mathcal{B} : indeed, given $x, y \in \mathcal{B}$ such that $x \wedge y = 0_{\mathcal{B}}$, consider some $G \in fin(\mathcal{B})$ containing $\{x, y, x \lor y, 1_{\mathcal{B}}\}$ such that $m_{\upharpoonright G} = \sigma_{G}$; then $m(1_{\mathcal{B}}) = \sigma_{\mathcal{G}}(1_{\mathcal{B}}) = 1$; moreover, $m(x \vee y) = \sigma_G(x \vee y)$

Rado's selection Lemma implies Hahn-Banach

M. Morillor

RL

T₂ ⇒ RL

:RL → T_o?

¿...= - ·

нв

 $RL \Rightarrow HB$: idea

RL ⇒ HE

RL implies HB: a first idea

Given an infinite boolean algebra \mathcal{B} , for every $F \in fin^*(\mathcal{B})$, denote by bool(F) the boolean sub-algebra of \mathcal{B} which is generated by F, and consider the mapping $\sigma_F: F \to [0,1]$ which is the restriction of $P_{bool(F)}$. If we could apply **RL** to the product of *infinite* sets $[0,1]^{\mathcal{B}}$, we would obtain a mapping $m: \mathcal{B} \to [0,1]$ respecting the family $(\sigma_F)_{F \in fin^*(\mathcal{B})}$. Such a mapping would be a unitary measure on \mathcal{B} : indeed, given $x, y \in \mathcal{B}$ such that $x \wedge y = 0_{\mathcal{B}}$, consider some $G \in fin(\mathcal{B})$ containing $\{x, y, x \lor y, 1_{\mathcal{B}}\}$ such that $m_{\upharpoonright G} = \sigma_{G}$; then $m(1_{\mathcal{B}}) = \sigma_{\mathcal{G}}(1_{\mathcal{B}}) = 1$; moreover, $m(x \vee y) = \sigma_G(x \vee y) = \sigma_G(x) + \sigma_G(y)$

Rado's selection Lemma implies Hahn-Banach

M Morillor

T _ DI

:RI → T₂?

· ·

RL ⇒ HB:

idea

 $RL \Rightarrow HE$

RL implies HB: a first idea

Given an infinite boolean algebra \mathcal{B} , for every $F \in fin^*(\mathcal{B})$, denote by bool(F) the boolean sub-algebra of \mathcal{B} which is generated by F, and consider the mapping $\sigma_F: F \to [0,1]$ which is the restriction of $P_{bool(F)}$. If we could apply **RL** to the product of *infinite* sets $[0,1]^{\mathcal{B}}$, we would obtain a mapping $m: \mathcal{B} \to [0,1]$ respecting the family $(\sigma_F)_{F \in fin^*(\mathcal{B})}$. Such a mapping would be a unitary measure on \mathcal{B} : indeed, given $x, y \in \mathcal{B}$ such that $x \wedge y = 0_{\mathcal{B}}$, consider some $G \in fin(\mathcal{B})$ containing $\{x, y, x \lor y, 1_{\mathcal{B}}\}$ such that $m_{\upharpoonright G} = \sigma_{G}$; then $m(1_{\mathcal{B}}) = \sigma_{\mathcal{G}}(1_{\mathcal{B}}) = 1$; moreover, $m(x \lor y) = \sigma_G(x \lor y) = \sigma_G(x) + \sigma_G(y) = m(x) + m(y).$

Rado's selection Lemma implies Hahn-Banach

M Morillo

12 - KL

HR

 $RL \Rightarrow Hl$ idea

RL ⇒ HB:

Notation

For every $n \in \mathbb{N}$, let $D_n := \{ \frac{k}{n+1} : k \in \mathbb{N} \text{ and } 0 \le k \le n+1 \}$.

Notice that $\bigcup_{n\in\mathbb{N}} D_n$ is countable and dense in [0,1].

