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ABSTRACT. Ce travail présente une syntheése de quelques résultats obtenus, dans le cadre
de la théorie des ensembles sans axiome du choix ZF, principalement en topologie générale
et Analyse fonctionnelle. Il s’agit d’'un “guide de lecture” donnant un apergu de travaux
que j’ai effectués apreés ma these, et je renvoie aux articles que j’ai publiés (voir liste & la fin
de ce document) pour la preuve détaillée de ces résultats.

ABSTRACT. This synthesis presents an overview of some results I obtained after my Thesis,
in set-theory ZF (without choice), mainly in general topology and Functional Analysis.
Details and proofs for the results formulated in this “reading guide” can be found in my
published papers, listed at the end of this document.
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Introduction

The following synthesis consists of four quite independent parts. The first part deals with
some results in general topology, namely relative to the normality of linearly ordered sets,
and to the Baire category property of Hausdorff compact spaces. The second part describes
a theory of integration in Gelfand algebras. The third part exposes some points of functional
analysis, concerning the Hahn-Banach property and various notions of reflexivity. The last
part presents results in ”discrete mathematics” obtained in collaboration.

Part 1. Topology and the Axiom of Choice

1. NORMALITY OF LINEARLY ORDERED SETS

In this Section, we introduce some results obtained in [P90] and [P91].

1.1. van Douwen’s question. Given a topological space X, we denote by O(X) the set
of its open subsets. Say that a topological space X is normal if it is Hausdorff and if for
every couple (F,G) of disjoint closed subsets of X, there exists a couple (U, V) of disjoint
open subsets of X satisfying FF C U and G C V. Denoting by Nx the set of couples (F,G)
of disjoint closed subsets of X, say that a mapping ® : Ny — O(X) x O(X) is a normality
operator on X if it associates to every (F, G) € Ny a couple (U, V) of disjoint open subsets of
X satisfying F' C U and G C V. Notice that the existence of such an operator is equivalent to
the existence of a mapping ¥ : Nx — O(X) satisfying for every (F,G) € Nx the constraint

(1) FCU(F,G) CY(F,G) C X\G

Say that a normality operator ® = (®;, ®,) on the topological space X is monotone if for
every (F,G),(F',G") € Nx satisfying F C F' and G C G, ®1(F,G') C ®&(F',G) and
Oy (F',G) C Oo(F,G’) : ¥y is increasing in the first argument and decreasing in the second
argument, while @, is decreasing in the first argument and increasing in the second argument.

Say that the topological space X is monotonely normal if X is Hausdorff and admits a
monotone normality operator. In [17], van Douwen introduced the following statement :

(LN, Linear Normal). Every linearly ordered set is normal (for the order topology).

He proved that LN is equivalent to each of the following statements :
“Every linearly ordered set has a normality operator.”

“Bvery linearly ordered family of conditionally complete linearly ordered sets
has a choice function”.

Here a poset (X, <) is conditionally complete if every nonempty bounded from above subset
A of X has an upper bound in X. van Douwen also proved that the following weak form of
LN is not even provable in ZF :

(LNZ). Every linearly ordered family of Z-ordered sets has a choice function.
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Here, a Z-ordered set is a poset isomorphic with the poset Z. Then van Douwen asked
whether LN implies the following statement :

(LMN, Linear Monotone Normal). Every linearly ordered set is monotonely normal
(for the order topology).

In my Thesis, see [P88] and [R88], I solved van Douwen’s above question. More precisely,
I proved that LN = TOR = LMN where TOR is the following statement :

TOR (Total Order Representation) For every linearly ordered set X,
there exists an ordinal o and a strictly increasing mapping f : X — {0,1}?,
where {0,1}* is endowed with the lezicographic order.

Given a linearly ordered set (X, <), an eztreme choice on X is a mapping * : X x X — X
associating to every (z,y) € X? satisfying |z, y[# @, an element x x y €]z, y[ such that, for
every x,y, z € X satisfying xr <y < z:

(1) xxze{x*xy,y,y*z} il |z,y[# @ and |y, 2[# @ ;
(2) xxze{y,yxz}if |z, y[=@ and |y, 2[# @ ;
(3) v+ 2 € {w+y,y} if |, yl~ @ and Jy, [~ 2.

The following Theorem 1 solves a question left open in my Thesis :

Theorem 1. The statement LN is equivalent to the following statement :

“Every conditionally complete linearly ordered set has an extreme choice.”

Proof. See [P91]. O

1.2. Birkhoff’s question. The following Theorem 2 answers a question raised by Birkhoff
(see [6]), which was left open in [17] :

Theorem 2. LN does not imply AC.
Proof. See [P90], where we show that the basic Cohen model satisfies LIN. O

1.3. Choice in Z-ordered posets and Z-chameleons. A.R.D. Mathias introduced vari-
ous sorts of chameleons (see [30]) as a way of building non determined subsets of R. We now
introduce Z-chameleons on a given infinite set X : denoting by [X]“ the set of its infinite
subsets, say that a mapping x : [X]|¥ — Z is a Z-chameleon if for every infinite subset A of
X and every element a € X\A, (AU {a}) = x(A) + 1 where + is the additive law of the
group Z. We now consider the following statement, which is a consequence of LNZ+OP,
where OP is the ordering principle, according to which “Every set has a linear order” :

(CZ, Choice in Z-ordered posets). Fvery family of Z-ordered posets has a choice func-
tion.

Theorem 3. The aziom CZ is equivalent to the existence of Z-chameleons on every infinite
set.
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Proof. (unpublished) Given an infinite set X, we denote by By the boolean algebra P(X)/ fin
where fin(X) is the ideal of finite subsets of X, and Px the poset Bx\{0}. Notice that a
mapping x : [X]|“ — Z is a Z-chameleon if and only if for each class x € Px, the restriction
X1z is a Z-chameleon.

=. Let X be an infinite set. For every class x € Py, let C, be the set of Z-chameleons on
x. Then, for every x, x’ € C, and every n € Z, the two following conditions are equivalent :

(1) There exists A € x such that x(A4) — x'(A) = n;

(2) For every A € z, x(A) — X' (A) = n.
The binary relation R on C, which is defined by “yRY’ if and only if there exists some
A € z satisfying x(A4) > x/(A)” is a total order isomorphic with Z. Then, use CZ to choose
a Z-chameleon in each class z € Pyx.
<. Given some family (X;, <;);es of Z-ordered sets, assume that there exists a Z-chameleon
x on the disjointed sum X := U;e;({i} x X;). For every i € I, there exists a unique element
x; € X; satisfying x({z € X; : 2 <; x;}) = 0. O

In particular, in the basic Cohen model, there exist Z-chameleons on every infinite set
(because the basic Cohen model satisfies LIN+OP).

2. HAUSDORFF COMPACT SPACES AND THE BAIRE CATEGORY PROPERTY

In this Section, we introduce some results obtained in [P94] and [P98§].

2.1. Brunner’s question. Recall that a topological space X is a Baire space if every se-
quence of dense open subsets of X has a dense intersection. It is known (see [7]) that the
statement “Fvery complete metric space is a Baire space.” is equivalent to the axiom of
Dependent Choices :

(DC, axiom of Dependent Choices). For every non-empty set X and every binary
relation R on X satisfying Vo € X Jy € X xRy, there exists a sequence (zy)nen of elements
of X satisfying Vn € N x,, Rx, 1.

Now, consider the following statement :

(BC, Baire for Compact Hausdorff spaces). Every compact Hausdorff space is a Baire
space.

and the statement (introduced by Blass, [9]) :

(DMC, Dependent Multiple Choice). Every pruned tree has a pruned subtree whose
levels are finite.

Here, a tree is a poset (T, <) having a smallest element (the root) such that for every
x € T, theset {y € T :y < x} is finite and linearly ordered by < ; a pruned tree is a tree
(T, <) such that for every x € T, there exists y € T\{z} satisfying < y ; a subtree of the
tree (T, <) is a subset S of T' containing the root of 7', which is closed under predecessor,
and which is endowed with the order induced by < on S.

It is rather easy to prove that DMC implies BC ; our Theorem 4 solves a question raised
by Brunner (cf. [12]).
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Theorem 4. BC = DMC. More precisely, the statement “Every scattered compact space
is a Baire space.” implies DMC.

Proof. See [P98, Corollary 3 p. 6]. d

Here, a scattered space (see [11, TGIX.62, “espaces éparpillés”]) is a Hausdorff topological
space having a basis of clopen (closed and open) subsets.

Question 1. Does BC imply DC ? (Goldblatt, [19]). Or, equivalently, does DMC imply
DC ? (Blass, [9], notices that DMC together with the axiom of choice for countably many
finite sets implies DC).

2.2. The power of DMC.

2.2.1. Various consequences of DMC. Consider the two following statements :

(AC(N), countable axiom of choice). If (A, )nen is a sequence of nonempty subsets, then
[1.cn An is non-empty.

(ACH(N), countable axiom of Choice for finite sets). If (A,)nen is a sequence of
nonempty finite subsets, then [,y An s non-empty.

