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Abstract. We work in set-theory without choice ZF. Given a closed subset F of [0, 1]I

which is a bounded subset of `1(I) (resp. such that F ⊆ `0(I)), we show that the countable
axiom of choice for finite subsets of I, (resp. the countable axiom of choice ACN) implies that
F is compact. This enhances previous results where ACN (resp. the axiom of Dependent
Choices DC) was required. Moreover, if I is linearly orderable (for example I = R), the
closed unit ball of `2(I) is weakly compact (in ZF).
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1. Introduction

We work in the set-theory without the Axiom of Choice ZF. It is a well known theo-
rem of Kelley (see [11]) that, in ZF, the Axiom of Choice (for short AC) is equivalent to
the Tychonov axiom T: “Every family (Xi)i∈I of compact topological spaces has a compact
product.” Here, a topological space X is compact if every family (Fi)i∈I of closed subsets of
X satisfying the finite intersection property (FIP) has a non-empty intersection. However,
some particular cases of the Tychonov axiom are provable in ZF, for example:

Remark 1. A finite product of compact spaces is compact (in ZF).

Say that the topological space X is closely-compact if there is a mapping Φ associating
to every family (Fi)i∈I of closed subsets of X satisfying the FIP an element Φ((Fi)i∈I) of
∩i∈IFi: the mapping Φ is a witness of closed-compactness on X. Notice that a compact
topological space X is closely-compact if and only if there exists a mapping Ψ associating
to every non-empty closed subset F of X an element of F .

Example 1. Given a linear order (X,≤) which is complete (every non-empty subset of X has
a least upper bound), then the order topology on X is closely compact. In particular, the
closed bounded interval [0, 1] of R is closely compact.

Proof. The space X is compact (the classical proof is valid in ZF). Moreover X is closely
compact since one can consider the choice function associating to every non-empty closed
subset its first element. �

The following Theorem is provable in ZF:

Theorem ([8]). Let α be an ordinal. If (Xi, Φi)i∈α is a family of witnessed closely-compact
spaces, then

∏
i∈α Xi is closely-compact, and has a witness of closed-compactness which is

definable from (Xi, Φi)i∈α.

Example 2. For every ordinal α, the product topological space [0, 1]α is closely compact in
ZF.

2



Given a set I, denote by B1(I) the set of x = (xi)i∈I ∈ R
I such that

∑
i∈I |xi| ≤ 1: then

B1(I) is a closed subset of [−1, 1]I . In this paper, we shall prove that B1(I) is compact using
the countable axiom of choice for finite subsets of I (see Theorem 2 in Section 6.2). This
enhances Corollary 1 of [14] and partially solves Question 2 in [14]. We shall deduce (see
Corollary 3) that, if I is linearly orderable, every closed subset of [0, 1]I which is contained
in B1(I) is closely compact. In particular, the closed unit ball of the Hilbert space `2(R)
is compact in ZF, and this solves Question 3 of [14]. Notice that {0, 1}R (and [0, 1]R) is
not compact in ZF (see [12]). We shall also prove that Eberlein closed subsets of [0, 1]I are
compact using the countable axiom of choice for subsets of I (see Corollary 4) of Section 7.4.
This enhances Corollary 3 in [14] where the same result was proved using the axiom of
Dependent Choices DC. This also solves Questions 4 and 5 thereof.

The paper is organized as follows: in Section 2 we review various consequences of AC (in
particular the countable axiom of choice ACN and the axiom of choice restricted to finite
subsets ACfin

N
) and the known links between them. In Section 3 we present definitions of

uniform Eberlein spaces, strong Eberlein spaces and Eberlein spaces. In Section 4 we give
some tools for compactness or sequential compactness in ZF. In Section 5, we recall the
one-point compactification X̂ of a discrete space X, and we show that for every ordinal
α ≥ 1, the closed-compactness of X̂α is equivalent to the axiom of choice restricted to finite
subsets of X. Finally, in Section 6 (resp. 7) we prove that the countable axiom of choice
for finite sets (resp. the countable axiom of choice) implies that uniform Eberlein spaces
(resp. Eberlein spaces) are closely compact (resp. compact.) A basic tool for these two
last Sections is a “dyadic representation” of elements of powers of [0, 1] (see the Theorem in
Section 6.1) which we found in [3, Lemma 1.1], and for which the authors cite [15].

