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Abstract. Denoting by AC(N) the countable axiom of choice, we show in ZF+AC(N) that the
dual ball of a uniformly Gâteaux-differentiable Banach space is compact in the weak* topology. In
ZF, we prove that this dual ball is (closely) convex-compact in the weak* topology. We deduce that
uniformly Gâteaux–differentiable Banach spaces satisfy the continuous Hahn-Banach property in
ZF. This enhances a result previously obtained in [1] for uniformly Fréchet differentiable Banach
spaces.
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1. Introduction

1.1. Presentation of the results. We work in ZF, Zermelo-Fraenkel set-theory without the
Axiom of Choice (for short AC). Given a real vector space E, a mapping p : E → R is sub-linear
if for every x, y ∈ E, and every λ ∈ R+, p(x + y) ≤ p(x) + p(y) (sub-addivity), and p(λ.x) = λp(x)
(positive homogeneity). Consider the “Hahn-Banach axiom”, a well known consequence of AC:

HB: Let E be a (real) vector space. If p : E → R is a sub-linear mapping, if F is
a vector subspace of E, if f : F → R is a linear mapping such that f ≤ p�F , then
there exists a linear mapping g : E → R extending f such that g ≤ p”.

It is known that HB is not provable in ZF (see [12], [8], [7]), and that HB does not imply AC
(HB does not even imply that every sequence (Pn)n∈N of pairs has a non-empty product -see [11],
[8], [7]-). Given a real topological vector space E (i.e. E is a real vector space such that the
“sum” + : E × E → E and the external multiplicative law . : R × E → E are continuous for
the product topology), say that E satisfies the Continuous Hahn-Banach property (for short CHB
property) if “For every continuous sub-linear mapping p : E → R, for every vector subspace F
of E, if f : F → R is a linear mapping such that f ≤ p�F , then there exists a linear mapping
g : E → R extending f such that g ≤ p.” Although statement HB is not provable in ZF, however,
some real normed spaces satisfy (in ZF) the CHB property: for example normed spaces with a
well-orderable dense subset (in particular separable normed spaces), but also Hilbert spaces, spaces
`0(I) (see [6]), uniformly convex Banach spaces with a Gâteaux–differential norm ([4]), uniformly
Fréchet differentiable Banach spaces (see [1]). The aim of this paper is to prove (in ZF) that every
uniformly Gâteaux-differentiable Banach space E satisfies the following effective CHB property (see
Corollary 1 in Section 5.3): “There is a mapping Ψ associating to every (p, F, f) where p : E → R

is a continuous sub-linear mapping, F is a vector subspace of E, and f : F → R is a linear mapping
such that f ≤ p�F , a linear mapping g := Ψ(p, F, f) : E → R extending f such that g ≤ p.” This
enhances the result that we previously obtained in [1] for uniformly Fréchet differentiable Banach
spaces, and this answers Question 3 of [1]. Notice that given a set I, `0(I) has an equivalent norm
which is uniformly Gâteaux–differentiable (see Section 5.4.1), but if I is infinite, then `0(I) has no
uniformly Fréchet differentiable equivalent norm (see Remark 4).

Consider the countable Axiom of Choice, which is not provable in ZF, and which does not imply
AC (see [7], [8]):

AC(N): If (An)n∈N is a family of non-empty sets, then there exists a mapping
f : N → ∪n∈NAn associating to every k ∈ N an element f(k) ∈ Ak.

In this paper, we first provide in ZF+AC(N) a criterion of compactness for certain complete
gauge spaces satisfying a “smallness” property with respect to an extra metric (see Theorem 1 in
Section 2.3.4). This geometric idea leads us to the fact that (see Theorem 3 in Section 4.3), given
a normed space E with a weak* uniformly rotund dual ball, then, in ZF+AC(N), the dual ball
BE′ of E is weak* compact (and this is not provable in ZF -see Remark 3), and in ZF this dual
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ball is (closely) weak* convex-compact (see Definition in Section 4.3). It follows that if a normed
space E is uniformly Gâteaux-differentiable, then its dual ball is weak* compact in ZF+AC(N),
and (closely) convex-compact in ZF (see Theorem 4 in Section 5.2). Using a result of [6] linking
the CHB property on the normed space E and the weak* convex-compactness of the dual ball of
E, we deduce our main result: “Uniformly Gâteaux-differentiable normed spaces satisfy the CHB
property”.

1.2. Some weak forms of AC. We now recall some weak forms of the Axiom of Choice which
will be used in this paper and the known links between them. For detailed references and much
information on various weak forms of the Axiom of Choice, see [8] and [7].

1.2.1. DC, AC(N) and AC(N,fin). The axiom of Dependent Choices asserts that:

DC: Given a non-empty set X and a binary relation R on X such that ∀x ∈ X∃y ∈
X xRy, there exists a sequence (xn)n∈N of X such that for every n ∈ N, xnRxn+1.

The countable Axiom of Choice for finite sets says that:

AC(N,fin): If (An)n∈N is a family of finite non-empty sets, then there exists a
mapping f : N → ∪n∈NAn associating to every n ∈ N an element f(n) ∈ An.

