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Abstract. This paper proposes a constructive proof that any mapping on n boolean
variables can be computed by a straight-line program made up of n2 assignments of
the n input variables.

1. Introduction

Let n be a positive integer. Denote by Bn the set {0, 1}n . Given a boolean mapping
E : Bn → Bn we are interested in a sequential computation of (x0, . . . , xn−1) :=
E(x0, . . . , xn−1). For instance, consider the mapping E on B2 that maps (a, b) to (b, a).
This mapping is linear and bijective. An usual way to compute E in a program is to use
a new storage variable c and compute c := a; a := b; b := c. However, it is known that
c is not necessary and E is also computed with the program a := a ⊕ b; b := a ⊕ b;
a := a ⊕ b. We generalize this kind of computation in the following.

Definition (Sequential Computation). Let n, k be positive integers. For a given map-
ping E : Bn → Bn and a sequence ( f0, . . . , fkn−1) of mappings fi : Bn → B1, the
procedure on boolean variables (x0, . . . , xn−1),

for j := 0 to k − 1 do for i := 0 to n − 1 do xi := f jn+i (x0, . . . , xn−1),

is a Sequential Computation of E if it transforms any vector (x0, . . . , xn−1) of Bn into
its image by E . Moreover, this computation is quadratic when k = n.
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The existence of finite sequential computations is proved in [1] and the existence of
quadratic ones was conjectured. In this paper we prove this fact.

Theorem 1. For every positive integer n, every mapping E : Bn → Bn admits a
quadratic sequential computation.

We prove this result with a representation of the problem in terms of boolean
matrices.

Definition (Matrices). Let n, k be two positive integers. A boolean matrix M of
columns [C0, . . . ,Ck] is n-functional if for any n < i ≤ k column Ci is functional ac-
cording to the n previous ones: if two rows of M coincide on columns [Ci−n, . . . ,Ci−1],
then they must also be equal on Ci . (Observe that any n-functional boolean matrix is also
(n + 1)-functional.) An n-table is a boolean matrix with 2n rows. For two n-tables U =
[C0, . . . ,Ck] and V = [D0, . . . , Dh], the n-table U ∗ V is [C0, . . . ,Ck, D0, . . . , Dh].
For an (n + 1)-table M , denote by 
M� and �M
 the n-tables made up of respectively
the upper and lower half of M . We also write M = 
M�/�M
. Denote by Vn the n-
table made up of all the vectors of Bn in the lexicographical order. Denote by �0

n the
column made up of 2n zeros, by �1

n the column made up of 2n ones, and by �01
n+1 the

column�0
n/�

1
n . A column� is balanced if 
�� and ��
 both contain as many zeros as

ones.
For instance, we have

�0
n+1 = �0

n/�
0
n, �

1
n+1 = �1

n/�
1
n,

�01
n /�

01
n is balanced but �01

n is not balanced,

Vn+1 = (�0
n ∗ Vn)/(�

1
n ∗ Vn) = �01

n+1 ∗ (Vn/Vn).

Lemma 2 (Surgeries). Let n be a positive integer.
(replacement) The replacement of a row by another row and the permutation of rows

both preserve the n-functionality of a boolean matrix.
(induction) For i ∈ B1, let Mi be an n-functional n-table and let Pi be the n-table

obtained by inserting a column �i
n before the first column and every n columns in Mi .

The n-tables P0, P1 and the (n + 1)-table P0/P1 are (n + 1)-functional.
(matching) For any n-table V with n columns and any n-functional n-tables U ∗ V

and V ∗W , the n-table U ∗ V ∗W is also n-functional.

Proof. (replacement) Obvious. (induction) Each inserted column in P0 is constant, that
is, functional according to its n + 1 previous columns. Any other column of P0 is, by
hypothesis, functional according to its n previous columns in M0 that necessarily appear
now in the n+1 previous ones in P0. Hence P0 is (n+1)-functional. The same argument
holds for P1. In P = P0/P1, the inserted columns�0

n in P0 and�1
n in P1 distinguish the

blocks of (n + 1) consecutive columns and P is also (n + 1)-functional. (Matching) In
U ∗ V ∗W , the n-functionality comes from U ∗ V in the first columns and from V ∗W
in the remaining ones.
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2. Construction

Let E : Bn → Bn with n ≥ 1. According to [1], the mapping E admits a quadratic
sequential computation if and only if there exists an n-functional n-table T made of n+n2

columns that begins with Vn , the vectors of Bn , and ends with the n-table [E0, . . . , En−1]
that represents the respective images by E of those vectors. We construct T by induction
on n. For n = 1, it is obvious since the boolean matrix

T =
[

0 E(0)
1 E(1)

]

is a trivial solution to the problem. We explain the key ideas for the inductive step by
showing how to compute a solution for n = 3 using the case n = 2.