2. Some weak forms of AC

In this Section, we review some weak forms of the Axiom of Choice which will be used in
this paper and some known links between them. For detailed references and much informa-
tion on this subject, see [10].

2.1. Restricted axioms of choice. Given a formula φ of set-theory with one free variable
x, consider the following consequence of AC, denoted by AC(φ): “For every non-empty
family A = (Ai)i∈I of non-empty sets such that φ[x/A] holds, then

∏
i∈I A(i) is non-empty.”

Notation 1. In the particular case where the formula φ says that “x is a mapping with
domain I with values in some ZF-definable class C”, the statement AC(φ) is denoted by
ACC

I .

The statement ∀IACC
I is denoted by ACC. The statement ACC

I where C is the collection
of all sets is denoted by ACI .

Notation 2. For every set X, we denote by fin(X) the set of finite subsets of X. We denote
by fin the (definable) class of finite sets.

So, given a set X, ACfin(X) is the following statement: “For every non-empty family
(Fi)i∈I of non-empty finite subsets of X,

∏
i∈I Fi is non-empty.”, and ACfin is the following

statement: “For every non-empty family (Fi)i∈I of non-empty finite sets,
∏

i∈I Fi is non-
empty.” The countable Axiom of Choice says that:
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ACN: If (An)n∈N is a family of non-empty sets, then there exists a mapping
f : N → ∪n∈NAn associating to every n ∈ N an element f(n) ∈ An.

And the countable Axiom of Choice for finite sets says that:

ACfin

N
: If (An)n∈N is a family of finite non-empty sets, then there exists a

mapping f : N → ∪n∈NAn associating to every n ∈ N an element f(n) ∈ An.

2.2. Well-orderable union of finite sets. Given an infinite ordinal α, and a class C of
sets, we consider the following consequence of ACC :

UwoC
α: For every family (Fi)i∈α of elements of C, the set ∪i∈αFi is well-

orderable.

Remark 2. ACfin(X) implies Uwofin(X)
α .

2.3. Dependent Choices. The axiom of Dependent Choices says that:

DC: Given a non-empty set X and a binary relation R on X such that
∀x ∈ X∃y ∈ X xRy, then there exists a sequence (xn)n∈N of X such that for
every n ∈ N, xnRxn+1.

Of course, AC ⇒ DC ⇒ ACN ⇒ ACfin

N
. However, the converse statements are not

provable in ZF, and ACfin

N
is not provable in ZF (see references in [10]).

2.4. The “Tychonov” axiom. Given a class C of compact topological spaces and a set I,
we consider the following consequence of the Tychonov axiom:

TC
I : Every family (Xi)i∈I of spaces belonging to the class C has a compact

product.

For example T
fin(X)
N

is the statement “Every sequence of finite discrete subsets of X has
a compact product.”

Remark 3. (i) Given a set X, for every ordinal α,

ACfin(X) ⇒ Uwofin(X)
α ⇒ Tfin(X)

α ⇒ ACfin(X)
α

(ii) For every ordinal α, Uwofin
α ⇔ Tfin

α ⇔ ACfin
α .

Proof. (i) Uwofin(X)
α ⇒ T

fin(X)
α : Given a family (Fi)i∈α of finite subsets of X, the statement

Uwofin(X)
α implies the existence of a family (Φi)i∈α such that for each i ∈ α, the discrete

space is closely compact with witness Φi. Using the Theorem of Section 1, it follows that∏
i∈α Fi is (closely) compact. T

fin(X)
α ⇒ ACfin(X)

α : one can use Kelley’s argument (see [11]).

(ii) For ACfin
α ⇒ Uwofin

α : given some family (Fi)i∈α of finite non-empty sets, then, for
each i ∈ α, denote by ci := {0..ci−1} the (finite) cardinal of Fi; thus set Gi of one-to-one
mappings from Fi to ci is finitel, and, by ACfin

α , the set
∏

i∈α Gi is non-empty. This implies
a well-order on the set ∪i∈αFi. �

3. Some classes of closed subsets of [0, 1]I

Notation 3. Let I be a set. Given some element x = (xi)i∈I ∈ R
I , denote by supp(x) the

support {i ∈ I : xi 6= 0}. Given some subset A of R containing 0, denote by A(I) the set of
elements of AI with finite support.