Of course, AC ⇒ DC ⇒ AC(N) ⇒ AC(N,fin). However, the converse statements are not
provable in ZF, and AC(N,fin) is not provable in ZF (see references in [7]).

2. A criterion of compactness

2.1. Filters.

2.1.1. Filters in lattices of sets. Given a set X, a lattice of subsets of X is a subset L of P(X)
containing ∅ and X, which is closed by finite intersections and finite unions. A filter of the lattice
L is a non-empty proper subset F of L such that for every A,B ∈ L:

(i) (A,B ∈ F) ⇒ A ∩ B ∈ F
(ii) (A ∈ F and A ⊆ B) ⇒ B ∈ F

A subset A of L is contained in a filter of L if and only if A satisfies the finite intersection property
(for short FIP), that is, every finite subset of A has a non-empty intersection; in this case, the
intersection of all filters of L containing A is a filter that we denote by fil(A) (which is the
smallest filter of L containing A, alias the “filter generated by A”).

2.1.2. Stationary sets. Given a filter F of a lattice L of subsets of a set X, an element S ∈ L
is F-stationary if for every A ∈ F , A ∩ S 6= ∅. The set S(F) of F-stationary sets satisfies the
following properties:

(i) If A is a chain of L and if A ⊆ S(F), then A∪ F satisfies the FIP.
(ii) If F1, . . . , Fm ∈ L and F1 ∪ · · · ∪Fm ∈ S(F), then there exists some i0 ∈ {1..m} such that Fi0

is F-stationary.

2.2. Gauge spaces.

2.2.1. Pseudo-metrics. Given a set X, a pseudo-metric on X is a mapping d : X × X → R+

satisfying the following properties for every x, y, z ∈ X:

(i) d(x, x) = 0
(ii) d(x, y) = d(y, x)
(iii) d(x, z) ≤ d(x, y) + d(y, z)
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Given a ∈ X and some pseudo-metric d : X×X → R+, given real numbers R,R′ satisfying R ≤ R′,
we define large d-balls and large d-crowns as follows:

Bd(a,R) := {x ∈ X : d(a, x) ≤ R}
Dd(a,R,R′) := {x ∈ X : R ≤ d(a, x) ≤ R′}

In an analogous way, we also define strict d-balls with strict inequalities. If A is a non-empty subset
of X, we define the d-diameter of A:

diamd(A) := inf{d(x, y) : x, y ∈ A}
2.2.2. Complete gauge spaces. A gauge space is a set X endowed with a family (di)i∈I of pseudo-
metrics on X. Every gauge space naturally defines a topology on X generated by the various
di-strict balls, i ∈ I. Say that a subset A of non-empty subsets of the gauge space (X, (di)i∈I) is
Cauchy if for every ε > 0 and for every i ∈ I, there exists F ∈ A such that diamdi

(F ) < ε. A gauge
space (X, (di)i∈I) is said to be complete if every Cauchy filter of the lattice of closed subsets of X
has a non-empty intersection.

Example 1 (Closed subsets of R
I). Let I be a set. For each i ∈ I, consider the canonical

projection pi : R
I → R, and the pseudo-metric di : X × X → R associating to each (x, y) ∈ X × X

the real number |pi(x)− pi(y)|. Then, the gauge space (RI , (di)i∈I) is complete. It follows that for
every closed subset A of R

I , the gauge space (A, (di�A×A)i∈I) is also complete.

2.3. A criterion of compactness in ZF+AC(N).

2.3.1. Compactness.

Definition 1 (C-compactness, closed C-compactness). Given a class C of subsets of a set X, say
that a subset A of X is C-compact if for every family (Ci)i∈I of C such that (Ci ∩A)i∈I satisfies the
FIP, A∩∩i∈ICi is non-empty; say that A is closely C-compact if there is a mapping associating to
every family (Ci)i∈I of C such that (Ci ∩ A)i∈I satisfies the FIP, an element of A ∩ ∩i∈ICi.

Recall that a topological space X is compact if X is C-compact, where C is the set of closed subsets
of X (or, equivalently, every filter of the lattice of closed sets of X has a non-empty intersection).

2.3.2. Sub-basis of closed sets.

Definition 2 (basis, sub-basis of closed subsets). A set B of closed subsets of a topological space
X is a basis of closed sets if every closed set of X is an intersection of elements of B. A set S of
closed subsets of X is a sub-basis of closed sets if the set B of finite unions of elements of S is a
basis of closed subsets of X.

The following result is easy.

Proposition 1. Let X be a topological space, and L be a lattice of closed subsets of X which is
also a basis of closed subsets of X. If every filter of L has a non-empty intersection, then X is
compact.