Rado's selection Lemma implies Hahn-Banach

M Morillo

12 - KL

HR

 $RL \Rightarrow Hl$ idea

RL ⇒ HB:

Notation

For every $n \in \mathbb{N}$, let $D_n := \{ \frac{k}{n+1} : k \in \mathbb{N} \text{ and } 0 \le k \le n+1 \}$.

Notice that $\bigcup_{n\in\mathbb{N}} D_n$ is countable and dense in [0,1].

Rado's selection Lemma implies Hahn-Banach

M. Morillo

IVI. IVIOITIIO

KL

 $T_2 \Rightarrow RL$

;RL ⇒ To

DI 🛶 L

 $RL \Rightarrow HI$ idea

RL ⇒ HB:

Notation

For every $n \in \mathbb{N}$, let $D_n := \{ \frac{k}{n+1} : k \in \mathbb{N} \text{ and } 0 \le k \le n+1 \}$.

Notice that $\bigcup_{n\in\mathbb{N}} D_n$ is countable and dense in [0,1].

n-approximation

For every $x \in [0,1]$, there is a unique $k \in \{0,\ldots,n\}$ such that $\frac{k}{n} \le x < \frac{k+1}{n}$; call the number $\frac{k}{n}$ the *n-approximation of x (in D_n)*.

Rado's selection Lemma implies Hahn-Banach

M. Morillo

M. Morillo

KL

 $T_2 \Rightarrow RL$

 ho_2 RL \Rightarrow T $_2$?

 $RL \Rightarrow H$

idea

RL ⇒ HB: proof

Notation

For every $n \in \mathbb{N}$, let $D_n := \{ \frac{k}{n+1} : k \in \mathbb{N} \text{ and } 0 \le k \le n+1 \}$.

Notice that $\bigcup_{n\in\mathbb{N}} D_n$ is countable and dense in [0,1].

n-approximation

For every $x \in [0,1]$, there is a unique $k \in \{0,\ldots,n\}$ such that $\frac{k}{n} \le x < \frac{k+1}{n}$; call the number $\frac{k}{n}$ the *n-approximation of x (in D_n)*.

Rado's selection Lemma implies Hahn-Banach

M. Morillor

_ . .

∑IXE → 12

 $RL \Rightarrow Hl$ idea

RL ⇒ HB:

Notation

For every $n \in \mathbb{N}$, let $D_n := \{ \frac{k}{n+1} : k \in \mathbb{N} \text{ and } 0 \le k \le n+1 \}$.

Notice that $\bigcup_{n\in\mathbb{N}}D_n$ is countable and dense in [0,1].

n-approximation

For every $x \in [0,1]$, there is a unique $k \in \{0,\ldots,n\}$ such that $\frac{k}{n} \le x < \frac{k+1}{n}$; call the number $\frac{k}{n}$ the *n-approximation of x (in D_n)*.

Let \mathcal{B} be an (infinite) boolean algebra. For every $n \in \mathbb{N}$, let $\mathcal{B}_n := \mathcal{B} \times \{n\}$. Let $\mathcal{B}_{\omega} := \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$. Thus \mathcal{B}_{ω} is the union of ω copies of \mathcal{B} . We shall apply **RL** to $\prod_{n \in \mathbb{N}} \mathcal{D}_n^{\mathcal{B}_n}$.

Rado's selection Lemma implies Hahn-Banach

M. Morillor

...

 $T_2 \Rightarrow RL$

нв

 $RL \Rightarrow H$

 $RL \Rightarrow HB$:

For every non-empty finite subset F of \mathcal{B}_{ω} , we define σ_F as follows. Since F is of the form $\bigcup_{0 \leq i \leq n} (F_i \times \{i\})$ where $n \in \mathbb{N}$ and F_n is non-empty, consider the uniform probability P on $bool_{\mathcal{B}}(\bigcup_{0 \leq i \leq n} F_i)$, and, for every $(x, i) \in F_i \times \{i\}$, let $\sigma_F((x, i))$ be the i-approximation of P(x) (in D_i).