Given a set X, consider the following restricted forms of AC to some set X :

(DC(X)). For every binary relation R on X satisfying Vo € X Jy € X xRy, there exists a
sequence (T, )nen of elements of X satisfying Vn € N x, Rx, 1.

(AC(N, X)). If (Ap)nen is a sequence of nonempty subsets of X, then ], .y An is non-
empty.

(ACT™(N, X)). If (Ap)nen is a sequence of nonempty finite subsets of X, then [
non-empty.

A, is

neN

(WO'™(N, X)). If (Ap)nen is a sequence of finite subsets of X, then UpenA, is countable.

Notice that DMC implies DC(X) for any set X satisfying WO/™(N, X) (for example
a linearly orderable set X). For every set X, DC(X) = AC(N,X) = AC/™(N, X). Al-
though ACH?(N) is equivalent to the statement “Every sequence of finite sets has a countable
union.”, T do not know if for a given set X, AC/™(N, X) and WO’/ (N, X) are equivalent ;
I do not know whether DC(X) implies WO/™(N, X).

Now consider the following statement :

(PDC, Power Dependent Choice). For every set X, if DC(X)+WO'™(N, X) then
DC(P(X))+WO/™(N,P(X)).

Proposition 1. DMC = PDC.
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Proof. (Unpublished) Assume that X is a set such that DC(X)+WO/™(N, X) holds. We
are to prove that DMC implies WO/™ (N, P(X)). Let us introduce the following notion :
given two sets A and B, say that B subsumes A if the mapping A — P(B) associating to
each z € A the set x N B is one-to-one. Of course, for every set A, UA subsumes A. If
A is a finite set, then there is (at least) one finite subset of UA subsuming A. Also notice
that if a set B subsumes A, any set containing B also subsumes A. We now show that,
given a sequence (A, )nen of non-empty finite subsets of P(X), UyenAy, is countable. Since
each A, is subsumed by some finite subset of X, it is possible, using DMC, to consider a
sequence (B,,)nen of finite subsets of X such that each B,, subsumes A, ; for each n € N,
denote by ¢, : A, — P(B,) the one-to-one mapping = — =N B,. Now WO’/ (N, X) implies
that U,enB,, is countable, whence U,enyP(B,,) is countable. It follows that U,enA, is also
countable. 0

It follows that DMC implies for every ordinal « the statements DC(P(«)), DC(P(P(w))),
.... So DMC implies DC(R), DC(P(R)), ..., DC(P(P(R))). In particular, DMC implies
the statement AC(N, R) which is useful in measure theory : in fact, one can build in ZF the
(finitely additive) Lebesgue measure on the boolean algebra L,, of Lebesgue-measurable sub-
sets of R™ ; now in the setting ZF+AC(N,R), one can prove that the boolean algebra L, is
o-complete, and also the o-additivity of the Lebesgue measure on £,, and other consequences
(the dominated convergence theorem, the Fubini theorem).

Question 2. Does PDC imply DMC ?

2.2.2. Ekeland’s variational principle. Tt is known, see [13] or [P99a, Lemma 5(i) and The-
orem 4], that DC is equivalent to the following Ekeland’s principle :

(Ek, Ekeland’s principle). If (E,d) is a nonempty sequentially complete metric space, if
[ E — R is lower semi-continuous and bounded below, if e € RY, then there exists a € E
such that for all x € E, f(a) < f(x) + ed(z,a).

Consider the following weak form of Ekeland’s principle :

(WEk, Weak Ek). If C is a nonempty sequentially complete convexr subset of a normed
space (E.||.]]), if f : C — R is convex, lower semi-continuous and bounded below, if € € R,
then there exists a € C such that for all x € C, f(a) < f(x) + €|z — al|.

Theorem 5. DMC = WEk.
Proof. See [P99a, Lemma 5(ii)]. O

Question 3. Does WEk imply DMC 7
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2.3. Extremally disconnected compact Hausdorff spaces. Say that a topological space
X is extremally disconnected if for every open subset U of X, the closure U of U is open.
Finite discrete spaces are extremally disconnected (and Hausdorff compact). Given a set X,
we denote by SX the set of ultrafilters of X endowed with the Zariski topology!. If every
filter on X is contained in a ultrafilter of X, then the space X is Hausdorff compact and
extremally disconnected (it is the Stone-Cech compactification of the discrete space X ). If
a set X is infinite and amorphous (every subset of X is finite or cofinite), then there exists
a unique non-trivial ultrafilter on X : the set Ux of infinite (here cofinite) subsets of X ;
moreover, given a filter F on X, either there is a finite subset F' of X such that F' € F,
and F is contained in a trivial ultrafilter of X, or F is contained in Ux : it follows that the
space fX = X U{Ux} is compact Hausdorff and extremally disconnected (and it is also the
Alexandrov compactification of the discrete space X). Thus, infinite amorphous sets yield
infinite (amorphous) extremally disconnected Hausdorff compact spaces.

A set I is Dedekind-finite (“D-finite” for short) if there is no one-to-one mapping from
N into I. In the opposite case, the set I is Dedekind-infinite (D-infinite). Consider the
following axiom :

(D, Dedekind-infinite). ”Fuvery infinite set is Dedekind-infinite”.

The class of almost well-ordered sets is (see [8]) the smallest class containing all singletons
and closed under well-ordered union. This class is definable by a formula of ZF (see [26,
p. 140-141)).

Theorem 6. Assume that M is a model of ZF where there is a filter on w which is not
contained in any ultrafilter of w.

(1) If M satisfies D,
(2) or if every set of M is almost well-ordered,

then every extremally disconnected Hausdorff compact space of M 1is finite.

Proof. 1. See [P94, Corollary 6 p. 10].
2. See See [P94, Corollary 7 p. 12]. O

For example, Blass’ model without any non-trivial ultrafilter on N (see [8]) satisfies condi-
tion 2. of Theorem 6. Notice that Blass’ model does not satisfy AC?™ (N, P(R)) since in this
model, there is a sequence (P, )nen of two-element subsets of P(R) such that [], P, = @.

It follows that the following statement BCED does not imply AC"(N, P(R)) :

(BCED, BC for Extremally Disconnected spaces). Eztremally disconnected Hausdorff
compact spaces are Baire.

In particular, BCED does not imply DMC.

ISee Appendix A.3
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DC
DI\J//IC
PDC WEKk BCED
DC(P(R))
DC(R)
AC(N,R)

ACy, (N,P(R))
FIGURE 1. Around DMC.

2.4. Countable compact Hausdorff spaces. Consider the following statements :
(BCC, BC for Countable spaces). Every countable compact Hausdorff is Baire.

(WBCC, Weak BCC). FEvery non-empty countable compact Hausdorff space has an iso-
lated point.

(BCCC, BC for Countable Connected spaces). Every non-empty countable compact
connected Hausdorff space is Baire (whence it is a singleton).

On september 96, I asked Miller the following question : "Does ZF prove BCC 7”7 and
Miller inserted my question into his list of open question ([32]). On 15 December 1996, I
asked the more precise question (see my postage to the forum sci.math.research, entitled
?Countable Continua”) : does ZF prove BCCC 7 Such a question has a ”philosophical
flavour” since it is a way of asking if there may exist an infinite continuum (i.e. a connected
compact Hausdorff space) which is somewhat ”discrete” (equipotent with N). In his Thesis
([15], [16]), Omar de la Cruz answered both questions : he first built a model of ZF where
there is an infinite countable compact Hausdorff space without any isolated point ; he then
built another model of ZF with an infinite countable compact connected Hausdorff space.

Part 2. Boolean algebras and Gelfand algebras

3. STONE AND GELFAND REPRESENTATION THEOREMS

In this Section, I present some equivalents of the “Boolean prime ideal axiom”.
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3.1. The Boolean Prime Ideal axiom. Consider the following axiom :
(BPI, Boolean Prime Ideal). Every non-trivial boolean algebra has a prime ideal.

The statement BPI has numerous equivalents (see [22]). For example, it is known that
BPI is equivalent to the following Stone representation Theorem : “Every boolean algebra
B is isomorphic with the algebra of clopen subsets of its spectrum Yy via the morphism
a— Q.7 In my Thesis ([P87], [R88]), I found the following equivalent of BPI :

(PIC, Prime ideal Choice). For every bounded distributive lattice® L, there is a mapping
associating to every proper ideal of L a prime ideal’ of L containing I.

My proof of BPI = PIC (see [P87]) is based on the two following consequences of BPI :

(1) Given a bounded distributive lattice and some proper ideal I of L, the subspace
of prime ideals of L containing I endowed with the pro-constructible* topology is
non-empty and Hausdorff compact ;

(2) Every family of non-empty Hausdorff compact spaces has a non-empty product.

Now consider the following statement, introduced by Johnstone (see [25]) :

AMIT, (Almost Maximal Ideal Theorem) FEvery bounded distributive
lattice has an almost mazimal ideal.

Here, an almost maximal ideal of a bounded distributive lattice L is a prime ideal which is
fixed by the “Jacobson radical” j, associating to every ideal I of L the ideal

jiIy:={a€L:VoeLbVa=1= (JielbVvi=1))}

The equivalence BPI = PIC allowed me to answer affirmatively a question raised by
Johnstone (see [25]) :

Theorem 7. BPI = AMIT.
Proof. See [P8T7]. O
Notice that Blass ([10]) and Banaschewski ([2]) also solved Johnstone’s question.