2.3.3. Property of smallness.

Definition 3 (smallness in thin crowns). Let d, d′ be two pseudo-metrics on a set X. Let a ∈ X.
Say that a set C of subsets of X satisfies the property of d′-smallness in thin d-crowns centered at
a if for every R ∈ R

∗
+, for every ε > 0 there exists η ∈]0, R[ such that for every C ∈ C,

C ⊆ Dd(a,R − η,R + η) ⇒ diamd′(C) < ε

If (X, (di)i∈I) is a gauge space, say that C satisfies the property of (di)i∈I-smallness in thin d-crowns
centered at a if for every i ∈ I, C satisfies the property of di-smallness in thin d-crowns centered at
a.

4



2.3.4. Criterion of compactness.

Theorem 1. Let (X, (di)i∈I) be a complete gauge space. Let T be a topology on X which is included
in the associated gauge topology, and let C be a sub-basis of closed sets of (X,T ) which is closed
by finite intersections. Let a ∈ X. Let d : X × X → R+ be a pseudo metric such that d-large
balls centered at a belong to C, and such that T is included in the topology Td associated to d. If C
satisfies the property of (di)i∈I-smallness in thin d-crowns centered at a, then:

(i) In ZF+AC(N), every large d-ball with center a (and thus, every d-bounded T -closed subset
of X) is compact in T .

(ii) In ZF, every every large d-ball with center a (and thus, every d-bounded element of C) is C-
compact. Moreover, if the gauge space (X, (di)i∈I) is Hausdorff, then every d-bounded element
of C is closely C-compact.

Proof. Let L be the lattice generated by C. Let ρ > 0 and let B be the large d-ball Bd(a, ρ).
(i) Let F be a filter of L containing B. Let us prove in ZF+AC(N) that ∩F is non-empty (using
Proposition 1, this will imply that B is T -compact). Let R := inf{r ∈ R+ : Bd(a, r) ∈ S(F)}. Since
{Bd(a, r) : r > R} is a chain of F-stationary sets of L, the set F ∪ {Bd(a, r) : r > R} generates
a filter G of L (see Section 2.1.2-(i)). If R = 0 then a ∈ ∩F (because elements of F are Td-closed).
Assume that R > 0. For every ε > 0, there exists some element of G which is included in the crown
Dd(a,R− ε,R+ ε); with AC(N), choose for every n ∈ N, a finite subset Zn of C such that ∪Zn ∈ G
and ∪Zn ⊆ Dd(a,R− 1

n+1 , R+ 1
n+1). With AC(N,fin), the set ∪n∈NZn is countable. We define by

induction a sequence (Cn)n∈N ∈ ∏

n∈N
Zn such that for every n ∈ N, G ∪ {Ci : i < n} generates a

filter Gn and Cn ∈ S(Gn): given some n ∈ N, ∪Zn ∈ G ⊆ fil(G, (Ci)i<n) ⊆ S(fil(G, (Ci)i<n)); using
Section 2.1.2-(i), it follows that there exists Cn ∈ Zn satisfying Cn ∈ S(fil(G, (Ci)i<n)). Since C
satisfies the property of (di)i∈I -smallness in thin d-crowns centered at a, the filter H := ∪n∈NGn is
Cauchy in the gauge space (X, (di)i∈I). Since this gauge space is complete, and since its topology
contains T , ∩H is non-empty. Thus ∅ 6= ∩G ⊆ ∩F .
(ii) Let A be subset of non-empty elements C which is closed by finite intersection and such that
the ball B belongs to A. Let us show (in ZF) that ∩A is non-empty. Let F be the filter of L
generated by A. Let R := inf{r ∈ R+ : Bd(a, r) ∈ S(F)}. Denote by A′ the set {A ∩ Bd(a, r) :
A ∈ A and r > R}. If R = 0 then a ∈ ∩A. If R > 0, then for every ε > 0, there exists some
element of A′ which is included in the crown Dd(a,R − ε,R + ε). Since C satisfies the property
of (di)i∈I -smallness in thin d-crowns centered at a, the family A′ is Cauchy in the gauge space
(X, (di)i∈I); since this uniform space is complete and since A′ satisfies the FIP, ∩A′ is non-empty
so ∅ 6= ∩A′ ⊆ ∩A. Moreover, if the gauge space (X, (di)i∈I) is Hausdorff, then ∩A′ is a singleton
{a} which is ZF-definable from (X, (di)i∈I), d and A. �

3. The continuous dual of a normed space

All vector spaces that we consider are defined over the field R of real numbers.

3.1. Continuous dual and bidual of a normed space. Given a normed space E endowed with
a norm ‖.‖, we denote by BE the large unit ball {x ∈ E : ‖x‖ ≤ 1}, and by SE the unit sphere of
E. The topology on E associated to the norm is called the strong topology. The vector space E′

endowed with the dual norm ‖.‖∗ is the continuous dual of the normed space E. We also denote by
E′′ the continuous bidual of E i.e. the continuous dual of E′. Let can : E → E′′ be the canonical
mapping associating to every x ∈ E the “evaluating mapping” x̃ : E′ → R, satisfying for every
f ∈ E′ the equality x̃(f) = f(x). A Banach space is a normed space which is (Cauchy)-complete
for the metric associated to the norm (i.e. every Cauchy filter of closed sets has a non-empty
intersection). The weak topology σ(E,E′) on the normed space E is the weakest topology on E
such that elements f ∈ E′ are continuous.
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Remark 1. In a model of ZF where HB fails, there exists a non null (infinite dimensional) normed
space E such that E′ = {0} (see [6, Lemma 5] or [9]). In such a model of ZF, the weak topology
on E is trivial with only two open sets.

