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RL: Given a family (X;)ic; of finite sets and a family
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Remark

“f respects (0F)Fefin-(1)" Means that the set
{G € fin*(I) : fic = og} is cofinal in the poset (fin*(/), C).
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Lemma

o mplies The classical proof of RL relies on Tychonov's axiom for
I families of (finite) compact Hausdorff spaces:
Ty: For every infinite family (X;);e; of compact Hausdorff

spaces, the topological product [[;c,; X; is compact. Thus:
AC=T,=RL

Consider the following consequence of T»:

ACfin: “Every infinite family of finite non-empty sets has a
non-empty product.”

Blass noticed that:

T, < (RL+ACH)
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For every F € fin*(N), consider a R-marriage o : F — N.
Consider the family (X;);cn defined by Xo = N and Xj11 = {i}
for every i € N. There is no element f € []; .y X; which
respects the family (0F)Fefins(v)-

RENELS

T, implies Hall's infinite marriage axiom H.

In turn, H implies that in a vector space (or more
generally in a finitary matroid), all bases are equipotent
(one of the aims of Rado's paper [3]).
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Does RL imply T, in ZF?
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selection
Lemma

WA Let ZFA be the set-theory without AC and with atoms: thus
ZF is (ZFA+"There are no atoms” ), and ZFA is weaker (i.e.
has less axioms) than ZF.

Theorem (P. Howard (1984), [2

There is a model of ZFA where RL holds and T» does not hold.

M. Morillon

Remark
We do not know whether RL implies T in ZF.

We shall prove in ZF (and even in ZFA) that RL implies the
Hahn-Banach axiom HB, a consequence of T».
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The Hahn-Banach axiom HB

Retdefs Given a boolean algebra 3, a measure on B is a mapping

selection
i m : B — [0, 1] such that for every x,y € B:
Hahn-Banach X /\y — OB = m(X \V4 y) e m(X) —+ m(y)
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If moreover m(13) = 1, the measure m is said to be unitary.
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If moreover m(13) = 1, the measure m is said to be unitary.

Uniform probability on a finite non-trivial bool. algebra B

We denote by Pp the unitary measure on B giving the same
measure to all atoms of B.

HB (Hahn-Banach in the “boolean” setting)

Given an infinite boolean algebra B, there exists a unitary
measure 1 : B — [0, 1].

Luxembourg (see [1], 1969) proved the HB is equivalent (in
ZF) to the classical forms of the Hahn-Banach property
(analytic form). Notice that T, = HB. o1
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The finite sets D,,

Rado’s
selection

Lemma .
implies Notation

Hahn-Banach
For every n € N, let D, ::{ﬁzkeNandogkgn—kl}.

M. Morillon

Notice that UpenD, is countable and dense in [0, 1].

n-approximation

For every x € [0, 1], there is a unique k € {0, ..., n} such that
% <x < %; call the number % the n-approximation of x (in

D).

Let B be an (infinite) boolean algebra. For every n € N, let
B, := B x{n}. Let B, := UpenB,. Thus B, is the union of w
copies of B. We shall apply RL to [],cx D5,
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| (1z,/) € F=o0r((15,1) =1
B (0s,i) € F = 0p((05,1) =
0r((x, 1)) — o ((x. )| < % .

A If xA\y=0zand (xVy,I) € F then
o ((x vy, 1) = or((x, 1)) = or((y. Kl < § + F + .
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Theorem

For every x € B, the sequence (f,(x))nen is Cauchy so the
sequence (f,(x))nen converges to a real number m(x) € [0, 1].
The mapping m : B — [0, 1] is a unitary measure on B.

Proof.

Given x € B, Condition (3) implies that the sequence
(fa(x))nen is Cauchy. Conditions (1) and (2) imply that

m(1z) = 1 and m(0g) = 0. Condition (4) implies that m is a
measure. O
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