3.2. Gelfand algebras. Say that a R-commutative unitary normed algebra A is a pre-
Gelfand algebra if A satisfies the two following properties :

2) VieA |2 =11

(3) Vfe A 1+ f?is invertible in A

Moreover, if the pre-Gelfand algebra A is complete, say that A is a Gelfand algebra. Every
Gelfand algebra is a Riesz space® for the order < defined by the formula z < y iff Sp(y—=z) C
R,.

Ezample 1. Given a topological space X, the R-algebra A := C§(X) of continuous bounded
mappings f : X — R endowed with the uniform norm is a Gelfand algebra.

Zgee Appendix A.2
3see Appendix A.2
4see Appendix A.1
5See Appendix B.3
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Given a Gelfand algebra A, and a maximal ideal 90t of A, the R-algebra A/ is isomorphic
with R through a (unique) isomorphism that we denote by xon : A/9% — R. For every
a € A, we consider the mapping a : Max(A) — R associating to every 9t € Max(A) the
real number yom(a + ).

Theorem (Banaschewki, [1]). BPI is equivalent to the following representation theorem :
For every Gelfand algebra A, the subspace Max(A) of the spectrum ¥ 4 is compact, Hausdorff
and completely regular, and the Banach algebra A is isomorphic with C*(Maz(A)) through
the mapping a +— a.

4. MEASURED BOOLEAN ALGEBRAS AND MEASURED GELFAND ALGEBRAS

In this Section, we present results obtained in [P87], [P90] and [P91].

4.1. A geometric form of the Boolean Prime Ideal. In [5], Bell and Fremlin showed
that AC is equivalent to the following statement :

For every commutative Banach algebra A, the closed unit ball of the continu-
ous dual A" has an extreme point.

Here, recall that given a convex subset of a real vector space F, a point e € C' is an extreme
point of C' if for every x,y € C, and for every real number A € [0,1], \e + (1 — Ny = e =
e € {z,y}. In their proof, Bell and Fremlin consider some family (A;);c; of non-empty sets
and they define the (commutative) Banach algebra A := [, ;) €°(A;). The continuous dual

A'is [Ty ('(4;), and the closed unit ball of A" is C' := [[,.,; T'; where for each i € I, T;

is the closed unit ball of £}(4;). A point e = (e;);cr of C is extreme if and only if for each
i € I, e; is extreme in ¢'(A;), which means that e; is the indicator of some singleton {a;}
where a; € A; ; so a choice function for the family (A;);es is precisely an extreme point of
C'. Using the unitization of a Banach algebra (see [35] p. 2-3), AC is also equivalent to the
following statement :

For every commutative unitary Banach algebra A, the closed unit ball of the
continuous dual A" has an extreme point.

In [P87], [R88], we showed that BPI is equivalent to the following statement :

GE : For every non-null Gelfand algebra A, the closed unit ball of the con-
tinuous dual A" has a non-null extreme point.

Our proof relied on Theorem 28°. We then introduced the following weak form of GE :

(WGE, Weak GE). For every Gelfand algebra A, the closed unit ball of the continuous
dual A" has an extreme point.

and we asked the following question, which is still open :

Question 4. Does WGE imply GE 7 or, equivalently, does WGE imply BPI ?

6See Appendix B.5
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4.2. Measured Gelfand algebras. Given a commutative unitary normed algebra A, a
state on A is a positive linear functional f : A — R satisfying f(1) = 1. Every state is
continuous, with norm ||1||. A measured normed algebra is a commutative unitary normed
algebra A endowed with a state f.

Theorem 8. The statement WGE is equivalent to each of the following statements :
WGE1L : Every measured Gelfand algebra has a maximal ideal.
WGE2 : Every measured Gelfand algebra has a prime ideal.

Proof. WGE = WGEL1 : Use Proposition 5. WGE1 = WGE2 is straightforward.
WGE2 = WGE : Let A be a Gelfand algebra. If A" = {0} then 0 is an extreme point of
the closed unit ball of A ; else, there exists some non-null element f € A’ ; but f = f+— f~

where fT and f~ are positive linear functionals satisfying || f|| = ||/|| + ||/~ ||. Thus, there
exists some state g on A. Using WGE2, this implies a prime ideal I on A. Now, the
adherence [ is a maximal ideal of the Gelfand algebra A (see [1]). U

4.3. Measured Boolean algebras. Given a bounded lattice (L, V, A, 0, 1), say that a map-
ping m : L — R, is a measure if for every z,y € L, xt Ay =0 = m(xz Vy) = m(z) + m(y).
Moreover, if m(1) = 1, say that m is a probability. A measured bounded lattice is a bounded
lattice endowed with a probability. Consider the following statements :

MBPI : Every measured Boolean algebra has a prime ideal.
MLPI : Every measured bounded distributive lattice has a prime ideal.

(WMBPI, Weak MBPI). For every set X, for every sub-algebra B of the boolean algebra
P(X), for every probability m : B — [0,1], there exists a maximal filter U of B containing
the set {x € B:m(z) = 1}.

(EMBPI). For every set X, for every probability m : P(X) — [0, 1], there exists a mazimal
filter U of B containing the set {A € P(X) : m(A) = 1}.

(U,). There exists a non-trivial ultrafilter on N.

Clearly, MBPI == WMBPI = EMBPI.

Theorem 9. (1) WGE = MBPI = MLPI.
(2) WMBPI = U,,.
(3) EMBPI # U,,.

Proof. 1. WGE = MBPI : see [P90, Théoreme p.15.04].

MBPI = MLPI : see [P90, Théoreme p.15.12].

2. See [P90, Théoreme 2 p.15.07].

3. See [P90, Théoreme 3 p.15.07]. O

Theorem 10. (1) WMBPI is equivalent to its “multiple form” :
Given a family (X;)ier of sets, a family (B);er such that each B; is a sub-
algebra of the boolean algebra P(X;), given a family (m;);er such that each
m; is a probability on By, there exists a family (U;)ie; such that each U; is
a mazimal filter of B; containing the set {z € B; : m;(x) = 1}.
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(2) WMBPI = ACi(N).
Proof. See [P90, Théoreme 1 p.15.08 and Théoreme 2 p.15.09]. O

Theorem 11. MBPI is equivalent to its “multiple form”.

Proof. See [P90, Théoreme p.15.11]. In this proof, we build in ZF the “coproduct” of an
infinite family of Boolean algebras. U

4.4. The Gelfand algebra L>(A, f). Say that a measured Gelfand algebra (A, f) is reduced
if the state f satisfies Vo € A, (f(x) =0=z= O). Say that a measured bounded lattice
(L,m) is reduced if Vx € L (m(x) = 0= 2 = 0). Say that a norm N on a Riesz space” E is
a lattice norm if for every z,y € E, (|z| < |y| = ||lz]| < |ly|| ). A Riesz space endowed with a
lattice norm is called a normed Riesz space. A normed Riesz space which is complete (every
Cauchy filter converges) is called a Banach lattice.

Notation 1 (L;(A, f)). Given a reduced Gelfand algebra (A, f), the mapping N; : A — R,
associating to every x € A the real number f(|z|) is a lattice norm. We denote by L;(A, f)
the Banach completion of the normed space (A, Ny) : then, the lattice laws V and A have
unique extensions to Ly (A, f), and L1(A, f) is a Banach lattice.

Notation 2 (L*(A, f)). Given a reduced Gelfand algebra (A, f), we denote by L>(A, f) the
vector subspace {x € L1(A, f) : 3X € R |z| < A} endowed with the norm ||.|| : L>(A4, f) —
R, associating to every x € L>(A, f) the real number inf{\ € R: |z] < A}.

Given two posets P, (), say that a mapping f : P — @ is order continuous if for every
upward directed non empty subset A of P with a least upper bound in P, f(\/ A) =\/ f[A].
Say that f is o-order continuous if for every upward directed sequence (a;);eny of P with a
least upper bound in P, f(Vena;) = Vienf(a;).

Theorem 12. Let (A, f) be a reduced Gelfand algebra.
(1) The lattice order on the Banach lattice Ly (A, f) is conditionally complete ;

(2) The (unique) continuous extension f : Li(A, f) — R of f is order continuous ;
(3) The multiplicative law of A has a unique continuous extension to L*(A) ;
(4)

(L>=(A),+, X\, ., |l is a Gelfand algebra extending A ; moreover, the lattice order
on L*>®(A) is conditionally complete.
Proof. See [P91, Théoreme p. 6]. O

Given a commutative unitary Banach algebra A, endow A with the spectrum order (a €
A, < Sp(a) € R,) and consider the “square root” mapping +/:[[0, 1]] — [[0, 1]], satisfying
for every element a € [[0, 1]], the equality

11, 13.....2n—3)
\/5_1—§u—§u—---— S ut — ...
where u = 1 —a € [[0,1]]. Denoting by Z the set {2 : k € N*}, one can iterate the function

v/ and define for every n € Z, a mapping {/:([0, 1]] — [[0, 1]].