3.2. The weak* topology on the continuous dual. Given a normed space E and a vector
subspace F of E′, we denote by σ(E,F ) the weakest topology on E such that every f ∈ F is
continuous on E endowed with this topology. Then E endowed with this topology is a locally
convex topological vector space. Given a normed space E, the weak* topology on E′ is the topology
σ(E′, can[E]) where can : E → E′′ is the canonical mapping. This topology is also denoted
by σ(E′, E). Notice that the locally convex tvs (E′, σ(E′, E)) is Hausdorff (in ZF). Moreover,
strongly closed balls of E′ are weak* closed (in ZF). For every h ∈ E, consider the pseudo-metric
dh : E′ ×E′ → R associating to every (f, g) ∈ E′ ×E′ the real number |f(h)− g(h)|. The topology
associated to the gauge space (E′, (dh)h∈E) is the weak* topology σ(E′, E) on E′. This system
(E′, (dh)h∈E) is the canonical gauge space associated to the weak* topology on E′.

Proposition 2. Let E be a normed space. The closed unit ball BE′ of E′ is complete in the
canonical gauge space (E′, (dh)h∈E) associated to the weak* topology σ(E′, E) on E′.

Proof. Consider the mapping h : BE′ → [−1, 1]BE associating to each f ∈ BE′ the family (f(x))x∈BE
.

The range R := h[BE′ ] of h is a closed subset of [−1, 1]BE , whence it is a complete gauge subspace
of [−1, 1]BE . Moreover h : BE′ → h[BE′ ] is an isomorphism of gauge spaces, thus it follows that
the gauge space BE′ is also complete. �

3.3. Polyhedras. Given a vector space E, and a vector subspace F of the algebraic dual E∗ of
E, a strict F -hemi-space (resp. large F -hemi-space) of E is a subset of E of the form (f < λ)
(resp. (f ≤ λ)) where f ∈ F\{0} and λ ∈ R. A strict F -polyhedra (resp. large F -polyhedra) of
E is a finite intersection of strict (resp. large) F -hemi-spaces. If E is a topological vector space
and if F = E′, then F -hemi-spaces (resp. F -polyhedras) are also called hemi-spaces of E (resp.
polyhedras of E). If E is a normed space, we distinguish on E′:

• polyhedras of E′ endowed with the strong topology (they also are the polyhedras of E′

endowed with the weak topology)
• polyhedras of E′ endowed with the weak* topology, which we also call *-polyhedras.

Recall the following Proposition, which is choiceless:

Proposition 3. Given a Banach space E, weak* continuous linear mappings φ : E′ → R are
evaluation mappings ã : E′ → R for a ∈ E.

Proof. See for example [2]. �

3.4. Separating a convex set and a strict polyhedra.

Theorem 2. Let E be a topological vector space. If C is a convex subset of E, and if P is a strict
polyhedra of E disjoint from C, then there exists f ∈ E′ such that f [P ] < f [C].

Proof. Let f1, ..., fm ∈ E′\{0} and α1, ..., αm ∈ R such that P =
⋂m

i=1{x ∈ E : fi(x) < αi}.
Let F = (fi)1≤i≤m : E → R

m. Let V := Ker(F ) =
⋂m

i=1 Ker(fi) and let can : E � E/V
be the canonical mapping: the mapping can is open. Since the vector subspace V is closed, the
quotient tvs E/V is Hausdorff; moreover, the vector space E/V is finite dimensional (because E/V
is isomorphic the finite dimensional space F [E]). It follows that the tvs E/V satisfies the various
classical geometrical Hahn-Banach properties. Let K := can[C] and U := can[P ]. The convex
subsets K and U are disjoint in E/V (by definition of the mappings fi) and U is open in E/V
(because can is open). Using a geometric form of Hahn-Banach in E/V , there exists g ∈ (E/V )′

such that g[U ] < g[K]. Let f := g ◦ can. Then f [P ] < f [C]. �
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Example 2. Let E be a normed space, let C be a convex subset of E′. If P is a strict *-polyhedra
of E′ which is disjoint from C, then there exists a ∈ E such that ã[C] < ã[P ].

Proof. Apply Theorem 2 to the (Hausdorff) topological vector space E′ endowed with the σ(E′, E)-
topology. �

4. W*UR dual norms

4.1. W*UR dual norm.

Notation 1. Given a normed space E, for every a ∈ SE and η ∈ [0, 1], we denote by Ca,η the
following weak* closed convex subset of the dual ball BE′ :

Ca,η := {f ∈ BE′ : f(a) ≥ 1 − η}
Given a normed space E, say that the dual norm ‖.‖∗ on E′ is weak* uniformly rotund (for short

W*UR) when for every h ∈ E,

lim
η−>0

sup
f,g∈Ca,η

|f(h) − g(h)| = 0 uniformly for a ∈ SE

This means that for every h ∈ E, and every ε > 0, there exists some η > 0 such that for every
a ∈ SE , diamdh

(Ca,η) < ε.