We endow the space R
I with the product topology, which we denote by TI .
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3.1. Eberlein closed subsets of [0, 1]I. Given a set I, we denote by `∞(I) the Banach
space of bounded mappings f : I → R, endowed with the “sup” norm. If I is infinite, we
denote by c0(I) the closed subspace of `∞(I) consisting of f ∈ `∞(I) such that f converges
to 0 according to the Fréchet filter on I (i.e. the set of cofinite subsets of I). Thus

`0(I) := {x = (xi)i∈I : ∀ε > 0∃F0 ∈ Pf(I)∀i ∈ I\F0 |xi| ≤ ε}

If I is finite, then we define c0(I) := `∞(I) = R
I .

Definition 1. A topological space F is I-Eberlein if F is a closed subset of [0, 1]I and if
F ⊆ c0(I). A topological space X is Eberlein if X is homeomorphic with some I-Eberlein
space.

Remark 4. Amir and Lindenstrauss ([1]) proved in ZFC that every weakly compact subset of
a normed space is an Eberlein space. This result relies on the existence of a Markhushevich
basis in every weakly compactly generated Banach space, and the proof of the existence of
such a basis (see [7]) relies on (much) Axiom of Choice.

Remark 5. Consider the compact topological space X := [0, 1]N. Then, the closed subset
X of [0, 1]N is not N-Eberlein. However, the mapping f : X → [0, 1]N ∩ c0(N) associating
to each x = (xn)n∈N ∈ X the element ( xn

n+1
)n∈N is continuous and one-to-one, so X is

homeomorphic with the compact (hence closed) subset f [X] of [0, 1]N∩c0(N). It follows that
X is homeomorphic with some N-Eberlein space.

Proposition 1. (i) Every closed subset of a I-Eberlein (resp. Eberlein) space is I-Eberlein
(resp. Eberlein).

(ii) Let (In)n∈N be a sequence of pairwise disjoint sets, and denote by I the set tn∈NIn. Let
(Fn)n∈N be a sequence of topological spaces such that each Fn is In-Eberlein . Then the
closed subset

∏
n∈N

Fn of [0, 1]I is homeomorphic with a I-Eberlein space.

Proof. (i) is trivial. We prove (ii). For every n ∈ N, let fn : Fn → [0, 1]In be the mapping
associating to each x ∈ Fn the element 1

n+1
fn(x) of [0, 1]In. Let f :=

∏
n∈N

fn :
∏

n∈N
Fn →

[0, 1]I . Then f is one-to-one and continuous. Moreover, the subset F := Im(f) of [0, 1]I is
closed since F is the product

∏
n∈N

F̃n where for each n ∈ N, F̃n is the closed subset 1
n+1

.Fn

of [0, 1]In. Finally, it can be easily checked that F ⊆ c0(I). �

3.2. Uniform Eberlein closed subsets of [0, 1]I.

3.2.1. The ball Bp(I), for 1 ≤ p < +∞. For every real number p ≥ 1, define as usual the
normed space `p(I) := {(xi)i∈I :

∑
i |xi|

p < +∞} endowed with the norm Np : x = (xi)i∈I 7→
(
∑

i |xi|
p)1/p. We denote by Bp(I) the large unit ball {x ∈ R

I :
∑

i |xi|
p ≤ 1} of `p(I).

Notice that for p = 1 (resp. 1 < p < +∞) the topology induced by TI on Bp(I) is the
topology induced by the weak* topology σ(`1(I), `0(I)) (resp. the topology induced by the
weak topology σ(`p(I), `q(I)) where q = p

p−1
is the conjuguate of p). Also notice that for

1 ≤ p < +∞, Bp(I) is a closed subset of [0, 1]I .

Proposition 2. If 1 ≤ p < +∞, then Bp(I) is homeomorphic with B1(I).

Proof. Consider the mapping hp : B1(I) → Bp(I) associating to every x = (xi)i ∈ B1(I) the
family (sgn(xi)|xi|

1/p)i∈I . �
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It follows that for every p, q ∈ [1, +∞[, spaces Bp(I) and Bq(I) are homeomorphic via
hp,q := hq ◦ h−1

p : Bp(I) → Bq(I).

