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Rado’ selection Lemma

Notation

For every set I , we denote by fin∗(I ) the set of non-empty finite
subsets of I .

Rado (1949) Axiomatic treatment of rank in infinite sets

RL: Given a family (Xi )i∈I of finite sets and a family
(σF )F∈fin∗(I ) such that for every F ∈ fin∗(I ), σF ∈

∏
i∈F Xi ,

there exists f ∈
∏

i∈I Xi which “respects” (σF )F∈fin∗(I ):

∀F ∈ fin∗(I ) ∃G ∈ fin∗(I )
(
F ⊆ G and f�G = σG

)
Remark

“f respects (σF )F∈fin∗(I )” means that the set
{G ∈ fin∗(I ) : f�G = σG} is cofinal in the poset (fin∗(I ),⊆).
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Tychonov implies RL

We work in set-theory ZF (without the Axiom of Choice AC).

The classical proof of RL relies on Tychonov’s axiom for
families of (finite) compact Hausdorff spaces:
T2: For every infinite family (Xi )i∈I of compact Hausdorff
spaces, the topological product

∏
i∈I Xi is compact. Thus:

AC⇒ T2 ⇒ RL

Consider the following consequence of T2:
ACfin: “Every infinite family of finite non-empty sets has a
non-empty product.”
Blass noticed that:

T2 ⇔ (RL+ACfin)
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RL does not hold for infinite sets

Let R be the following bi-partite graph (“play-boy graph”):

R = {(i + 1, i) : i ∈ N} ∪ {(0, i) : i ∈ N}

For every F ∈ fin∗(N), consider a R-marriage σF : F → N.

Consider the family (Xi )i∈N defined by X0 = N and Xi+1 = {i}
for every i ∈ N. There is no element f ∈

∏
i∈N Xi which

respects the family (σF )F∈fin∗(N).

Remark

1 T2 implies Hall’s infinite marriage axiom H.

2 In turn, H implies that in a vector space (or more
generally in a finitary matroid), all bases are equipotent
(one of the aims of Rado’s paper [3]).
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Does RL imply T2 in ZF?

Let ZFA be the set-theory without AC and with atoms: thus
ZF is (ZFA+“There are no atoms”), and ZFA is weaker (i.e.
has less axioms) than ZF.

Theorem (P. Howard (1984), [2])

There is a model of ZFA where RL holds and T2 does not hold.

Remark

We do not know whether RL implies T2 in ZF.

We shall prove in ZF (and even in ZFA) that RL implies the
Hahn-Banach axiom HB, a consequence of T2.
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The Hahn-Banach axiom HB

Given a boolean algebra B, a measure on B is a mapping
m : B → [0, 1] such that for every x , y ∈ B:

x ∧ y = 0B ⇒ m(x ∨ y) = m(x) + m(y)

If moreover m(1B) = 1, the measure m is said to be unitary.

Uniform probability on a finite non-trivial bool. algebra B

We denote by PB the unitary measure on B giving the same
measure to all atoms of B.

HB (Hahn-Banach in the “boolean” setting)

Given an infinite boolean algebra B, there exists a unitary
measure µ : B → [0, 1].

Luxembourg (see [1], 1969) proved the HB is equivalent (in
ZF) to the classical forms of the Hahn-Banach property
(analytic form). Notice that T2 ⇒ HB.
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RL implies HB: a first tentative

RL implies HB: a first idea

Given an infinite boolean algebra B, for every F ∈ fin∗(B),
denote by bool(F ) the boolean sub-algebra of B which is
generated by F , and consider the mapping σF : F → [0, 1]
which is the restriction of Pbool(F ). If we could apply RL to the

product of infinite sets [0, 1]B, we would obtain a mapping
m : B → [0, 1] respecting the family (σF )F∈fin∗(B). Such a
mapping would be a unitary measure on B: indeed, given
x , y ∈ B such that x ∧ y = 0B, consider some G ∈ fin(B)
containing {x , y , x ∨ y , 1B} such that m�G = σG ; then
m(1B) = σG (1B) = 1; moreover,
m(x ∨ y) = σG (x ∨ y) = σG (x) + σG (y) = m(x) + m(y).
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product of infinite sets [0, 1]B, we would obtain a mapping
m : B → [0, 1] respecting the family (σF )F∈fin∗(B). Such a
mapping would be a unitary measure on B: indeed, given
x , y ∈ B such that x ∧ y = 0B, consider some G ∈ fin(B)
containing {x , y , x ∨ y , 1B} such that m�G = σG ; then
m(1B) = σG (1B) = 1; moreover,
m(x ∨ y) = σG (x ∨ y)

= σG (x) + σG (y) = m(x) + m(y).
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The finite sets Dn

Notation

For every n ∈ N, let Dn := { k
n+1 : k ∈ N and 0 ≤ k ≤ n + 1}.

Notice that ∪n∈NDn is countable and dense in [0, 1].

n-approximation

For every x ∈ [0, 1], there is a unique k ∈ {0, . . . , n} such that
k
n ≤ x < k+1

n ; call the number k
n the n-approximation of x (in

Dn).

Let B be an (infinite) boolean algebra. For every n ∈ N, let
Bn := B × {n}. Let Bω := ∪n∈NBn. Thus Bω is the union of ω
copies of B. We shall apply RL to

∏
n∈N DBn

n .
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Definition of σF for F ∈ fin∗(Bω)

For every non-empty finite subset F of Bω, we define σF as
follows. Since F is of the form ∪0≤i≤n(Fi × {i}) where n ∈ N
and Fn is non-empty, consider the uniform probability P on
boolB(∪0≤i≤nFi ), and, for every (x , i) ∈ Fi × {i}, let σF ((x , i))
be the i-approximation of P(x) (in Di ).

For every F ∈ fin∗(Bω), for every (x , i), (x , j), (y , k) ∈ F :

1 (1B, i) ∈ F ⇒ σF ((1B, i)) = 1

2 (0B, i) ∈ F ⇒ σF ((0B, i)) = 0

3 |σF ((x , i))− σF ((x , j))| ≤ 1
i + 1

j

4 If x ∧ y = 0B and (x ∨ y , l) ∈ F then
|σF ((x ∨ y , l))− σF ((x , i))− σF ((y , k))| ≤ 1

l + 1
i + 1

k .
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RL implies HB

Using RL, let f ∈
∏

n∈N DBn
n be a mapping respecting the

family (σF )F∈fin∗(Bω). For every n ∈ N, let fn : B → Dn be the
mapping x 7→ f (x , n).

Theorem

For every x ∈ B, the sequence (fn(x))n∈N is Cauchy so the
sequence (fn(x))n∈N converges to a real number m(x) ∈ [0, 1].
The mapping m : B → [0, 1] is a unitary measure on B.

Proof.

Given x ∈ B, Condition (3) implies that the sequence
(fn(x))n∈N is Cauchy. Conditions (1) and (2) imply that
m(1B) = 1 and m(0B) = 0. Condition (4) implies that m is a
measure.
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