Rado's selection Lemma implies Hahn-Banach

M. Morillo

KL

DI . T 3

u . __

1110

 $RL \Rightarrow HE$ idea

 $RL \Rightarrow HB$:

For every non-empty finite subset F of \mathcal{B}_{ω} , we define σ_F as follows. Since F is of the form $\bigcup_{0 \leq i \leq n} (F_i \times \{i\})$ where $n \in \mathbb{N}$ and F_n is non-empty, consider the uniform probability P on $bool_{\mathcal{B}}(\bigcup_{0 \leq i \leq n} F_i)$, and, for every $(x, i) \in F_i \times \{i\}$, let $\sigma_F((x, i))$ be the i-approximation of P(x) (in D_i).

$$(1_{\mathcal{B}}, i) \in F \Rightarrow \sigma_F((1_{\mathcal{B}}, i)) = 1$$

Rado's selection Lemma implies Hahn-Banach

M. Morillor

RI

 $T_2 \Rightarrow RL$

ЦΒ

 $RL \Rightarrow H$

idea

 $RL \Rightarrow HB$:

For every non-empty finite subset F of \mathcal{B}_{ω} , we define σ_F as follows. Since F is of the form $\bigcup_{0 \leq i \leq n} (F_i \times \{i\})$ where $n \in \mathbb{N}$ and F_n is non-empty, consider the uniform probability P on $bool_{\mathcal{B}}(\bigcup_{0 \leq i \leq n} F_i)$, and, for every $(x, i) \in F_i \times \{i\}$, let $\sigma_F((x, i))$ be the i-approximation of P(x) (in D_i).

$$(0_{\mathcal{B}},i) \in F \Rightarrow \sigma_F((0_{\mathcal{B}},i)) = 0$$

Rado's selection Lemma implies Hahn-Banach

M. Morillor

RL

 $T_2 \Rightarrow RL$

 $_{\mathcal{E}}\mathbf{RL}\Rightarrow\mathbf{T}_{2}$?

HR

 $RL \Rightarrow H$

idea

RL ⇒ HB: proof For every non-empty finite subset F of \mathcal{B}_{ω} , we define σ_F as follows. Since F is of the form $\bigcup_{0 \leq i \leq n} (F_i \times \{i\})$ where $n \in \mathbb{N}$ and F_n is non-empty, consider the uniform probability P on $bool_{\mathcal{B}}(\bigcup_{0 \leq i \leq n} F_i)$, and, for every $(x, i) \in F_i \times \{i\}$, let $\sigma_F((x, i))$ be the i-approximation of P(x) (in D_i).

$$(0_{\mathcal{B}},i) \in F \Rightarrow \sigma_F((0_{\mathcal{B}},i)) = 0$$

$$|\sigma_F((x,i)) - \sigma_F((x,j))| \leq \frac{1}{i} + \frac{1}{j}$$

Rado's selection Lemma implies Hahn-Banach

M. Morillo

RL

LID.

 $RL \Rightarrow H$

RL ⇒ HB:

For every non-empty finite subset F of \mathcal{B}_{ω} , we define σ_F as follows. Since F is of the form $\bigcup_{0 \leq i \leq n} (F_i \times \{i\})$ where $n \in \mathbb{N}$ and F_n is non-empty, consider the uniform probability P on $bool_{\mathcal{B}}(\bigcup_{0 \leq i \leq n} F_i)$, and, for every $(x, i) \in F_i \times \{i\}$, let $\sigma_F((x, i))$ be the i-approximation of P(x) (in D_i).

$$(0_{\mathcal{B}},i) \in F \Rightarrow \sigma_F((0_{\mathcal{B}},i)) = 0$$

$$|\sigma_F((x,i)) - \sigma_F((x,j))| \leq \frac{1}{i} + \frac{1}{i}$$

4 If
$$x \wedge y = 0_{\mathcal{B}}$$
 and $(x \vee y, I) \in F$ then $|\sigma_F((x \vee y, I)) - \sigma_F((x, i)) - \sigma_F((y, k))| \le \frac{1}{I} + \frac{1}{I} + \frac{1}{k}$.