"See Appendix B.3
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Given a commutative unitary ring (4, +,.,0,1), we denote by A the set {z € A : 2® = z}.
Then, consider the law @ : A x A — A associating to every x,y € A the element z ® y :=
x4y — 2x.y. It is known that (A, ®,.,0,1) is a Boolean algebra.

Theorem 13. Assume that A is a Gelfand algebra which is countably conditionally complete
(i.e. every non-empty countable bounded subset of A has an upper bound in A). Consider

the mapping r: A — A, associating to every x € A the idempotent sup,,c,{ { %} Then,

(1) fa € [[=1,1]) then r(a) = sup,c,{ ¢/Jal} ;

(2) ifa,be Ay, then r(a) Vr(b) =r(aVb) ; in particular, v is increasing on A, ;

(3) For every a,b € A, r(a).r(b) =r(a.b) ;

(4) If I is an ideal of the (bounded distributive) lattice [[0, 1]], then J :={x € A:r(z) €
I} is an ideal of the ring A ; moreover, if the ideal I of [[0,1]] is prime, then J is a
prime ideal of the ring A.

Proof. See [P91, Théoreme p. 4]. O

Corollary 1. MLPI = WGE.
Proof. See [P91, Théoreme p.8]. O

Question 4 can be reformulated as follows :
Question 5 ([P90], [P91]). Does MBPI imply BPI ?

Part 3. Functional Analysis and the Axiom of Choice

All vector spaces that we consider in this Part are vector spaces over R, the field of reals.

5. THE HAHN-BANACH PROPERTY

In this Section, we present results obtained in [P92], [P98], [P99a] and [PO1]. Given a
normed space (F, ||.||), we denote by I'g its closed unit ball {x € E : |z|| < 1}, and we
denote by E’ its continuous dual.

5.1. Bell and Fremlin’s question. Consider the following strong form of Krein-Milman’s
principle :
(VKM, ”Version” of Krein-Milman). If E is a locally convex Hausdorff topological

vector space, if C' is a non-empty convex subset of E which is convex-compact, then C' has
an extreme point.

Here, given a topological vector space F, a convex subset C' of E is said to be convez-
compact if for every family F of closed convex subsets of C' satisfying the finite intersection
property, NF is non-empty. The following question is open :

Question 6 (Bell and Fremlin, [5]). Does VKM imply AC ?

Following Luxemburg’s idea (see [28]), we showed (see Theorem 18, Section 5.6) that,
given a normed space E, convex-compactness of 'z in the *weak topology follows from some
Hahn-Banach property on E. So our search for convex-compact sets leads us to searching
Banach spaces satisfying this Hahn-Banach property in ZF.
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5.2. Various Hahn-Banach properties. Given a vector space E, a sublinear functional on
FE is a mapping p : E — R such that for every z,y € F and A € Ry, p(z 4+ y) < p(z) + p(y)
and p(A.x) = A.p(x). Say that the vector space E satisfies the Hahn-Banach property
(resp. continuous Hahn-Banach property) if, for every sublinear functional (resp. continuous
sublinear functional) p : E — R, for every subspace F' of E and every linear functional
[+ F' — R such that f < pp, there exists a linear functional g : £ — R extending f and
satisfying ¢ < p. For short, in the first case say that E satisfies the HB property, and in
the second case say that F satisfies the CHB property. Let S (resp. S.) be the set of pairs
(p, f) where p : E'— R is a sublinear functional (resp. continuous sublinear functional) on
E and f: F' — Ris a linear functional defined on a subspace F' of E satisfying f < pp. Say
that E satisfies the multiple Hahn-Banach property (resp. multiple continuous Hahn-Banach
property) if there is a function ¢ which is defined on the set S, and which associates to every
(p, f) € S (resp. € S.) a linear functional g = ¢(p, f) which is defined on FE, such that g
extends f and g < p; here ¢ is called a witness of the multiple (resp. multiple continuous)
Hahn-Banach property on E. For short, in the first case say that E satisfies the MHB
property, and in the second case say that E satisfies the MCHB property.

5.3. Various geometric Hahn-Banach properties.

5.3.1. Large separation. The following Theorem presents equivalent “large separation” prop-
erties in topological vector spaces :

Theorem 14. Given a topological vector space E, the following properties are equivalent :

(1) The space E satisfies the CHB property ;

(2) For every affine subspace C' of E and every non-empty open convezr subset O of E
such that C' N O = &, there exists a linear functional f : E — R satisfying for every
z € O the inequality f(z) < inf.cc f(2).

(3) If C is a nonempty convex subset of E and if O is a nonempty open convexr subset
m E such that C N O = & then there exists a linear functional f on E such that
Ve € O f(x) < infe f.

(4) If a € E and if O is a nonempty open convez subset in E such that a ¢ O then there
exists a linear functional f on E such that Vx € O f(x) < f(a).

(5) If C' and O are two nonempty disjoint convex subsets of E, and if O is open then
there exist a linear functional f on E such that f[O] < f[C].

(6) If C and O are two nonempty disjoint open convexr subsets of E, then there exist a
linear functional f on E such that f[O] < f[C].

Proof. See [P99a, Theorem 2]. O

5.3.2. Strict separation.

Lemma 1. Let E be a topological vector space E, C' a non-empty convex subset of £ and
a € E\C. If there are fi,...,fm € E' and ay, ..., € R such that the weak open set
O = Mi<icm{zr € E : fi(z) < a;} satisfies ONC = @ and a € O, then there exists f € E’
satisfying f(a) < infe f.

Proof. See [P99a, Lemma 1] . O
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Theorem 15. Given a Hausdorff locally convex topological vector space E, each of the
following properties is equivalent to the CHB property on E :

(1) For every nonempty closed convex subset C' of E, and every point a € E\C, there
exists a continuous linear functional f : E — R such that f(a) < info f ;

(2) Every closed convex subset of E is weakly closed ;

(3) If C is a nonempty closed convex subset of E and if K is a nonempty compact convex
subset of E then there exists a linear functional f on E such that supy f < infe f.

Proof. See [P99a, Lemma 1 and Corollary 2]. d

Effective versions of Theorems 14 and 15 can be proved : for example, a topological vector
space E satisfies the MCHB property if and only if there is a mapping associating to each
ordered pair (C,0O) of disjoint open convex subsets of F, a linear functional f : F — R
satisfying f[C] < f[O].

5.3.3. Various Mazur properties. Say that a topological vector space E satisfies the Mazur
property if every closed convex subset of E is weakly closed. Say that a closed convex subset
C' of a normed space (E, ||.||) satisfies the strong Mazur property if for every x € E\C, there
exists some continuous linear functional f : E — R such that ||f|| =1 and f(z) + p < f[C]
where p := inf{||z — x| : 2z € C} is the distance between = and C ; say that the closed
convex subset C satisfies the almost strong Mazur property if for every x € E\C, for every
d €]0,1], there exists some continuous linear functional f : £ — R such that ||f]| = 1
and f(z) + dp < f[C]. Say that a normed space satisfies the strong Mazur property (resp.
the almost strong Mazur property) if every closed convex subset satisfies the strong Mazur
property (resp. the almost strong Mazur property).

Remark 1. Given a normed space E, the following properties are equivalent :

(1) The CHB property on E ;

(2) The strong Mazur property on F ;

(3) The almost strong Mazur property on F ;
(4) The Mazur property on E.

Proof. (1) = (2) If the normed space E satisfies the CHB property, then, given a non-empty
closed convex subset C' of E' and a point a € E\C, and denoting by p the distance between
a and C, Theorem 14 (“large separation”) applied to the open ball B(a, p) and to the closed
convex set C' yields a linear functional f : E — R satisfying f[B(a, p)] < f[C]. Now f # 0,
so, dividing f by its norm, we may assume that || f|| = 1. This implies that f(a)+p < f[C].
(2) = (3) and (3) = (4) are trivial.

(4) = (1) If every non-empty closed convex subset of E is weakly closed, then, applying
Theorem 15 (“strict separation”) yields the CHB property on E. O

Say that a normed space satisfies the bounded Mazur property if every bounded closed
convex subset is weakly closed. Say that a normed space satisfies the bounded strong Mazur
property if every bounded closed convex subset satisfies the strong Mazur property.

Question 7 ([P99a, Question 2]). Given a normed space E, does the bounded Mazur prop-
erty on E imply the Mazur property on E 7
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Question 8. Given a normed space E, does the bounded strong Mazur property on E imply
the Mazur property on £ 7

5.4. Geometric proofs of various Hahn-Banach properties. Say that a normed space
satisfies the “projection” property if for every closed convex subset C' of F and every x € E\C,
there exists at least one point a € C satistying ||a — z|| = inf{||z — z| : z € C}. It is known
that in ZFC, the “projection” property for a Banach space is equivalent to “reflexivity” of
this space : this is a consequence of James’ sup theorem, according to which, in ZFC, a
Banach space is “reflexive” if and only if every continuous linear functional on E attains its
upper bound on the closed unit ball of F.