3.2.2. Uniform Eberlein spaces. Given a set I, and some real number p ∈ [1, +∞[, we denote
by B+

p (I) the positive ball of `p(I):

B+
p (I) := {x = (xi)i∈I ∈ [0, 1]I :

∑

i∈I

xp
i ≤ 1}

Definition 2. A topological space F is I-uniform Eberlein if there exists a real number
p ∈ [1, +∞[ such that F is a closed subset of B+

p (I). A topological space X is uniform
Eberlein if X is homeomorphic with some I-uniform Eberlein space.

Of course, every I-uniform Eberlein space is I-Eberlein. Moreover, using Proposition 2,
every I-uniform Eberlein space is homeomorphic with a closed subset of B+

1 (I).

Proposition 3. (i) For every set I, every closed subset of a I-uniform Eberlein space is
I-uniform Eberlein.

(ii) Let (In)n∈N be a sequence of pairwise disjoint sets, and denote by I the set tn∈NIn. Let
(Fn)n∈N be a sequence of topological spaces such that each Fn is a In-uniform Eberlein
space. Then the closed subset F :=

∏
n∈N

Fn of [0, 1]I is I-uniform Eberlein.

Proof. (i) is easy. The proof of (ii) is similar to the proof of Proposition 1-(ii). �

In particular, the compact space [0, 1]N (and thus every metrisable compact space) is

N-uniform Eberlein. For every set I, B+
1 (I)

N
is (I × N)-uniform Eberlein.

Remark 6. Let Z := ∩i∈I{(x, y) ∈ B+
1 (I) × B+

1 (I) : xi.yi = 0}: then Z is a closed subset
of B+

1 (I) × B+
1 (I), and the mapping − : Z → B1(I) is an homeomorphism; it follows that

B1(I) is homeomorphic with a (I × {0, 1})-uniform Eberlein space.

3.2.3. Weakly closed bounded subsets of a Hilbert space.

Remark 7. Given a Hilbert space H with a Hilbert basis (ei)i∈I , then its closed unit ball
(and thus every bounded weakly closed subset of H) is (linearly) homeomorphic with the
uniform Eberlein space B2(I).

Consider the following statements (the first two ones were introduced in [5] and [13] and
are consequences of the Alaoglu theorem):

• A1: The closed unit ball (and thus every bounded subset which is closed in the convex
topology) of a uniformly convex Banach space is compact in the convex topology.

• A2: (Hilbert) The closed unit ball (and thus every bounded weakly closed subset)
of a Hilbert space is weakly compact.

• A3: (Hilbert with hilbertian basis) For every set I, the closed unit ball of `2(I) is
weakly compact.

• A4: For every sequence (Fn)n∈N of finite sets, the closed unit ball of `2(∪n∈NFn) is
weakly compact.

Of course, A1 ⇒ A2 ⇒ A3 ⇒ A4.

Theorem ([8], [14]). (i) ACN ⇒ A1.
(ii) A1 6⇒ ACN.
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(iii) A4 ⇒ ACfin

N
.

In this paper, we will prove that the following statements are equivalent: A3, A4, ACfin
ω

(see Corollary 2).

Question 1. Does A2 imply A1? Does A3 imply A2?

Remark 8. If a Hilbert space H has a well orderable dense subset, then H has a well orderable
hilbertian basis, thus H is isometrically isomorphic with some `2(α) where α is an ordinal.
In this case, the closed unit ball of H endowed with the weak topology is homeomorphic
with a closed subset of [−1, 1]α, so this ball is weakly compact.

3.3. Strongly Eberlein closed subsets of [0, 1]I.

Definition 3. A topological space F is I-strong Eberlein if F is a closed subset of [0, 1]I

which is contained in {0, 1}(I). A topological space X is strong Eberlein if X is homeomorphic
with some I-strong Eberlein space.

Of course, every I-strong Eberlein set is I-Eberlein.

Remark 9. For every set I, every closed subset of a I-strong Eberlein space is I-strong
Eberlein.

4. Compactness (in ZF)

4.1. Lattices and filters. Given a lattice L of subsets of a set X, say that a non-empty
proper subset F of L is a filter if it satisfies the two following conditions:

(i) ∀A, B ∈ F , A ∩ B ∈ F
(ii) ∀A ∈ F , ∀B ∈ L, (A ⊆ B ⇒ B ∈ F)

Say that an element A ∈ L is F-stationar if for every F ∈ F , A ∩ F 6= ∅.

