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Abstract. This paper proposes a constructive proof that any mapping on n boolean
variables can be computed by a straight-line program made up of n” assignments of
the n input variables.

1. Introduction

Let n be a positive integer. Denote by B,, the set {0, 1}". Given a boolean mapping
E: B, — B, we are interested in a sequential computation of (xg,...,x,—1) =
E(xo, ..., x,—1). For instance, consider the mapping E on B, that maps (a, b) to (b, a).
This mapping is linear and bijective. An usual way to compute E in a program is to use
a new storage variable ¢ and compute ¢ := a; a := b; b := c. However, it is known that
¢ is not necessary and E is also computed with the program a := a @ b; b := a ® b;
a := a @ b. We generalize this kind of computation in the following.

Definition (Sequential Computation). Let n, k be positive integers. For a given map-

ping E: B, — B, and a sequence (fy, ..., fin—1) of mappings f;: B, — B, the
procedure on boolean variables (xo, ..., X,—-1),

forj:=0to k—1do for i:=0to n—1do x;:= fjnri(x0, ..., Xu1),

is a Sequential Computation of E if it transforms any vector (xo, ..., x,—1) of B, into
its image by E. Moreover, this computation is quadratic when k = n.
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The existence of finite sequential computations is proved in [1] and the existence of
quadratic ones was conjectured. In this paper we prove this fact.

Theorem 1. For every positive integer n, every mapping E: B, — B, admits a
quadratic sequential computation.

We prove this result with a representation of the problem in terms of boolean
matrices.

Definition (Matrices). Let n,k be two positive integers. A boolean matrix M of
columns [Cy, ..., Ci] is n-functional if for any n < i < k column C; is functional ac-
cording to the n previous ones: if two rows of M coincide on columns [C;_,, ..., Ci_1],
then they must also be equal on C;. (Observe that any n-functional boolean matrix is also
(n + 1)-functional.) An n-table is a boolean matrix with 2" rows. For two n-tables U =
[Co,...,Cxland V = [Dy, ..., Dy], the n-table U % V is [Cy, ..., Ci, Do, ..., Dy].
For an (n 4 1)-table M, denote by [M] and | M | the n-tables made up of respectively
the upper and lower half of M. We also write M = [M7/|M]. Denote by V, the n-
table made up of all the vectors of B, in the lexicographical order. Denote by I1° the
column made up of 2" zeros, by T1, the column made up of 2" ones, and by M', the
column 1'[2 / 1'[,11. A column A is balanced if [ A7 and | A | both contain as many zeros as
ones.
For instance, we have

n,, =nd/mg, m,,, =Im,/m,
%' /11%is balanced but [1%'is not balanced,
Vs = (0 # V,) /(T % V) = TI0L | (V. /V,).

Lemma 2 (Surgeries). Let n be a positive integer.

(replacement) The replacement of a row by another row and the permutation of rows
both preserve the n-functionality of a boolean matrix.

(induction) For i € By, let M; be an n-functional n-table and let P; be the n-table
obtained by inserting a column 1! before the first column and every n columns in M;.
The n-tables Py, P and the (n + 1)-table Py/ P are (n + 1)-functional.

(matching) For any n-table V with n columns and any n-functional n-tables U x V
and V x W, the n-table U % V x W is also n-functional.

Proof. (replacement) Obvious. (induction) Each inserted column in Py is constant, that
is, functional according to its n + 1 previous columns. Any other column of P, is, by
hypothesis, functional according to its n previous columns in M that necessarily appear
now in the n 4 1 previous ones in Py. Hence Py is (n 4 1)-functional. The same argument
holds for P;. In P = Py/ P, the inserted columns 1'[2 in Py and H}l in P distinguish the
blocks of (n + 1) consecutive columns and P is also (n + 1)-functional. (Matching) In
U % V x W, the n-functionality comes from U * V in the first columns and from V « W
in the remaining ones. O
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2. Construction

Let E: B, — B, with n > 1. According to [1], the mapping E admits a quadratic
sequential computation if and only if there exists an n-functional n-table T made of n+n?
columns that begins with V,,, the vectors of B,,, and ends with the n-table [Ey, ..., E,_1]
that represents the respective images by E of those vectors. We construct 7' by induction
on n. For n = 1, it is obvious since the boolean matrix

[0 E®©)
T_[l E(l)]

is a trivial solution to the problem. We explain the key ideas for the inductive step by
showing how to compute a solution for n = 3 using the case n = 2.

Assume we have found a 3-table [E|, E{, E;] such that E) = 1'[%’1 and the 3-table
[Ey, E|, E}, Eq, E\, E,] is 3-functional. Then we can use the case n = 2 twice in order
to complete the following 3-table T such that [T] and | T | both become 3-functional:

i case n=2 case n=2 E(/) = Hgl E? Eé Ey E; E2_
0 o o 0 _ _ 0 « o« Gy ar
0 o T | 0 « %« by by by
0 1 0 0 _ _ 0 * * Co € (&)
T 0 00— 0 « o« do di dy
case n=2 case n=2
1 o o 1 1 « x e e e
1 o IR S 1 « o+ Jfo i f2
1 o 1 _  _ 1 « o+ 8 & &
[ T T (- 1 « o« ho hi hy |

From (induction) and (matching), the table T is 3-functional.