Theorem 16. (1) Normed spaces with a dense well-orderable subset satisfy the MCHB.

(2) Hilbert spaces satisfy the MCHB property.

(3) For every set I, the normed space (°(I)® satisfies the MCHB property.

(4) Gateauz differentiable® Banach spaces satisfying the projection property also satisfy
the CHB property.

(5) Uniformly conver'® Gateauz differentiable Banach spaces satisfy the MCHB prop-
erty.

(6) DC implies that Gateauz differentiable Banach spaces satisfy the CHB property.

(7) WEKk implies that Gateauz differentiable Banach spaces satisfy the bounded almost
strong Mazur property.

(8) Uniformly smooth** Banach spaces satisfy the MCHB property.

Proof. (1), (2) and (3). See [P98|.
(4), (5), (6) and (7). See [P99a].
(8) See [PO1]. O

Question 9 ([P99a, Question 1]). Does a Gateaux-differentiable Banach space satisfy the
CHB property or the bounded Mazur property in ZF 7

There are (at least) two well-known notions of differentiability for a norm, which are inter-
mediate between Gateaux-differentiability and uniformly smooth differentiability : Fréchet
differentiability'? and uniform Gateaux differentiability’?.

Question 10. Does a Fréchet-differentiable Banach space satisfy the CHB property or the
bounded Mazur property in ZF 7

Question 11. Does a uniformly Gateaux-differentiable Banach space satisfy the CHB prop-
erty or the bounded Mazur property in ZF 7

8See Appendix D
9Gee Appendix E.2.2
10gee Appendix E.1
Hgee Appendix E.2.4
1286e Appendix E.2.3
13gee Appendix E.2.6
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5.5. The Hahn-Banach property for separable normed spaces. Clearly, every sepa-
rable normed space satisfies the CHB property. More generally, every normed space having
a dense well-orderable subset satisfies the CHB property. Given a set I and an element
1 € I, the Dirac mapping m which associates to every subset A of I the real number 0 if
i ¢ Aand 1ifi € Ais a probability on the boolean algebra P(I). More generally, given some
family (\;)ier € [0,1])" satisfying >°,.; A; = 1, the mapping m := Y_,_; A;6; is a measure on
I : such a measure is said to be trivial. Pincus and Solovay ([34]) built a model of ZF+DC
where every measure on the algebra P(N) is trivial. It follows that the following statement
is not provable in ZF :

(M Measure). There ezists a non-trivial measure on N.
Now consider the following “countable” Hahn-Banach axiom :

(HB(N)). Every separable normed space satisfies the Hahn-Banach property.
and its weak form :

(WHB(N)). Ewvery separable Banach space satisfies the Hahn-Banach property.

Theorem 17. HB(N) = M.

Proof. See [P99a, Theorem 6. O
It follows that HB(N) is not provable in ZF.

Question 12. ([P99a, Question 3]) Is WHB(N) provable in ZF ?

5.6. Convex compactness. Say that C'is effectively convex-compact if there is a mapping
1 associating to every family F of closed convex subsets of C' satisfying the finite intersection
property, an element ¢(F) € NF. In these conditions, ¢ is called a witness of the effective
convex-compactness of C.

Luxemburg, see [28], showed that the two following statements are equivalent :
(HB, Hahn-Banach). Fvery vector space satisfies the Hahn-Banach property.

(WA, Weak Alaoglu). For every normed space E, the closed unit ball of the normed space
E' is convex-compact in the *weak topology.

Our next Theorem specifies Luxemburg’s result :

Theorem 18. Let E be a normed space.

(1) If E satisfies the CHB property, then the closed unit ball of E' is convez-compact in
the *weak topology.

(2) If E satisfies the MCHB property, then the closed unit ball g of E' is effec-
tively convex-compact in the *weak topology. Moreover, a witness of the effective
c-compactness of I'gr is definable from E and a witness of the CHB property on E.

Proof. See [P98, Theorem 4]. O
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Corollary 2. Given a set I, the closed unit ball of (*(I) is effectively convez-compact in the
*weak topology.

Proof. See [P98, Corollary 6]. d

Theorem 19. Given a set I, the following properties are equivalent :

(1) The normed space (*(I) satisfies the CHB property ;
(2) The convex subset [0,1] is convex-compact in the locally convex Hausdorff space RT.

Proof. See [P98, Lemma 6]. O

Say that a normed space F satisfies the finite extension property (for short FEP) if for every
finite-dimensional subspace F' of E, and every (continuous) linear functional f : F — R,
there exists some continuous functional ¢ : £ — R extending f such that ||g|| = || f||. For
example, every Gateaux-differentiable normed space satisfies the FEP.

Theorem 20. Given a normed space E, the following properties are equivalent :

(1) The space E satisfies the CHB property ;
(2) The space E satisfies the FEP and the closed unit ball of E' is convex-compact in the
xweak topology.

Proof. See [P98, Theorem 6]. O

5.7. A partial answer to Bell and Fremlin’s question. Our next Theorem is a partial
anwser to Bell and Fremlin’s question. Consider the following weak form of the VKM
axiom :

(WVKM, Weak VKM). If E is a locally convexr Hausdorff topological vector space, if
C is a non-empty convex subset of E which is effectively convex-compact, then C' has an
extreme point.

Also consider the following axiom of choice for well-ordered families of sets :

(ACwo). For every ordinal «, for every family (Ax)xea of non-empty sets, [],c, Ax is
non-empty.

Theorem 21. WVKM = AC,,.
Proof. See [P98, Corollary 7]. O

Notice that it is known that ACy, implies DC (see [24]).

5.8. DC and the Baire Category Theorem for convex-compact sets. We have ob-
tained the following equivalent of DC, in terms of Baire property for somewhat compact
spaces :

Theorem 22. DC is equivalent to the following statement : “In a Hausdorff locally convex
topological vector space, convex-compact convex subsets are Baire spaces.”

Proof. See [P98, Theorem 10]. O
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6. REFLEXIVE BANACH SPACES

In this Section, we review some results obtained in [P99b] and [P04b].

6.1. Weak compactness in uniformly convex Banach spaces. Consider the following
statements :

(A, Alaoglu ). For every normed space E, the closed unit ball of E' is *weakly compact.
(AH, Alaoglu Hilbert). The closed unit ball of a Hilbert space is weakly compact.

(RCuc, Reflexive Compactness for uniformly convex Banach spaces). The closed
unit ball of a uniformly convexr Banach space is weakly compact.

Theorem 23. DC = RCuc = AH = ACH*(N).

Proof. DC = RCuc : see [P99b]. RCuc = AH is trivial. The proof of AH = ACH?(N)
is in [P98, Theorem 9. O

6.2. James sequences and J-reflexivity. Given a normed space (E,||.||) and some real
number ¥ > 0, a sequence (ag)reny of E is a J-sequence if for every integer ¢ € N, the
distance between span{ay : k < i} and conv{ay : i < k} is > ). Say that a Banach space
E is J-reflexive if for every ¥ €]0, 1[, the closed unit ball of E does not contain any James
sequence. In ZFC, James proved that every closed bounded convex subset of a J-reflexive
Banach space is weakly compact.

Given a normed space E, we denote by Lg the lattice generated by the closed convex
subsets of E/ : thus, Lg is the set of finite unions of closed convex subsets of E. We then
define the convex topology on the normed space E as the topology for which a subset of F
is closed if and only if it is the intersection of a subset of the lattice Lg. Say that a Banach
space is convex-reflexive if its closed unit ball is compact in the convex topology. We now
consider the following statement :

(J2C). Every J-reflexive Banach space is convez-reflexive.

Theorem 24. DC = J2C.
Proof. See [P04b]. O

Say that a normed space is J-convez (see [3]) if there exists some integer N > 2 and some
real number ¢ €]0, 1] satisfying :

(a1 + -+ ai) = (ig41 + - +an)
N

This notion of J-convexity is is also due to James. We now consider the following statement
statements :

(4) Val,...,aN € Sy dip € {1N} > 9

(A3, convex-reflexivity of J-convex Banach spaces). The closed unit ball (and every
closed bounded convex subset) of a J-conver Banach space is compact in the convex topology.
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(A2, convex-reflexivity of uniformly convex Banach spaces). The closed unit ball
(and every closed bounded convex subset) of a uniformly conver Banach space is compact in
the convex topology.

In a Hilbert space, every closed convex subset is weakly closed so the convex topology and
the weak topology are equal in a Hilbert space. In conclusion,

Corollary 3. DC = J2C = A3 = A2 = RCuc = AH = ACf(N).

Proof. Here, the implication J2C = A3 is due to James, who proved (in ZF) that J-convex
spaces are J-reflexive (see [23] or [3]). Notice that a direct proof of DC = A2 was previously
obtained in [P99b]. O

6.3. A consequence of J2C. Recall the following axiom D : ”FEvery infinite set is Dedekind-
infinite”.

Theorem 25. J2C = D.
Proof. See [P04b]. O

6.4. Various distinct notions of reflexivity. Say that a Banach space F is :

convez-reflerive if the closed unit ball I'g of F is compact in the convex-topology ;
w-reflexive if I'g is w-compact ;

simply-reflexive if the canonical mapping jr : E — E” is isometric and onto ;
onto-reflexive if the canonical mapping jg is onto.