Remark 10. Let X be a topological space, let L be a lattice of closed subsets of X, and let
F be a filter of L. Let K ∈ L. If K is a compact subset of X and if K is F -stationar, then
∩F is non-empty.

Definition 4. Given a family (Xi)i∈I of topological spaces, and denoting by X the topolog-
ical product of this family, a closed subset F of X is elementary if F is a finite union of sets
of the form

∏
i6=i0

Xi × C where i0 ∈ I and C is a closed subset of Xi0 .

Given a family (Xi)i∈I of topological spaces with product X, the set of elementary closed
subsets of X is a lattice of subsets of X that we denote by LX . Notice that given a elementary
closed subset F of X, and some subset J of I, the projection pJ [F ] is a closed subset of∏

j∈J Xj .

4.2. Continuous image of a compact space. The following Proposition is easy:

Proposition 4. Let X, Y be topological spaces and let f : X � Y be a continuous onto
mapping. If X is compact (resp. closely-compact), then Y is also compact (resp. closely
compact). If Φ is a witness of closed-compactness on X, then Y is closely-compact, and has
a witness of closed-compactness which is definable from f and Φ.
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4.3. Sequential compactness. We denote by [N]ω the set of infinite subsets of N.

Definition 5. A topological space X is sequentially compact if every sequence (xn)n∈N of X
has an infinite subsequence which converges in X. A witness of sequential compactness on
X is a mapping Φ : XN → [ω]ω × X associating to each sequence (xn)n∈N of X an element
(A, l) ∈ [ω]ω × X such that (xn)n∈A converges to l.

Example 3. If (X,≤) is a complete linear order, then X is sequentially compact, with a
witness definable from (X,≤): given a sequence (xn)n∈N, build some infinite subset A of N

such that (xn)n∈A is monotone; then if (xn)n∈A is ascending (resp. descending), then (xn)n∈A

converges to supn∈A xn (resp. infn∈A xn).

Example 4. Given an infinite set X, and some set ∞ /∈ X, consider the topology on X̃ :=
X ∪ {∞} generated by cofinite subsets of X̃ and {∞}. This topology is compact and T1

but it is not T2. This topology is sequentially compact, and, given a point a ∈ X, there is a
witness of sequential compactness which is definable from X and a: given a sequence (xn)n∈N

of X̃, either the set of terms {xn : n ∈ N} is finite, and then one can define by induction an
infinite subset A of N such that {xn : n ∈ A} is constant; else one can define by induction
an infinite subset A of N such that {xn : n ∈ A} is one-to-one, thus it converges to a (and
also to every point in X).

Notice that the topology in Example 4 is the one used by Kelley (see [11]) to prove that
“Tychonov implies AC”. The following Lemma is easy:

Lemma 1. Let X, Y be two topological spaces and let f : X � Y be an onto continuous
mapping which has a section j (for example if f is one-to-one). If X is sequentially compact,
then Y is also sequentially compact. Moreover, if there is a witness Φ of sequential com-
pactness on X, there also exists a witness of sequential compactness on Y which is definable
from f ,Φ and j.

Lemma 2. Let (Xn, φn)n∈N be a sequence of witnessed sequentially compact spaces. The
space

∏
n∈N

Xn is sequentially compact, and has a witness definable from (Xn, φn)n∈N.

Proof. Usual diagonalization. �

Example 5. If D is a countable set, then the topological space [0, 1]D is sequentially compact,
a witness of sequential compactness beeing definable from every well order on D.

Say that a sequentially compact topological space X is witnessable if there exists a witness
of sequential compactness on X. It follows from Lemma 2, that with ACN, every sequence
(Kn)n∈N of witnessable sequentially compact spaces has a product which is sequentially
compact.

4.4. ACN and countable products of compact spaces. Denote by T comp
ω the following

statement: “Every sequence of compact spaces has a compact product.” Then Kelley’s ar-
gument shows that T comp

ω ⇒ ACN. However, it is an open question (see [4], [9]) to know
whether ACN implies T comp

ω .

Definition 6. A topological space X is ω-compact if every descending sequence (Fn)n∈N of
non-empty closed subsets of X has a non-empty intersection. Say that the space X is cluster-
compact if every sequence (xn)∈N of X has a cluster point i.e. the set ∩n∈N{xk : k ≥ n} is
non-empty.
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Remark 11. (i) Notice that sequentially compact ⇒ “cluster-compact”. Also notice that
“ω-compact” ⇒ “cluster-compact” and that the converse holds with ACN (see [9,
Lemma 1]).