Remark 2. In ZF+AC(N), the above Definition is equivalent to the Definition given in [3, Def. 6.1
p. 61] relying on sequences of E′.

4.2. Property of smallness.

Proposition 4. Let E be a normed space. Let d be the distance given by the dual norm on E′.
Let (dh)h∈E be the canonical gauge space of the weak* topology on E′. Let P be the set of large
*-polyhedras of E′. Let Pb := {P ∩ B(0, r) : P ∈ P and r ∈ R+}. If E has a W*UR dual norm,
then Pb has the property of (dh)h∈E-smallness in thin d-crowns centered at 0E′.

Proof. Let h ∈ E. Let ε > 0. Since the dual norm of E′ is W*UR, let η > 0 such that for every
a ∈ SE, diamdh

(Ca,η) ≤ ε. If P ∈ P and if P ∩ Bd(0, 1 − η) = ∅, then, using a ZF-provable
consequence of HB (see Example 2 in Section 3.4), there exists a ∈ SE such that ã[B(0, 1 − η)] <
ã[P ]. It follows that (P ∩ BE′) ⊆ Ca,η, thus diamdh

(P ∩ BE′) ≤ ε. �

4.3. Compactness of W*UR dual balls. Given a topological vector space E, say that a subset
A of E is convex-compact if A is C-compact where C is the set of closed convex subsets of E.

Theorem 3. Let (E, ‖.‖) be a normed space. Assume that the dual norm on E′ is weak* uniformly
rotund.

(i) The axiom AC(N) implies that the closed unit ball of E′ is compact in the weak* topology.
(ii) The closed unit ball of E′ is closely convex-compact in the weak* topology.

Proof. Let P be the set of large *-polyhedras of E′. Let d be the metric associated to the norm of
E′. Let C := {P ∩Bd(0, r) : P ∈ P and 0 ≤ r ≤ 1}. Then C is a sub-basis of the weak* topology on
BE′ , which is closed by finite intersection. Let (dh)h∈E be the canonical gauge space of the weak*
topology on E′: the subset BE′ of the gauge space (E′, (dh)h∈E) is complete (see Proposition 2).
Large d-balls centered at 0E′ belong to C and, by Proposition 4, the class C satisfies the property
of (dh)h∈E-smallness in thin d-crowns of BE′ centered at 0E′ .
(i) In ZF+AC(N), we apply Theorem 1-(i) to the class C, and it follows that BE′ is weak* compact.
(ii) Using Theorem 1-(ii), and since the gauge space (E′, (dh)h∈E) is Hausdorff, the closed unit ball
of E′ is closely convex-compact. �

Remark 3. Consider the two following statements:
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Aw∗ur Given a normed space such that the dual norm is weak* uniformly rotund,
then the dual ball is weak* compact.

AH: The closed unit ball of a Hilbert space is weakly compact.

It is easy to see that Aw∗ur implies AH. Moreover it is known (see [6]) that AH implies AC(N,fin).
Since AC(N,fin) is not provable in ZF, it follows that Aw∗ur is not provable in ZF.

Question 1. Does AH imply Aw∗ur?

5. UG differentiability yields Hahn-Banach

5.1. Uniform Gâteaux differentiability. Recall that (see [3, Def 6.5 p. 63]) a normed space
(E, ‖.‖) is uniformly Gâteaux-differentiable (for short UG) when it is Gâteaux-differentiable, and,
for every h ∈ E,

lim
t−>0

(‖a + th‖ − ‖a‖
t

− G(a, h)
)

= 0 uniformly for a ∈ SE

Remark 4. A norm which is uniformly Fréchet differentiable (see [3, Def. 1.9 p.8]) is uniformly
Gâteaux differentiable but the converse statement is false. Indeed, given a uniformly Fréchet
differentiable Banach space E, the canonical mapping can : E → E′′ is isometric and onto. On
the other hand, if I is a set, the continuous bidual space of `0(I) is `∞(I) and, if I is infinite, the
canonical mapping can : `0(I) → `∞(I) is isometric but it is not onto (because 1I /∈ can[`0(I)] =
`0(I)). It follows that if I is infinite, the space `0(I) does not have a uniformly Fréchet differentiable
equivalent norm.

Proposition 5 ([3]). If a normed space E is uniformly Gâteaux-differentiable, then the dual norm
of E′ is W*UR.

Proof. Slightly change the proof in [3, p.63-64] to get a proof in ZF (for sake of completeness, we
give a proof in Section 6.1, see the Appendix). �

Remark 5. The converse statement holds in ZF+HB (see [3, p.63-64]).

5.2. Compactness of the dual ball of a UG space.

Theorem 4. Let E be a uniformly Gâteaux differentiable Banach space.

(i) The axiom AC(N) implies that the closed unit ball of E′ (and thus every bounded weak* closed
subset of E′) is compact in the weak* topology.