Assume we have found a 3-table [E ′0, E ′1, E ′2] such that E ′0 = �01
3 and the 3-table

[E ′0, E ′1, E ′2, E0, E1, E2] is 3-functional. Then we can use the case n = 2 twice in order
to complete the following 3-table T such that 
T � and �T 
 both become 3-functional:

T =




case n=2 case n=2 E ′0 = �01
3 E ′1 E ′2 E0 E1 E2

0 0 0 0 − − 0 ∗ ∗ a0 a1 a2

0 0 1 0 − − 0 ∗ ∗ b0 b1 b2

0 1 0 0 − − 0 ∗ ∗ c0 c1 c2

0 1 1 0 − − 0 ∗ ∗ d0 d1 d2

case n=2 case n=2

1 0 0 1 − − 1 ∗ ∗ e0 e1 e2

1 0 1 1 − − 1 ∗ ∗ f0 f1 f2

1 1 0 1 − − 1 ∗ ∗ g0 g1 g2

1 1 1 1 − − 1 ∗ ∗ h0 h1 h2




From (induction) and (matching), the table T is 3-functional.
Hence, the main difficult step is to find for any n-table [E0, . . . , En−1] an n-

functional n-table [E ′0, . . . , E ′n−1, E0, . . . , En−1] such that E ′0 = �01
n . This fact will

be proved by induction and deduced from the existence of a balanced column � that
makes the n-table [�, E0, . . . , En−1] n-functional. However this condition is too strong
in general: for instance, when all the rows of [E0, . . . , En−1] are 0n except for the first
one, that is 0n−11, then ��
must be constant. On the other hand, it is not very difficult to
construct such a balanced column � when all the rows of [E0, . . . , En−1] are different
and represent a bijection on Bn: for all the rows mx with m ∈ Bn−1 and x ∈ B1 such that
mx̄ appears in the same half of the boolean matrix, complete them by xmx and x̄mx̄ .
Now, the number of rows mx in the upper half such that mx̄ appears in the lower half is
necessarily even (for n ≥ 2). For half of them complete by 0mx and 1mx̄ and complete
the others by 1mx and 0mx̄ . We are done. However, in order to complete the proof, we
need to find a similar construction of a balanced column � for a larger class that we
define here.

Definition (Semi-bijection). For n ≥ 2, an n-table S = [S0, . . . , Sn−1] is semi-bijective
if any vector of Bn occurs at most once in each half of S. This implies that there are nine



522 S. Burckel and M. Morillon

possible types for the occurrences of rows mx and mx̄ in S with m ∈ Bn−1 and x ∈ B1:

mx mx mx
mx̄ mx̄ mx̄ mx mx mx mx

mx mx mx mx mx̄ mx mx
mx̄ mx̄ mx̄
0 1 2 3 4 5 6 7 8

In the above representation, the horizontal line separates the halves of S and we indicate
in which halves the rows mx and mx̄ appear.

Lemma 3. For every n ≥ 2 and every semi-bijective n-table S, there exists a balanced
column � such that � ∗ S is n-functional.

Proof. For every type t ∈ {0, 1, . . . , 8} let λt be the number of times this type t occurs
in S. For each occurrence of type t , we propose some possible completion rules Ri

t in
order to define � such that the boolean matrix � ∗ S is n-functional. The values of �
appear in the first column.

0mx 0mx 0mx 1mx
1mx̄ 1mx̄ 1mx̄ 0mx̄ 1mx 0mx

0mx 0mx 0mx 1mx 0mx 1mx
1mx̄ 1mx̄
R1

0 R1
1 R1

2 R1
3 R2

3 R1
4 R2

4

1mx 0mx 1mx 0mx 1mx 0mx

0mx̄ 1mx̄ 1mx 0mx 0mx 1mx
0mx̄ 1mx̄

R1
5 R2

5 R1
6 R2

6 R1
7 R2

7 R1
8 R2

8

It remains to choose the rules that make � balanced. Let ai
t be the number of times the

rule Ri
t is used in the construction of �. For any x ∈ B1, denote by σ x the number of

x’s in 
�� and by σx the number of x’s in ��
. Considering the way the rules Ri
t affect

σ 0, σ 1, σ0, σ1, we obtain

σ 0 = λ0 + λ1 + λ3 + a2
4 + a2

5 + a2
6 + a2

7,

σ0 = λ0 + λ2 + λ6 + a1
3 + a1

4 + a1
5 + a1

8,

σ 1 = λ0 + λ1 + λ3 + a1
4 + a1

5 + a1
6 + a1

7,

σ1 = λ0 + λ2 + λ6 + a2
3 + a2

4 + a2
5 + a2

8 .