(ii) Given a sequence (Kn)n∈N of compact spaces, then, denoting by K the product of this
family, K is compact iff K is ω-compact (see [9, Theorem 6]).

(iii) If the product K of a sequence (Kn)n∈N of compact spaces is sequentially compact,
then ACN implies that K is compact.

Proposition 5. ACN is equivalent to the following statement: “Every sequence (Kn)n∈N of
witnessable sequentially compact spaces which are also compact has a compact product.”

Proof. ⇒: Given a sequence (Kn)n∈N of witnessable sequentially compact spaces which are
also compact, then, using ACN, one can choose a witness of sequential compactness on every
space Kn. It follows by Lemma 2 that K is sequentially compact, whence K is compact by
Remark 11-(iii).
⇐: We use Kelley’s argument (see [11]). Let (An)n∈N be a sequence of non-empty sets.
Consider some element ∞ /∈ ∪n∈NAn, and for every n ∈ N, denote by Kn the set An ∪ {∞}
endowed with the topology generated by {∞} and cofinite subsets of Kn (see Example 4).
Then each Kn is compact and sequentially compact; moreover, given an element a ∈ An,
there is a witness of sequential compactness on Kn which is definable from An,∞ and a. So
each Kn is a witnessable sequentially compact space. It follows from the hypothesis that the
product K :=

∏
n∈N

Kn is compact. We end as in Kelley’s proof: for every n ∈ N, let Fn

be the closed set An ×
∏

i6=n Ki. By compactness of K, the set ∩n∈NFn is non-empty. This

yields an element of
∏

n∈N
An. �

5. One-point compactifications and related spaces

5.1. The one-point compactification of a set. Given a set X, we denote by X̂ the
Alexandrov compactification of the (Hausdorff locally compact) discrete space X: X̂ :=
X ∪ {∞} where ∞ is some set /∈ X (for example ∞ := {x ∈ X : x /∈ x}; if X is finite,

then X̂ is discrete else open subsets of the space X̂ are subsets of X or cofinite subsets of X̂
containing ∞. Notice that the space X̂ is compact and Hausdorff in ZF.

Example 6. Given a discrete topological space X, the one-point compactification X̂ of X is
X-uniform Eberlein: consider the Hilbert space `2(X); and denote by (ei)i∈X the canonical
basis of the vector space R

(X); then the subspace X = {ei : i ∈ X} of R
(X) is discrete and

the weakly closed and bounded subset X ∪ 0RX is the one-point compactification X̂ of X.

5.2. Various notions of compactness for X̂α, α ordinal.

5.2.1. X̂N is sequentially compact.

Proposition 6. Let X be an infinite set.

(i) The space X̂ is sequentially compact and has a witness of sequential compactness, de-
finable from X.

(ii) The space X̂N is sequentially compact with a witness definable from X.

Proof. (i) We define a witness Φ of sequential compactness on X as follows: given a sequence

x = (xn)n∈N of X̂, if the set T := {xk : k ∈ N} is infinite, we build (by induction) some
9



infinite subset A of N such that {xk : k ∈ A} is one-to-one, and we define Φ(x) := (A,∞);
else the set T is finite, so we build by induction some infinite subset A of N such that the
sequence {xk : k ∈ A} is a singleton {l}, and we define Φ(x) := (A, l).
(ii) We apply (i) and Lemma 2 in Section 4.3. �

5.2.2. ACfin and closed-compactness.

Proposition 7. Let X be a set.

(i) There is a mapping associating to every non-empty closed subset F of X̂, a finite non-

empty closed subset F̃ of F .
(ii) ACfin(X) ⇔ The space X̂ is closely compact.

Proof. We may assume that X is infinite.
(i) Given a non-empty closed subset F of X̂, define F̃ := {∞} if ∞ ∈ F and F̃ := F if F is
finite and ∞ /∈ F .
(ii) Use (i). �

5.3. Spaces X̂α, α ordinal.

Remark 12. For every set X, the space X̂ is X-uniform Eberlein, so, given an ordinal α, X̂α

is X × α-uniform Eberlein (see Proposition 3-(ii)).