Hence, the main difficult step is to find for any n-table [Eo, ..., E,—{] an n-
functional n-table [E}, ..., E,_,, Eq, ..., E,_1] such that Ej = TI°'. This fact will
be proved by induction and deduced from the existence of a balanced column A that
makes the n-table [A, Ey, ..., E,—] n-functional. However this condition is too strong
in general: for instance, when all the rows of [Ey, ..., E,_] are 0" except for the first
one, thatis 0"~ !1, then | A | must be constant. On the other hand, it is not very difficult to
construct such a balanced column A when all the rows of [Ey, ..., E,_;] are different
and represent a bijection on B,,: for all the rows mx withm € B,_; and x € B; such that
mx appears in the same half of the boolean matrix, complete them by xmx and xmx.
Now, the number of rows mx in the upper half such that mx appears in the lower half is
necessarily even (for n > 2). For half of them complete by Omx and 1mx and complete
the others by 1mx and Omx. We are done. However, in order to complete the proof, we
need to find a similar construction of a balanced column A for a larger class that we
define here.

Definition (Semi-bijection). Forn > 2,ann-table S = [Sy, ..., S,—1]is semi-bijective
if any vector of B, occurs at most once in each half of S. This implies that there are nine
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possible types for the occurrences of rows mx and mx in S withm € B,_; and x € B;:

mx mx mx

mx mx mx mx mx mx mx

mx mx mx mx mx mx mx
mx mx mx

0 1 2 3 4 5 6 7 8

In the above representation, the horizontal line separates the halves of S and we indicate
in which halves the rows mx and mx appear.

Lemma 3. Foreveryn > 2 and every semi-bijective n-table S, there exists a balanced
column A such that A x S is n-functional.

Proof. Forevery typet € {0, 1, ..., 8} let A, be the number of times this type ¢ occurs
in S. For each occurrence of type ¢, we propose some possible completion rules R! in
order to define A such that the boolean matrix A * S is n-functional. The values of A
appear in the first column.

Omx Omx Omx 1mx

1mx 1mx 1mx Omx 1mx Omx

Omx Omx Omx 1mx Omx 1mx

1mx 1mx

R} R| R} R} R? R} R?

1mx Omx 1mx Omx 1mx Omx

Omx 1mx 1mx Omx Omx 1mx
Omx 1mx

RR R R R R R R R

It remains to choose the rules that make A balanced. Let a! be the number of times the
rule R! is used in the construction of A. For any x € By, denote by o* the number of
x’sin [A7 and by o, the number of x’s in | A ]. Considering the way the rules R;' affect
0% o, 0y, 01, we obtain

0% = ho+ A1+ A3 +af +a+a+ a3,

o =)L0+)L2+)L6+a31 —G—ai +6151 +Clgl,

o' =x+ A+ A3 +ay +al+a)+al,

o1 =Ao+ Ao+ A +ai +ai +ad+a}
If A is balanced, then 0° = o' and 0y = o musthold, that s to say aj + a2 +a? +a3 =
aj +al+al +adandaj +a} +al +al = a3 +aj + a? + a3. Since n > 2 and

o’ +o' =20+ 20 + 205+ At AsHAe+ A =2""",

00 + 01 = 2ho + 2h2 + 246 + A3 + Aa + As + Ag = 2",
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the positive integers A4 + As + Ag + A7 and A3 + A4 + As + Ag are even. For every
t € {3,...,8},letm, be the remainder of A, modulo 2. There are 16 possible parity cases
and for each one we define convenient integers a! with the following:

Case T3 T4 TTs g 7 T8 53 54 85 66 87 58
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 1 0 0 0 0 +1 -1 0
3 0 0 1 0 1 1 0 0 +1 0o -1 -1
4 0 0 1 1 0 1 0 0 -1 +1 0 +1
5 0 1 0 0 1 1 0 -1 0 0 +1 +1
6 0 1 0 1 0 1 0 -1 0 +1 0 +1
7 0 1 1 0 0 0 0 -1 41 0 0 0
8 0 1 1 1 1 0 o -1 +1 +1 -1 0
9 1 0 0 0 0 | +1 0 0 0 0 -1

10 1 0 0 1 1 | +1 0 o +1 -1 -1
11 1 0 1 0 1 0| +1 0 -1 0 +1 0
12 1 0 1 1 0 0| +1 0 -1 +1 0 0
13 1 1 0 0 1 0] +1 -1 0 0 +1 0
14 1 1 0 1 0 0] +1 -1 0 +1 0 0
15 1 1 1 0 0 1| +1 -1 41 0 0 -1
16 1 1 1 1 1 1|+ -1 -1 41 +1 +1

Define for every, t € {3, ..., 8},
al = —8)/2,
al = (A +8,)/2.