If� is balanced, then σ 0 = σ 1 and σ0 = σ1 must hold, that is to say a2
4+a2

5+a2
6+a2

7 =
a1

4 + a1
5 + a1

6 + a1
7 and a1

3 + a1
4 + a1

5 + a1
8 = a2

3 + a2
4 + a2

5 + a2
8 . Since n ≥ 2 and

σ 0 + σ 1 = 2λ0 + 2λ1 + 2λ3 + λ4 + λ5 + λ6 + λ7 = 2n−1,

σ0 + σ1 = 2λ0 + 2λ2 + 2λ6 + λ3 + λ4 + λ5 + λ8 = 2n−1,
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the positive integers λ4 + λ5 + λ6 + λ7 and λ3 + λ4 + λ5 + λ8 are even. For every
t ∈ {3, . . . , 8}, let πt be the remainder of λt modulo 2. There are 16 possible parity cases
and for each one we define convenient integers ai

t with the following:

Case π3 π4 π5 π6 π7 π8 δ3 δ4 δ5 δ6 δ7 δ8

1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 1 0 0 0 0 +1 −1 0
3 0 0 1 0 1 1 0 0 +1 0 −1 −1
4 0 0 1 1 0 1 0 0 −1 +1 0 +1
5 0 1 0 0 1 1 0 −1 0 0 +1 +1
6 0 1 0 1 0 1 0 −1 0 +1 0 +1
7 0 1 1 0 0 0 0 −1 +1 0 0 0
8 0 1 1 1 1 0 0 −1 +1 +1 −1 0
9 1 0 0 0 0 1 +1 0 0 0 0 −1

10 1 0 0 1 1 1 +1 0 0 +1 −1 −1
11 1 0 1 0 1 0 +1 0 −1 0 +1 0
12 1 0 1 1 0 0 +1 0 −1 +1 0 0
13 1 1 0 0 1 0 +1 −1 0 0 +1 0
14 1 1 0 1 0 0 +1 −1 0 +1 0 0
15 1 1 1 0 0 1 +1 −1 +1 0 0 −1
16 1 1 1 1 1 1 +1 −1 −1 +1 +1 +1

Define for every, t ∈ {3, . . . , 8},
a1

t = (λt − δt )/2,

a2
t = (λt + δt )/2.

In all 16 cases the previous table shows that a1
t and a2

t are non-negative integers such
that a1

t + a2
t = λt and δ4 + δ5 + δ6 + δ7 = 0 and δ3 + δ4 + δ5 + δ8 = 0 hold. Observe

that such a definition of the δt ’s is not unique. This one satisfies δ3 = π3, δ4 = −π4,
δ6 = π6. We obtain the relations

a2
4 + a2

5 + a2
6 + a2

7 = a1
4 + a1

5 + a1
6 + a1

7 = (λ4 + λ5 + λ6 + λ7)/2,

a1
3 + a1

4 + a1
5 + a1

8 = a2
3 + a2

4 + a2
5 + a2

8 = (λ3 + λ4 + λ5 + λ8)/2,

that imply that � is balanced.

An anonymous referee proposed this alternative and simpler argument.

Proof. Consider an undirected graph G whose nodes are the rows of the n-table S and
whose edges are (mx,mx̄); that is, two nodes are adjacent if they differ only in the last
bit. By semi-bijectivity, every node is adjacent to at most one other node in its own half
of the table and at most one node in the other half. The induced subgraph on the nodes
in the upper half form a matching, and there are an even number of nodes, so it can be
completed to a perfect matching, and similarly for the nodes in the lower half. Let G ′ be
this extended graph. In G ′ every node is adjacent to exactly one other node in its own
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half of the table and at most one node in the other half. There are no odd cycles in G ′

because along any path, the edges must alternate between edges connecting nodes in the
same half and edges connecting nodes in different halves. Since there are no odd cycles,
the graph is 2-colorable, and any 2-coloring gives a balanced �.