(ii) The closed unit ball of E′ is closely convex-compact in the weak* topology.

Proof. Use Theorem 3 and Proposition 5. �

Remark 6. It is known that, in ZF+AC(N) (see [10]), every bounded weakly closed subset of a
Hilbert space is weakly compact. It is also known that, in ZFC (see [5]), the closed dual ball of a
uniformly Gâteaux-differentiable normed space E is homeomorphic with a bounded weakly closed
subset of Hilbert space. However, the proof in [5] relies on much axiom of choice; in particular,
it does not seem to be valid in ZF+AC(N). Thus, we cannot use these two results to deduce in
ZF+AC(N) Theorem 4 from [10] and [5].

Question 2. Is the following statement provable in ZF+AC(N)? in ZF+DC? Does it imply
some weak form of the Axiom of Choice?

The closed dual ball of a uniformly Gâteaux differentiable normed space is homeo-
morphic with a bounded closed subset of a Hilbert space.
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5.3. The CHB property for UG spaces. Say that a normed space E satisfies the finite extension
property (for short FEP) if for every finite dimensional subspace F of E, and every linear mapping
f : F → R, there exists g ∈ E′ extending f such that ‖g‖ ≤ ‖f‖. Say that the normed space E
satisfies the effective finite extension property if there is a mapping associating to finite dimensional
subspace F of E and every linear mapping f : F → R, a linear mapping g : E → R extending f
such that ‖g‖ ≤ ‖f‖.
Proposition 6. Every Gâteaux-differentiable normed space satisfies the effective finite extension
property.

Proof. Given a Gâteaux-differentiable normed space E, a proper finite dimensional subset F of E,
and a non-null linear mapping f : F → R, consider some point a in the sphere of F at which
f reaches its least upper bound on the closed unit ball BF . Since the subspace F is Gâteaux-
differentiable, there exists a unique linear mapping u ∈ SF ′ such that u(a) = 1, namely u =
G(a, .)�F . It follows that f := ‖f‖G(a, .)�F thus the linear continuous mapping g := ‖f‖G(a, .)
extends f . �

Corollary 1. Uniformly Gâteaux differentiable normed spaces satisfy the effective continuous
Hahn-Banach property.

Proof. Since E is uniformly Gâteaux-differentiable, BE′ is closely convex-compact in the weak*
topology (see Theorem 4). Moreover, the space E satisfies the FEP (see Proposition 6). It follows
that E satisfies the effective CHB property (see [6, Theorem 6 p.13]). �

Question 3. Recall that in [4], we showed in ZF+DC that Gâteaux differentiable Banach spaces
satisfy the CHB property. Is the CHB property for Gâteaux differentiable Banach spaces provable
in ZF+AC(N)? in ZF? What about the CHB property for Fréchet-differentiable Banach spaces?

5.4. Examples of UG renormings and applications.

5.4.1. UG renormings of `0(I).

Example 3. The Banach space `0(I) has an equivalent norm which is uniformly Gâteaux differen-
tiable. It follows that:

(i) The space `0(I) satisfies the effective CHB property.
(ii) Every bounded weak* closed convex subset of `1(I) is weak* convex-compact.
(iii) In ZF+AC(N), every bounded weak* closed subset of `1(I) is weak* compact.

Proof. The canonical mapping `2(I) → `0(I) is continuous and dense, so Proposition 9 (see Ap-
pendix) implies that `0(I) has a UG renorming. �

Remark 7. Results (i) and (ii) were already obtained in [6].

5.4.2. Spaces L1(E,B,m). Given a set E, and boolean algebra (B,∩,∪, ∅, E) of subsets of E,
a measure on B is a mapping m : B → [0,+∞] satisfying m(∅ = 0 and, for every x, y ∈ B,
x ∩ y = 0 ⇒ m(x ∨ y) = m(x) + m(y). We denote by E the set of “simple functions” i.e. the
(real) vector subspace of R

E generated by indicators of elements of B. We define as usual the
m-integral

∫

E f.dm of a positive simple function f , and the the m-integral of simple real functions
f such that

∫

E |f |.dm < +∞. For every real number p ∈ [1,+∞[, we denote by Ep the vector
subspace {f ∈ E :

∫

E |f |p.dm < +∞} of E . Then the mapping Np : Ep → R+ associating to every

f ∈ Ep the real number (
∫

E |f |p.dm)1/p is a semi-norm. We denote by Lp(E,B,m) the Banach
space which is the separated Cauchy completion of the semi-normed space (Ep,Np) (which can be
built in ZF). We also define E∞ as follows: given f =

∑

1≤i≤n λi1ai
∈ E such that (ai)1≤i≤n is a

partition of E in elements of B, define N∞(f) := 0 if m(E) = 0, and else, N∞(f) := max{|λi| :
9



1 ≤ i ≤ n and m(ai) > 0}. Then E∞ := {f ∈ E : N∞(f) < +∞} is a vector subspace of E , and
(E∞,N∞) is a semi-normed space. We denote by L∞(E,B,m) the separated Cauchy completion of
this semi-normed space.