RL implies **HB**

Rado's selection Lemma implies Hahn-Banach

M. Morillor

RL

 $T_2 \Rightarrow RL$

iRL ⇒ T₂

 $RL \Rightarrow H$

 $RL \Rightarrow HB$:

Using **RL**, let $f \in \prod_{n \in \mathbb{N}} D_n^{\mathcal{B}_n}$ be a mapping respecting the family $(\sigma_F)_{\mathcal{F} \in \mathit{fin}^*(\mathcal{B}_\omega)}$. For every $n \in \mathbb{N}$, let $f_n : \mathcal{B} \to D_n$ be the mapping $x \mapsto f(x, n)$.

RL implies **HB**

Rado's selection Lemma implies Hahn-Banach

M. Morillor

RL

 $T_2 \Rightarrow RL$

 $_{\dot{c}}RL\Rightarrow T_{2}$

ΗВ

 $RL \Rightarrow H$

 $RL \Rightarrow HB$:

Using **RL**, let $f \in \prod_{n \in \mathbb{N}} D_n^{\mathcal{B}_n}$ be a mapping respecting the family $(\sigma_F)_{\mathcal{F} \in fin^*(\mathcal{B}_\omega)}$. For every $n \in \mathbb{N}$, let $f_n : \mathcal{B} \to D_n$ be the mapping $x \mapsto f(x, n)$.

Theorem

For every $x \in \mathcal{B}$, the sequence $(f_n(x))_{n \in \mathbb{N}}$ is Cauchy so the sequence $(f_n(x))_{n \in \mathbb{N}}$ converges to a real number $m(x) \in [0,1]$. The mapping $m : \mathcal{B} \to [0,1]$ is a unitary measure on \mathcal{B} .

RL implies **HB**

Rado's selection Lemma implies Hahn-Banach

M. Morillon

RL

·2 -- ...

...

RL ⇒ H

idea

 $RL \Rightarrow HB$:

Using **RL**, let $f \in \prod_{n \in \mathbb{N}} D_n^{\mathcal{B}_n}$ be a mapping respecting the family $(\sigma_F)_{\mathcal{F} \in fin^*(\mathcal{B}_\omega)}$. For every $n \in \mathbb{N}$, let $f_n : \mathcal{B} \to D_n$ be the mapping $x \mapsto f(x, n)$.

Theorem

For every $x \in \mathcal{B}$, the sequence $(f_n(x))_{n \in \mathbb{N}}$ is Cauchy so the sequence $(f_n(x))_{n \in \mathbb{N}}$ converges to a real number $m(x) \in [0,1]$. The mapping $m : \mathcal{B} \to [0,1]$ is a unitary measure on \mathcal{B} .

Proof.

Given $x \in \mathcal{B}$, Condition (3) implies that the sequence $(f_n(x))_{n \in \mathbb{N}}$ is Cauchy. Conditions (1) and (2) imply that $m(1_{\mathcal{B}}) = 1$ and $m(0_{\mathcal{B}}) = 0$. Condition (4) implies that m is a measure.

References

Rado's selection Lemma implies Hahn-Banach

M. Morillor

 $\mathsf{T}_a o \mathsf{R}$

·DI → T-2

RL ⇒ I

idea

 $RL \Rightarrow HB$:

Reduced powers of the real number system and equivalents of the Hahn-Banach extension theorem. Holt, Rinehart and Winston, New York (1969).

🚺 Howard, Paul E.

Rado's selection lemma does not imply the Boolean prime ideal theorem. Z. Math. Logik Grundlag. Math., (30), no 2, p. 129-132, (1984).

Rado, R.

Axiomatic treatment of rank in infinite sets, Canadian J. Math., (1) p. 337-343 (1949).