In the following diagram, see Figure 2, we sum up some results obtained in [P04b] about
reflexivity in ZF.

convex-reflexive

7\
T
- w-reflexive simple-reflexive
DC T |
' \ \ \ HB
J—feﬂexive \ onto-reflexive

~

- HB -

FIGURE 2. Reflexivity in ZF.
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6.5. Answer to some question about BPI. It is well known (see [24], [22]) that BPI,
being equivalent to the compactness of {0, 1}! for every set I, implies numerous compactness
results. In particular, the classical proof of Alaoglu’s theorem shows that BPI implies the
following result of functional analysis :

(RC, Reflexive compactness). The closed unit ball of every simply-reflexive Banach space
15 weakly compact.

We now state that RC does not imply BPI, solving Question 2.11 of [P99b].

Theorem 26. (1) The aziom HB implies that every onto-reflexive Banach space is J-
reflezive.
(2) (HB+DC) implies that every onto-reflexive Banach space is convez-reflexive (whence
(HB+DC) implies RC).
(3) RC does not imply BPI.

Proof. See [P04b]. O

Question 13 (see [P04b]). It follows from our study that, in ZF+DC+HB, convex-
reflexivity, w-reflexivity, simple-reflexivity, J-reflexivity and onto-reflexivity are equivalent.
Is there some “classical” notion of reflexivity which is not equivalent to these notions in
ZF+DC+HB ?

Part 4. Other works
7. SPANNING GRAPHS

We consider simple undirected and loop-free graphs. A forest is a graph with no cycles,
a tree is a connected forest. A graph G’ is a subgraph of a graph G if every vertex of G’ is
a vertex of G and every edge of G’ is an edge of G ; such a subgraph is spanning if every
vertex of G incident to an edge of G is also incident to an edge of G'.

AC implies that every connected graph has a spanning tree, and the converse is easily seen
to hold. Indeed, the axiom of choice follows from the fact that every connected graph has
a connected spanning sub-graph without cycles of all even lengths (whereas, it is a theorem
of ZF that every connected graph has connected spanning subgraphs with no odd cycles at
all). We show that relaxing the connectedness assumption on the spanning graph still implies
the axiom of choice, and in particular AC follows from every connected graph admitting a
spanning forest. Indeed consider the statement

SC, Spanning Coppice : FEvery bipartite connected graph has a spanning
subgraph omitting some finite complete bipartite graph K, .

Theorem 27. AC & SC.
Proof. See [S04a. O
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8. ALGORITHMICS OVER BOOLEAN FUNCTIONS

This Section is not (or does not seem to be) related to ZF or the Aziom of Choice.

Let X be a finite set. Let n, k£ be two strictly positive integers. Given some mapping
f X" — X", a finite sequence (h;);cfo.nk—13 of nk mappings from X" to X is a closed

iterative calculus of f if, for any a = (ag,...,a,—1) in X™ the sequence of assignments
for j:=-n to -1 do xj, = a;, od
for j:=0 to n k-1 do l‘j[n} = hj(xj[n],x(j+1)[n], e ,:L‘(j+n_1)[n]) od

ends with (zg,...,2,-1) = f(a). The integer nk is said to be the length of this closed
iterative calculus. The previous definition was given by Serge Burckel in “Closed Iterative
Calculus”, Theoretical Computer Science 158 (1996) 371-378, where he proved that that
every “boolean” mapping f : {0,1}" — {0,1}" has a closed iterative calculus. In [P00],
we proved that boolean mappings can be computed using only three sorts of assignments
(cycles, transpositions and collapsings). In [P03], we proved that for every integer n > 1,
every mapping f : {0,1}" — {0, 1}" has a closed iterative calculus in % steps. In [P04a,
we proved that for every finite field K, every linear mapping f : K* — K" has a closed
iterative calculus in 2n — 1 linear assignments.
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APPENDIX
APPENDIX A. SPECTRA

A.1. The spectrum of a commutative unitary ring. Given a commutative unitary ring
(A,+,.,0,1), we denote by X4 the spectrum of A, i.e. the set of its prime ideals endowed
with the Zariski topology. Recall that the Zariski topology on >4 is the topology generated
by subsets of the following form :

Qu={le€Xy:a¢l}, acA

Since for every a,b € A, Q, N Q, = Qup, open subsets of X4 are of the form {I € ¥, :
J € I} where J is some ideal of A. Given an element I € ¥4, the adherence {I} is the set
{J €Xy:1C J};soclosed singletons of ¥4 correspond to maximal ideals of A. We denote
by Max(A) the subspace of maximal ideals of A.

The topological space X 4 is sober :

(1) ¥4 is Ty i.e. for every distinct points € Y4, there exists some open subset of ¥4
containing one of the point and not the other one ;

(2) Every irreducible closed subset of ¥4 is of the form {I} where I is some prime ideal
of A.

Using BPI, one can prove that the topological space X4 is spectral (see [27] p.279-281),
which means that :
(1) X4 is sober ;
(2) X4 is quasicompact ;
(3) The set of open quasicompact subsets of ¥ 4 is closed by finite intersection ;
(4) The set of open quasicompact subsets of ¥4 generate the topology of ¥ 4.

Using BPI, one can also prove the following statement, due to Hochster (see [27] p. 429-444) :

(Ho, Hochster). Every spectral space is homeomorphic with the spectrum of some commu-
tative unitary ring.

Question 14. Does Hochster’s statement Ho imply BPI ?

Given a spectral topological space X, denote by C the set of its closed subsets, and by
Q) the set of its quasicompact open subsets. Then, the pro-constructible topology on the
spectral space X is the topology having C U ) as a sub-basis of closed subsets : thus, a
subset of X is closed for the pro-constructible topology if it is an intersection of subsets of
the form F"U O where F' € C and O € ). The proof of BPI = Ho relies on the fact that
BPI implies the following statement :

(SHo). The pro-constructible topology on a spectral space is (Hausdorff) compact.
Question 15. Does SHo imply BPI ?

A.2. The spectrum of a bounded distributive lattice. An (abstract) lattice is a struc-
ture (L,V,A) where V,A : L x L — L are two associative, commutative and idempotent
binary laws satisfying the following for every z,y € L (see [21]) :

(5) (zAy)Vy=y
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(6) (zVy ANy=y

Given an ordered set (P, <) which is reticulated, i.e. such that every pair {z,y} C P has
an upper bound z V y and a lower bound = A y, then the structure (P,V,A) is a lattice.
Given a lattice (L, V, A), there exists a unique reticulated order < on L such that V (resp.
A) is the “supremum” (resp. “infimum”) associated law : namely, for every z,y € L,
(x <y) < (xVy=y). We will refer to this order. The lattice (L, V, A) is distributive if the
following properties are satisfied for every z,y,2z € L :

(7) (xANyY)Vz=(xANz)V(yA=z)

(8) (xVy)ANz=(xVz)A(yV2)

A bounded lattice is a structure (L, V, A,0,1) which is a lattice endowed with two elements
0 and 1 satisfying the extra properties for every xz € L :

(9) zrV0==x

(10) rAl=x

Clearly, a bounded lattice (L, V, A, 0, 1) also satisfies t A0 = 0 and V1 = 1 for every x € L.
Given a lattice (L,V,A), say that a non-empty subset I of L is an ideal of (L,V,A) if I
satisfies the following properties for every z,y € L :

(11) (y € I) and (x <y)) = (z € 1)

(12) (xel)and (yel))= (zVyel)

Say that an ideal I of the lattice L is prime if I satisfies the following extra property for
every z,y € L :

(13) (xAy)el)=((xel)or(yel))

Say that a non-empty subset F' of L is a filter (resp. prime filter) of the lattice (L,V,A)
if F'is an ideal (resp. prime ideal) of the lattice (L, A, V). Clearly, a subset I of a lattice
(L,V,A) is a prime ideal of L if and only if L\ is a prime filter of (L, V,A).

Given a bounded distributive lattice (L, V, A, 0, 1), we denote by 3 the set of prime ideals
of L endowed with the topology generated by subsets of the following form :

Qu={leX,:a¢l} a€l

Since for every a,b € L, Q, N Q, = Qunp, open subsets of ¥ are of the form {I € ¥ :
J & I} where J is some ideal of L. Given an element I € ¥, the adherence {I} is the set
{J €X:1C J};soclosed singletons of ¥, correspond to maximal prime ideals of L. If L
is a distributive bounded lattice, every maximal proper ideal of L is prime ; moreover, the
topological space Yy, is sober, and, using BPI, the topological space X, is spectral.
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A.3. Boolean algebras. Recall that a boolean algebra is a (commutative) unitary ring
(B, +, x,0,1) satisfying 2> = 1 for every z € B. Equivalently, a boolean algebra is a
bounded distributive lattice (B, V, A, 0,1, %) endowed with a l-ary law % : B — B satisfying
the following properties for every x € B :

(14) xVat=1

(15) zAx* =0

Given a set X, the structure (P(X),A,N, &, X) is a boolean algebra (corresponding to
the lattice (P(X),N,U, &, X)). More generally, given a topological space X, the set of its
clopen subsets (i.e. subsets which are both open and closed) is a boolean sub-algebra of
P(X). Given a boolean algebra B, the spectrum of the commutative unitary ring B and
the spectrum of the lattice B are the same space. This spectrum is Hausdorff and scattered
(clopen subsets form a basis of open sets). Moreover, if every ideal of B is contained in a
maximal ideal, then this spectrum X is compact. In particular, in ZF+BPI, the spectrum
of a Boolean algebra is compact. In ZF+BPI, the spectrum of a complete Boolean algebra
is Hausdorff compact and extremally disconnected (the closure of every open subset is open).