Example 4. Let (E,B,m) be a measured boolean algebra of sets. Assume that m(1B) < +∞, where
1B is the unit of B. Then, the Banach space L1(B, µ) has an equivalent norm which is uniformly
Gâteaux differentiable. It follows that:

(i) The space L1(B,m) satisfies the effective CHB property.
(ii) Every bounded weak* closed convex subset of L∞(B,m) is convex-compact in the weak*

topology.
(iii) In ZF+AC(N), every bounded weak* closed subset of L∞(B,m) is weak* compact.

Proof. Since m(1B) < +∞, the canonical mapping L2(B,m) → L1(B,m) is continuous and dense,
so Proposition 9 (see Appendix) implies that L1(B,m) has a UG renorming. The continuous dual
of L1(B,m) is L∞(B,m), so (ii) and (iii) follow from Theorem 4. �

Remark 8. The previous Corollary cannot be extended to the case where m(1B) = +∞ because
`1(R) does not have an equivalent Gâteaux differentiable norm.

6. Appendix on UG spaces

6.1. The dual ball of a UG space is W*UR.

6.1.1. An easy criterion for UG differentiability.

Proposition 7 ([3]). Let (E, ‖.‖) be a normed space. The following conditions are equivalent:

(i) E is uniformly Gâteaux-differentiable.

(ii) For every h ∈ SE, limt−>0
‖a+th‖+‖a−th‖−2

t = 0 uniformly for a ∈ SE

Proof. See [3, Lemma 6.6 p. 63] for a proof which is valid in ZF. �

6.1.2. Proof of Proposition 5: “If a normed space E is uniformly Gâteaux-differentiable, then the
dual norm of E′ is W*UR.”.

Proof. Let h ∈ SE. Let ε ∈]0, 1[. Since E is uniformly Gâteaux-differentiable, Proposition 7 implies
some η1 ∈]0, 1[ such that for every a ∈ SE:

|t| ≤ η1 ⇒ ‖a + th‖ + ‖a − th‖ − 2

|t| < ε

Then

|t| ≤ η1 ⇒ ‖a + th‖ + ‖a − th‖ ≤ 2 + ε|t|
Let η := εη1. Let a ∈ SE and f, g ∈ Ca,η. Then for every real number t satisfying 0 < |t| ≤ η1,

f(a + th) + g(a − th) ≤ ‖a + th‖ + ‖a − th‖ ≤ 2 + ε|t|

In particular, for t = η1 we have:

f(η1h) + g(−η1h) ≤ 2 + η1ε − f(a) − g(a) ≤ 3η1ε

thus f(h) − g(h) ≤ 3ε. It follows that supf,g∈Ca,η
‖f(h) − g(h)‖ ≤ 3ε. �

10



6.2. UG renormings. The following Proposition is a slightly different version of [3, Prop. 6.2
p. 61]. Indeed, we do not use sequences but quantitative ε-η conditions:

Proposition 8. Let E be a Banach space. The following conditions are equivalent :

(i) The dual norm on E′ is W*UR.
(ii) For every h ∈ SE, and every ε > 0, there exists η > 0 satisfying for every f, g ∈ BE′,

(1) (2‖f‖2 + 2‖g‖2 − ‖f + g‖2 ≤ η) ⇒ |f(h) − g(h)| ≤ ε

Proof. (i) ⇒ (ii) Let h ∈ SE and ε > 0. Since the dual norm on E′ is W*UR, let η1 > 0 such that

for every f, g ∈ BE′ , and every a ∈ SE, f, g ∈ Ca,η1
⇒ |f(h) − g(h)| < ε. Let η ∈]0, ε2

4 [ such that

ε
2 −√

η > 0, 1 − 2
√

η
ε (1 + 4

ε2 ) − 4η
ε > 1 − η1 and (1 −

√
η

ε/2−√
η )(1 − 2

2η+4
√

η

ε

ε ) > 1 − η1.

Assume that f, g ∈ BE′ satisfy:

(2) 2‖f‖2 + 2‖g‖2 − ‖f + g‖2 ≤ η

Equation (2) implies that

(3) ‖f‖ ≤ ‖g‖ +
√

η and ‖g‖ ≤ ‖f‖ +
√

η

and thus

(4) ‖f + g

2
‖ ≤ ‖f‖ +

√
η

2
and ‖f + g

2
‖ ≤ ‖g‖ +

√
η

2

-If ‖f‖ ≤ ε
2 and ‖g‖ ≤ ε

2 , then |f(h) − g(h)| ≤ |f(h)| + |g(h)| ≤ ε.
-Else, we may assume w.l.g. that ‖f‖ > ε

2 (whence ‖g‖ ≥ ε
2 −√

η > 0). Since ‖f‖ > ε
2 , by (2),

‖f+g
2 ‖2 ≥ ‖f‖2+‖g‖2

2 − η
4 , and with (3), ‖f+g

2 ‖2 ≥ ‖f‖2+(‖f‖−√
η)2

2 − η
4 ≥ ‖f‖2 −√

η = ‖f‖2(1−
√

η
‖f‖2 ).