Now we can perform the main step for the induction.

Lemma 4. For every integer n ≥ 1 and every n-table [E0, . . . , En−1], there exists an
n-functional n-table [E ′0, . . . , E ′n−1, E0, . . . , En−1] such that E ′0 = �01

n .

Proof. We proceed by induction on n. For n = 1, it is obvious. Assume that n ≥ 2.
First, we transform the table [E0, . . . , En−1] into a semi-bijective one with the follow-
ing procedure. While there exists a row that appears twice in some half of the table,
replace it by another row that appears nowhere. At the end of this process, we obtain
a semi-bijective n-table [S0, . . . , Sn−1]. Lemma 3 gives a balanced column � such that
M = [�, S0, . . . , Sn−1] is n-functional. Let M0 = [�0

n−1, s0, . . . , sn−1] be the sequence
of the rows of M that begin with� = 0 and let M1 = [�1

n−1, t0, . . . , tn−1] be the sequence
of the rows of M that begin with � = 1. Observe that since � is balanced, 
M0� and

M1� both come from 
M� and �M0
 and �M1
 both come from �M
. By the induction
hypothesis, there exist two (n− 1)-functional (n− 1)-tables [s ′0, . . . , s ′n−2, s0, . . . , sn−2]
and [t ′0, . . . , t ′n−2, t0, . . . , tn−2] such that s ′0 = t ′0 = �01

n−1. From (induction) and (match-
ing), the n-table

[s ′0, . . . , s ′n−2,�
0
n−1, s0, . . . , sn−2, sn−1]/[t ′0, . . . , t ′n−2,�

1
n−1, t0, . . . , tn−2, tn−1]

is n-functional. Permute the rows of this n-table in order to have [S0, . . . , Sn−1] as the
last columns and �01

n as the first one. Duplicate in each half of this new n-table some
rows in order to have [E0, . . . , En−1] as the last columns. We obtain an n-table that still
begins with column �01

n and is still n-functional (replacement). We are done.

Proof of Theorem 1. We proceed by induction on n. The case n = 1 is obvious: any
mapping E : B1 → B1 admits a quadratic sequential computation of length 1: x0 :=
E(x0). Assume n > 1 and consider a mapping E : Bn → Bn . Using Lemma 4, let T =
[E ′0, E ′1, . . . , E ′n−1, E0, . . . , En−1] be an n-functional n-table such that E ′0 = �01

n . We
have 
T � = [�0

n−1, e′1, . . . , e′n−1, e0, . . . , en−1] and �T 
 = [�1
n−1, f ′1, . . . , f ′n−1, f0,. . .,

fn−1]. Using the induction hypothesis, there exists two (n−1)-functional (n−1)-tables
U0 and U1 made up of (n − 1) + (n − 1)2 columns that both begin with Vn−1 and
respectively end with [e′1, . . . , e′n−1] and [ f ′1, . . . , f ′n−1]. Insert column �01

n as the first
column and each n columns in U0/U1. We obtain (induction) an n-functional table
U made up of n2 columns that begins with �01

n ∗ (Vn−1/Vn−1) = Vn and ends with
�01

n ∗ ([e′1, . . . , e′n−1]/[ f ′1, . . . , f ′n−1]) = [E ′0, . . . , E ′n−1]. Since T is n-functional, the
table U ∗ [E0, . . . , En−1] is n-functional (matching) and gives a quadratic sequential
computation of E .
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3. Conclusion

First, in the quadratic sequential computations that we have built in this paper, any
mapping fi : Bn → B1 can be used in the program. On the other hand, following an
idea of Piccard in [3], the existence of sequential computations that only use three types
of functions has been proved in [2]. However, such restricted computations cannot be
quadratic and not even of polynomial length: an obvious enumeration of the tables shows
that the number of possible sequential computations of length q(n) using p(n) functions
is bounded by p(n)q(n). That is not enough to obtain the number 2n2n

of possible mappings
E : Bn → Bn when p and q are both polynomial functions and n is large enough.

Second, it is interesting to point out that the construction of the proof implies that
almost half of the performed assignments have the trivial form xi := xi .

Moreover, some experiments on computers suggest that the bound n2 could be
improved to 2n for bijective mappings and to 3n for arbitrary mappings.
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