In all 16 cases the previous table shows that a! and a? are non-negative integers such

that a,l + at2 = A; and 84 + 85 4+ 8¢ + 87 = 0 and 83 + 84 + 85 4+ g = 0 hold. Observe
that such a definition of the §,’s is not unique. This one satisfies §3 = w3, 84 = —my,
86 = 1. We obtain the relations

af—i—asz—i—aé—l—a%:ai—i—asl—i—aé—}—a; = A4+ As + Ag + A7)/2,
ay+ay +al+ay=a3+aj+ai+ag=0s+r+Ars+As)/2,

that imply that A is balanced. O

An anonymous referee proposed this alternative and simpler argument.

Proof. Consider an undirected graph G whose nodes are the rows of the n-table S and
whose edges are (mx, mx); that is, two nodes are adjacent if they differ only in the last
bit. By semi-bijectivity, every node is adjacent to at most one other node in its own half
of the table and at most one node in the other half. The induced subgraph on the nodes
in the upper half form a matching, and there are an even number of nodes, so it can be
completed to a perfect matching, and similarly for the nodes in the lower half. Let G’ be
this extended graph. In G’ every node is adjacent to exactly one other node in its own
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half of the table and at most one node in the other half. There are no odd cycles in G’
because along any path, the edges must alternate between edges connecting nodes in the
same half and edges connecting nodes in different halves. Since there are no odd cycles,
the graph is 2-colorable, and any 2-coloring gives a balanced A. |

Now we can perform the main step for the induction.

Lemma 4. For every integer n > 1 and every n-table [Ey, ..., E,_1], there exists an
n-functional n-table [Ej, ..., E,_,, Eo, ..., E,_1] such that E| = ot

n—1°

Proof. We proceed by induction on n. For n = 1, it is obvious. Assume that n > 2.
First, we transform the table [E, ..., E,_] into a semi-bijective one with the follow-
ing procedure. While there exists a row that appears twice in some half of the table,
replace it by another row that appears nowhere. At the end of this process, we obtain

a semi-bijective n-table [Sy, ..., S,—]. Lemma 3 gives a balanced column A such that
M =[A, Sy, ..., S,—1]is n-functional. Let My = [1'[2_1, 50, - - - » Sp—1] be the sequence
of the rows of M thatbegin with A = Oandlet M| = [I'I,I,_l, to, . .., t,—1] be the sequence

of the rows of M that begin with A = 1. Observe that since A is balanced, [M,] and
[M,] both come from [M] and | My and | M| | both come from | M |. By the induction
hypothesis, there exist two (n — 1)-functional (n — 1)-tables [sy, ..., s, 5, So, - . ., Sp—2]
and [t), ..., 1, _5,t0, ..., o] such that s) = 1) = 1'[21_1. From (induction) and (match-
ing), the n-table

/ / 0 ’ / 1
[S()v B Y Hn717 S05 + e v s Sn—2; snfl]/[t()v ) t,1727 Hn711 fo, ..., Ih—2, tnfl]

is n-functional. Permute the rows of this n-table in order to have [Sy, ..., S,_i] as the
last columns and I1°" as the first one. Duplicate in each half of this new n-table some
rows in order to have [Ey, ..., E,_1] as the last columns. We obtain an n-table that still
begins with column %' and is still n-functional (replacement). We are done. |

Proof of Theorem 1.  We proceed by induction on n. The case n = 1 is obvious: any
mapping E: B; — B, admits a quadratic sequential computation of length 1: xy :=
E(xp). Assume n > 1 and consider a mapping E£: B, — B,. Using Lemma 4, let T =
[Ey Ey,....E,_,,Eq, ..., E,_1] be an n-functional n-table such that Ej = 1. We
have [T1=[T1°_,,¢|,.... e |, e0,...,en1land [T] =TI} |, fl, ..o, fl_1s fose o
Jfn—1]. Using the induction hypothesis, there exists two (n — 1)-functional (n — 1)-tables
Up and U; made up of (n — 1) + (n — 1) columns that both begin with V,_; and
respectively end with [e}, ..., e, _land [f], ..., f,_,]1. Insert column 1'121 as the first
column and each n columns in Uy/U;. We obtain (induction) an n-functional table
U made up of n* columns that begins with 1% % (V,_;/V,_1) = V, and ends with
0%« (ley, ..., e, J/Lfl, .- fi,]) = [E, ..., E,_,]. Since T is n-functional, the

table U * [Ey, ..., E,_1] is n-functional (matching) and gives a quadratic sequential
computation of E. O
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3. Conclusion

First, in the quadratic sequential computations that we have built in this paper, any
mapping f;: B, — B, can be used in the program. On the other hand, following an
idea of Piccard in [3], the existence of sequential computations that only use three types
of functions has been proved in [2]. However, such restricted computations cannot be
quadratic and not even of polynomial length: an obvious enumeration of the tables shows
that the number of possible sequential computations of length g (n) using p(n) functions
is bounded by p(n)?™ . That s not enough to obtain the number 2" of possible mappings
E: B, — B, when p and ¢ are both polynomial functions and # is large enough.
Second, it is interesting to point out that the construction of the proof implies that
almost half of the performed assignments have the trivial form x; := x;.
Moreover, some experiments on computers suggest that the bound n
improved to 2n for bijective mappings and to 3n for arbitrary mappings.

2 could be
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