Since ‖f‖ ≥ ε
2 , we deduce that ‖f+g

2 ‖2 ≥ ‖f‖2(1 − 4
√

η

ε2 ). It follows that

‖f + g‖ ≥ 2‖f‖
√

1 − 4
√

η

ε2
≥ 2‖f‖(1 − 2

√
η

ε2
)

We deduce that

(5) ‖f + g‖ − ‖g‖ ≥ 2‖f‖(1 − 2

√
η

ε2
) − ‖f‖ − √

η

= ‖f‖ − 4‖f‖√η

ε2
−√

η ≥ ‖f‖ − 4
√

η

ε2
−√

η

= ‖f‖(1 −√
η(1 +

4

ε2
)

1

‖f‖) ≥ ‖f‖(1 −√
η(1 +

4

ε2
)
2

ε
)

Let a ∈ SE such that f+g
2 (a) + η ≥ ‖f+g

2 ‖; then f(a) ≥ ‖f + g‖− g(a)− 2η ≥ ‖f + g‖−‖g‖− 2η ≥
‖f‖(1 − 2

√
η

ε (1 + 4
ε2 ) − 4η

ε ). By definition of η it follows that f
‖f‖ ∈ Ca,η1

. On the other hand,

(6) g(a) ≥ ‖f + g‖ − f(a) − 2η ≥ ‖f + g‖ − ‖f‖ − 2η

≥ ‖f‖ − 4

√
η

ε2
− 2η = ‖f‖(1 − 2η + 4

√
η

ε

‖f‖ ) ≥

‖f‖(1 − 2
2η + 4

√
η

ε

ε
) ≥ (‖g‖ − √

η)(1 − 2
2η + 4

√
η

ε

ε
)

thus g(a)
‖g‖ ≥ (1 −

√
η

‖g‖)(1 − 2
2η+4

√
η

ε

ε ) ≥ (1 −
√

η
ε/2−√

η )(1 − 2
2η+4

√
η

ε

ε ). By definition of η, g
‖g‖ ∈ Ca,η1

.

Thus, using (2), |f(h) − g(h)| ≤ ε.
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(ii) ⇒ (i) Let h ∈ E, ε > 0 and η > 0 such that every f, g ∈ E′ satisfy (1). Let λ := η
8 . Given some

a in the unit sphere of E, then for every f, g ∈ Ca,λ,

‖f‖2 + ‖g‖2

2
− ‖f + g

2
‖
2

≤ 1 − (1 − λ)2) = 2λ − λ2 ≤ 2λ

thus 2‖f‖2 + 2‖g‖2 − ‖f + g‖2 ≤ 8λ = η, thus using (1), |f(h) − g(h)| < ε. �

Proposition 9 ([3]). Let E be a Banach space. If there exists a uniformly Gâteaux-differentiable
normed space (for example a Hilbert space) H, and a continuous linear mapping T : H → E such
that the vector subspace Im(T ) is dense in E, then E admits an equivalent norm which has a
W*UR dual norm (and thus E has an equivalent norm which is uniformly Gâteaux-differentiable).

Proof. See [3, p. 65-66]. For sake of completeness, we give the proof which is valid in ZF. We
denote by T ′ : F ′ → E′ the transpose of T associating to each g ∈ F ′ the mapping g ◦ T . Without
loss of generality, we may assume that ‖T‖ ≤ 1, thus ‖T ′‖ ≤ 1. Consider the norm |||.||| on E′ such
that for every f ∈ E′:

|||f |||2 := ‖f‖2
E′ +

∥

∥T ′(f)
∥

∥

2

H′

This norm on E′ is equivalent to the dual norm of E′ because T ′ is continuous. Moreover, this
equivalent norm |||.||| is a dual norm because its closed unit ball is weak* closed in E′ (the mapping
|||.||| is weak* lower continuous). We now show that this dual norm |||.||| is W*UR. We use
Proposition 8. Let k ∈ E and ε > 0. We seek for some real number η > 0 such that for every
f, g ∈ BE′ , satisfying 2|||f |||2 + 2|||g|||2 − |||f + g|||2 < η, |f(k) − g(k)| ≤ ε. Since Im(T ) is dense
in E, we may assume that k = T (h) where h ∈ H. Since H is W*UR, let η > 0 such that for every
u, v ∈ BH′ ,

(7) (2‖u‖2 + 2‖v‖2 − ‖u + v‖2 < η) ⇒ |u(h) − v(h)| ≤ ε

Let f, g ∈ BE′ such that
2|||f |||2 + 2|||g|||2 − |||f + g|||2 < η

Then the two following inequalities hold:

2 ‖f‖2 + 2 ‖g‖2 − ‖f + g‖2 < η and 2
∥

∥T ′(f)
∥

∥

2
+ 2

∥

∥T ′(g)
∥

∥

2 −
∥

∥T ′(f + g)
∥

∥

2
< η

The second inequality and (7) imply that

|T ′(f)(h) − T ′(g)(h)| ≤ ε i.e. |f(k) − g(k)| ≤ ε

�
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