A.4. Maximal ideals and AC. Hodges (see [20]) showed that AC is equivalent to the
following statement :

MITR, Maximal Ideal Theorem for Rings Every non-null commutative
unitary ring has a mazimal ideal.
Wel now give another proof of MITR =- AC relying on Hochster’s statement and the fact
that AC is equivalent to the following statement (see [4]) :
MITL, Maximal Ideal Theorem for bounded distributive Lattices
Fvery non-null bounded distributive lattice has a maximal ideal.

Proposition 2. MITR = MITL.

Proof. First notice that MITL implies BPI, since boolean algebras are commutative rings.
Given a non-null distributive lattice (L, V, A,0,1), consider the spectrum Y, of L. Then,
using BPI, ¥, is spectral ; thus, using Hochster’s statement, which follow from BPI, ¥
is homeomorphic with the spectrum of a commutative unitary ring A. Now MITR implies
a closed singleton in the topological space Xz = ¥ ; this implies a maximal ideal in the
lattice L. ([l

APPENDIX B. ORDERED VECTOR SPACES

B.1. The positive cone of an ordered vector space. An ordered vector space is a real
vector space F endowed with a partial order < satisfying the following property for every
x,y € F and every A € R :

(16) (x> 0) and (y > 0)) = (¢ +y > 0)

(17) (A >0) and (z > 0)) = (\.z >0)
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The positive part of an ordered vector space (E, <) is the set £, := {x € E: x > 0}. The
positive part E is a cone (if z € E; and A € RY then \x € E}), E, is convex, [, is
“saillant” (Ey N (—FEy) = {0}), E; is “pointé” (0 € Ey). Conversely, given a real vector
space E and some convex cone P of F which is “saillant” and “pointé”, the binary relation
< on E defined by the property x <y < (y —x € P) is a partial order on F satisfying (16)
and (B.1). Given an ordered vector space (E, <), for every z,y € E we denote by [z, y]] the
interval {z € E: 2 < zand z < y}.

B.2. Bounded forms on an ordered vector space. Given a vector space F, we denote
by E* its algebraic dual. If E is a real vector space, then E* endowed with the order induced
by the product order on R¥ is an ordered vector space. Given an ordered vector space (E, <),
a linear mapping f : F — R is said to be bounded if for every z,y € E, the set f([[x,y]])
is bounded in R. The set of bounded real linear mappings on FE is a vector subspace of E*
that we denote by B(F). We endow B(FE) with order induced by the order of E* : then,
E% C B(E).

B.3. Riesz spaces. A Riesz space is an ordered vector space (E, <) such that the order <
is reticulated. Given a Riesz space E, for any x € E, we denote by 2+ the positive part x V0
of z, by = the negative part (—x) vV 0 of x, and by |z| the absolute part x V (—x) of z. Say
that = and y are disjoint if |x| A |y| = 0, and denote it by z L y.

Proposition ([31]). A Riesz space E satisfies the following first-order properties for every
x,y,z € E and every A € Ry :

)
) 2 Vy=—((=2) A (~y))

JzVy+z=(x+2)V(y+=2)

Yz Ay+z=(x+2)A(y+2)

yrx=xt —x"

) |z =2t + a2~

) [l = Al

) |z +yl <z + [yl

) ™ L a7 and the decomposition of x into the difference of two

disjoint positive elements is unique.

(10) (x < 9) & (2" < y*) and (g~ < a7))

(11) z Ly < |z| VY| = |z| + |y|, and in this case, |+ y| = |z| + |y|

(12) zA(yVz)=(xAy)V(zAz)andxzV (yANz)=(xVy A(zV=2)

(13) If z,y,z € Ey, then (x+y) ANz <z Az+yAz (whence [0,z +y]] = [[0, z]] + [[0, y]])
(14) |z —y|=|zVz—yVz|+|lzAz—yAZz

B.4. Weakly Riesz spaces. An ordered vector space (E, <) is weakly Riesz if

(1) E=Ey —Ey
(2) Vo e EVy € B [[0,2]] +[[0,y]] = [[0, 2 + 9]

So every Riesz space is weakly Riesz.
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Theorem ([14]). Given a weakly Riesz space E, the ordered vector space B(E) is condition-
ally complete. Moreover, for every u € B(E), for every x € E.,

ut(z) = sup{u(t) : t € [[0,z]]}

u” () = sup{u(t) : t € [[—x,0]]}

B.5. Order units. Given an ordered vector space E, say that an element e € F, is a order
unit if for every x € E, there exist real numbers r, s satisfying r.e < x < s.e.

Proposition 3. Assume that E is an ordered vector space with a unit order e.
(1) The mapping ||.| : B(FE) — R associating to every u € B(FE) the real number
sup{|u(x)| : z € [[—e,€]]} is a norm on B(E).
(2) For everyu € B(E), u>0< ||lul]| = u(e)
Moreover, if E is weakly Riesz, for every uw € B(E), (u™,u™) is the unique element of
B (E) x B(FE) satisfying u = ut —u~ and ||u|| = ||[u™||+ [[u”|| ; in particular, ||u|| = |||u]||.

Proof. Easy. See [P86, Théoremes 2 and 3]. O

Theorem 28. Assume that E is a weakly Riesz space with a unit order e. Denote by I the
closed unit ball of the normed space B(E), by K the conver set B(E) N E, and by U the
conver set

{(u,v) € B(E) x BL(E) : u(e) +v(e) =1}

(ut,u™) is an extreme point of U ;
*, u” are extreme points of K ;
(3) ut =0 oru™ =0, whence u(e) = 1.

— — —
S

Proof. See [P86, Théoreme 4]. O

APPENDIX C. BANACH ALGEBRAS

C.1. Normed algebras. In this Section, K is the field R or C. A normed algebra is a
K-algebra (A, +, x,A.,0,1) endowed with a norm ||.|| satisfying the following property for
every r,y € A:

(18) [l >yl < fl=[ 1]

A Banach algebra is a normed algebra which is complete as a normed space. Given a Banach
space E, the K-algebra (LC’(E), +,0,A.,0, IdE) of continuous linear mappings u : £ — FE
endowed with the “sup” norm is a (non commutative) unitary Banach algebra.
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C.2. Spectrum of an element. Given a unitary complex Banach algebra A, for every
a € A, the spectrum of A is the set Sp(a) := {\ € C: A — a is not invertible inA}. Given a
unitary real Banach algebra A, for every a € A, the spectrum of A is the set Sp(a) :={\ €
C : XA — a is not invertible in Ac}, where Ac is the complexified algebra of A.

Theorem ([35], [33]). Given a unitary Banach algebra A, for every a € A, the spec-
trum of a is a non-empty closed bounded subset of C. Moreover, sup{|A| : A € Sp(a)} =

sup{ {/la"|[} < llall

Proposition 4. Given a real, commutative, unitary Banach algebra A, the following sen-
tences are equivalent :

(1) for every a € A, 1+ a? is invertible ;

(2) for every a € A, Sp(a) C R.
If A satisfies these two sentences, then Ay = {a € A: Spla) CR.} ={a’:a€ A} isa
convex cone which is “saillant” and “pointé”, and the associated ordered vector space is a
Riesz space.

C.3. Gelfand algebras.

Proposition 5. Let A be a Gelfand algebra A such that A’ is non-null. Denote by K the
convex set I' sy N A, where I o is the closed unit ball of A'. For every ¢ € A’, the following
properties are equivalent :

(1) ¢ is an extreme point of I' 4 and ¢(1) >0 ;
(2) ¢ is an extreme point of T' 4 and ¢(1) =1 ;
(3) ¢: A — R is a morphism of algebras ;

(4) ¢ is an extreme point of K and ¢(1) = 1.

Proof. 1 = 2 : see [P87, Théoreme 4]. 2 = 3 : see [P87, Théoreme 7).
3 = 4 and 4 = 1 are staightforward, using the fact that for v € A, |lu|| = u(1). O

APPENDIX D. SOME CLASSICAL BANACH SPACES

Recall that given a set I, £°(I) is the following normed vector space endowed by the “sup”
norm :
60(1) = {(xi),;ej Ve >03dF € Pf([) Vi € I\F |Z1fz| < 6}
The continuous dual of ¢°(I) is (isometrically isomorphic with) the following normed vector
space endowed with the “sum” norm :

0(1) = {(rier - 3 Joi] < +oo)
iel
Moreover, the continuous dual of £!(I) is the following space endowed with the “sup” norm :
(1) == {(x)ier su? |z;| < +o0}
ic
For every p €]1, +o0], the vector space

(1) = {(i)ier : Z |zi|" < 400}

il
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is endowed with the N, norm : N,((z;)ier) = (X ;s |7:[P) g

Remark 2. Denoting by R®) the vector space of mapping f € R! such that the set {i €
I : f(i) # 0)} is finite, the Banach space £°(I) is the completion of the normed space R
endowed with the “sup” norm and, for every p € [1,4o00], the Banach space ¢?(I) is the
completion of the normed space RY) endowed with the N, norm.

APPENDIX E. SOME GEOMETRIC PROPERTIES OF BANACH SPACES
E.1. Uniform convexity. Given a normed space (F, ||.||), the mapping

dp e inf {1 — Tty

H:xEFE, y el ||r—y|| >c¢}

is called the modulus of convexity of E. Notice that dg :]0,2] — R, is continuous and order-
preserving. The space E is uniformly convex if Ve > 0, dg(e) > 0. In other words, E is
uniformly convex if there exists a mapping ¢ : R} — R* such that, for every real number
e > 0, for every z,y € I'g,

(19) o=y >e= '

Tty
2

’<1—5(5)

Any mapping § :]0,2] — R satisfying (19) is called a witness of uniform convewity for E,
and then, dg is the best witness of uniform convexity.

Remark 3. Every Hilbert space is uniformly convex, with modulus of convexity ¢ — 1 —

2

-
Proof. See [3, p. 189-190]. d

Remark 4. Uniformly convex Banach spaces satisfy the “projection” property, and, for these
spaces, the projection is unique.

Proof. See [3, p. 194-195]. d

E.2. Various notions of differentiability of a norm. In this Section, we recall the
following notions of differentiability for a norm ||.|| on a vector space E : smoothness,
Gateaux differentiability, Fréchet differentiability and uniform smoothness (these notions
are stated from the weakest to the strongest).

E.2.1. Smoothness of the norm. A continuous linear mapping f € Sgr is said to be norming
at a point a € F\{0} if and only if f(a) = ||la||. The normed space (E,||.||) is said to be
smooth at point a € E\{0} if there erxists a unique norming mapping at this point a. The
space (E, |.||) is said to be smooth (see [3, p. 177]) if it is smooth at every point a € E\{0}.

Notice that, for every a € E\{0}, the existence of a norming linear mapping at point a is
provable in ZF+HB ; so in ZF+HB, smoothness at a point is equivalent to the uniqueness
of a norming linear mapping at this point.
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E.2.2. Gateaux differentiability of the norm. Here are some classic facts about Gateaux dif-
ferentiability for a norm (see [3, p. 178-179]). For every a € E\{0} and every h € E, the
convexity of the norm implies that the function 7/ : ¢ — WM is non-decreasing, thus

it has a limit when ¢ — 0~ (resp. when t — 01) and the following inequality holds :
th| — th|| —
0 o ot thll = lall _ o+ thl = ]
t—0~ t t—0+ 13

Let G~ (a,h) = lim;_o- w and G*(a, h) := limy_o+ w The sublinearity of
the norm implies that the mapping G*(a, .) is sublinear and satisfies

(21) Vh e E, G*(ah) < ]
Moreover, since ||z|| = ||—z|| holds for every x € E,
(22) Vh e E, G"(a,—h) = -G (a,h)

Statement (22) implies that the mapping G~ (a,.) is superlinear, i.e. the two following
conditions are satisfied :

Vhl, hg - E, G_<(l,h1 + ]’LQ) Z G_(a, hl) + G_(CL, hg)

VAeR, Ve e E, G (a, ) = G (a,x)

Now, the normed space (E,||.||) is Gateauz differentiable at a point a € E\{0} if, for every
h € E, limy_g20 W‘/ﬂ exists in R, i.e. G™(a,h) = G~ (a,h) ; in this case, for every
h € E, we denote by G(a, h) the real number lim;_.q 4 w ; then the mapping G(a, .)
is linear (because G (a,.) is sublinear and G~ (a,.) is superlinear), it is continuous with
norm < 1 (because of (21)), and in fact |G(a,.)|| =1 (because G(a,a) = ||a||). The normed
space (E,||.||) is Gateauz differentiable if its norm is Gateaux differentiable at every point
a € E\{0}.

Remark 5. In ZF, Gateaux differentiability at a given point implies smoothness of the norm
at this point. But the converse statement “Fuvery normed space which is smooth at a point
1s Gateauz differentiable at this point.” is equivalent to HB.

Proof. See [P01, Proposition 2 p. 438]. O

E.2.3. Fréchet differentiability. Given a normed space (E,|.||), the norm |.|| is said to be
Fréchet differentiable at a point a € F\{0} if it is Gateaux differentiable and

thl| —
(23) lim o+ th = Jlal is uniform in h € Sg
t—0, 10 t
Since the function 7 is non-decreasing on R, the norm ||| is Fréchet differentiable at point

a if and only if

(24) i (et thll —lal  |la —th] — |af

=0, uniformly in h € S
t—0+ t£0 t —t ) Y E

The normed space (F, ||.||) is said to be Fréchet differentiable if its norm is Fréchet differen-
tiable at every point a € E\{0}.
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E.2.4. Uniform smoothness. Let (E, ||.||) be a normed space such that £ # {0}. The normed
space (E, ||.]]) is said to be uniformly Fréchet differentiable (see [18] Definition 1.9 p.8) if
(25)

 flat th] [l
t—0, t£0 t
Notice that (£, ||.||) is uniformly Fréchet differentiable if and only if

thl| — —thll =
(26) i (et thll —lall  fla —th| — [a]
t—0%,t£0 t —t

exists for each a € Sg and each h € S, and is uniform in (a, h) € SpxSg

) =0, uniformly in a,h € Sg
Now, consider the following function pg, which is called the modulus of smoothness of the
normed space E (see [3] page 204) :
la + || + lla —tbl|
lall=lbll=1 2

1}

pe 1t —

The space F is said to be uniformly smooth if

(27) tim 220 _

t—0+ t
This is equivalent to the following condition :
la + Al + lla —hll —2][a]]
h—0, h#0 HhH

(28) =0, uniformly in @ € Sg

Since (26) and (28) are equivalent, uniform Fréchet differentiability and uniform smoothness
are equivalent.

It is easy to prove that every finite-dimensional normed space E which is Gateaux differen-
tiable is uniformly smooth (because I'g is compact), but in general, Gateaux differentiability,
Fréchet differentiability and uniform smoothness are three distinct notions.

E.2.5. Smulian tests. A mapping 1 from R, to R, is said to be a Smulian test of uniform
smoothness for a normed space (E,||.||) if and only if, for every ¢ € R,, and for every

f,g € SE'/ :
Ba € Sp, (f(a) >1—n(e) and g(a) > 1 —n(e))] = [If — gl <e

Proposition 6. Let (E, ||.||) be a uniformly smooth normed space with modulus of smoothness
p, and leét(()S : R, — R, be the mapping € — sup {t €]0,1] : @ < %}. Then the mapping
E0\E

niEr =S a Smulian test of uniform smoothness for E.

Proof. Follow the idea in the proof of [18, Theorem 1.4 page 3], but, in order to work in ZF,
avoid the use of sequences (see [P01, Proposition 1 p. 430]). O

Remark 6. The following statement is provable in ZF :

Let E be a normed space which has a Smulian test of uniform smoothness.
If for every a € Sg, for every real number § €0,1[, there exists f € Sg
satisfying f(a) > 0, then E is uniformly smooth.
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Proof. Adapt the proof of [18, Theorem 1.4 p.3-4], avoiding the use of sequences (see [PO1,
Remark 6 p. 431]). O

Remark 7. 1t follows from Remark 6 that in ZF, every Gateaux differentiable normed space
which has a Smulian test is uniformly smooth. Since every uniformly smooth normed space
has a Smulian witness (see Proposition 6) and since uniform smoothness implies Gateaux
differentiability, the two following properties are equivalent : “E' is uniformly smooth.”, “F
is Gateaux differentiable and E admits a Smulyan witness.”

Using Remark 6, the following statement is provable in ZF+HB :

Every normed space which has a Smulian test of uniform smoothness is uni-
formly smooth.

Notice that this last converse statement is not provable in ZF (see Remark 8).

Remark 8. Given a model ZF+—-HB, there exists in this model an infinite dimensional
normed space E such that E' = {0} (see [P98, Lemma 5 p. 12] or [29, Theorem 2]). Such a
space F is not Gateaux differentiable though any mapping 7 : Ry — R is a Smulian test
of uniform smoothness for F.

E.2.6. Uniform Gateaux differentiability. Recall that uniform smoothness of a normed space
(E,].]]) means that the following limit exists for each a,h € Sg, and is uniform in (a, h) €
SE X SE :
ol th] o]
t—0, t£0 t

Now, uniform Gdteaux differentiability of E (see [18, Definition 6.5 p.63]), is the existence

for every h € E\{0}, of lim;_o 120 lla+th]—|al

; uniformly in a € Sg.
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