Proposition 8. Let X be a set. Let α be an ordinal ≥ 1.

(i) T
fin(X)
α ⇔ “X̂α is compact”.

(ii) ACfin(X) ⇔ “X̂α is closely compact”.

Proof. (i) ⇒: Let P be the topological product space X̂α. Let F be a filter of the lattice LX

of elementary closed subsets of P . We are going to define by transfinite recursion a family
(Gn)n∈α of finite subsets of X̂ such that, denoting for every n ∈ α by Zn the elementary

closed subset Gn × X̂α\{n} of P , the set F ∪ {Zi : i < n} satisfies the finite intersection
property. Given some n ∈ α, we define Gn in function of (Gi)i<n as follows: denote by G the

filter generated by F ∪ {Zi : i < n}; since X̂ is compact, the closed subset Fn := ∩p{n}[G]

is non-empty, so let Gn := F̃n and let Zn := Gn × X̂α\{n}. Denote by F̃ the filter generated

by F ∪ {Zi : i < α}. Using T
fin(X)
α , the product space F :=

∏
n∈α Gn is compact, and

non-empty since T
fin(X)
α implies T

fin(X)
α (see Remark 3). Moreover, the closed subset F of

P is F̃-stationnar: it follows from Remark 10 of Section 4.1 that ∩F̃ is non-empty, whence
∩F 6= ∅. ⇐: Let (Fi)i<α be a family of finite subsets of X, endowed with the discrete
topology. Then

∏
i<α Fi is compact because it is a closed subset of the compact Hausdorff

space X̂α.
(ii) ⇒: Use Proposition 7-(ii) and the Theorem of Section 4.2. ⇐: If X̂α is closely compact,

then so is its continuous image X̂, whence ACfin(X) holds (using Proposition 7-(ii)). �

5.4. Spaces σn(X), n integer ≥ 1.

Notation 4. Given a set X, for every integer n ≥ 1, let

σn(X) := {x ∈ {0, 1}(X) : |supp(x)| ≤ n}

10



Thus σn(X) is the set of elements of R
(X) with support having at most n elements. Notice

that the space σn(X) is strong Eberlein.

Remark 13. (i) The space σ1(X) is the one-point compactification of the discrete space X
(thus σ1(X) is uniform Eberlein).

(ii) The mapping Un : (σ1(X))n → σn(X) associating to each (x1, . . . , xn) the set ∪1≤i≤nxi

is continuous.

Proof. (i) Use Example 6. (ii): easy. �

5.4.1. Compactness and closed compactness of σn(X).

Proposition 9. Let X be a set, and let n be some integer ≥ 1.

(i) Both spaces (σ1(X))n and σn(X) are compact.

(ii) With ACfin(X), both spaces (σ1(X))n and σn(X) are closely compact (with witnesses of
closed compactness definable from X, n and some choice function on non-empty finite
subsets of X).

Proof. The results (i) and (ii) for σn(X) follow from the result on (σ1(X))n thanks to Propo-
sition 4 and the continuous onto mapping Un : (σ1(X))n → σn(X) defined in Remark 13.

The result (i) for (σ1(X))n comes from Remark 1. We prove (ii) for (σ1(X))n: with ACfin(X),
σ1(X) is closely compact, so the space (σ1(X))n is also closely compact because it is a finite
power of a closely compact space (use the Theorem of Section 1). �

5.4.2. Sequential compactness of
∏

n∈N
σn(X).

Proposition 10. Let X be a set, and let n be some integer ≥ 1.

(i) The space σn(X) is sequentially compact, with a witness definable from X and n.
(ii) The space

∏
k∈N

σk(X) is sequentially compact, with a witness definable from X.

Proof. (i) The proof is by induction on n. For n = 1, we already know that σ1(X) = X̂
is sequentially compact with a witness definable from X (use Proposition 6-(i)). We now
assume that for some integer n ≥ 1, each space σk(X) (1 ≤ k ≤ n) is sequentially compact
with a witness Φk definable from X and k. Let (Fk)k∈N be a sequence of σn+1(X). For every
ν ∈ N, let Aν := {A ∈ [N]ω : ∀i 6= j ∈ A |Fi ∩ Fj| = ν}. Let ν0 be the first element of
N such that the set Aν0

is non-empty. One can build by induction some element A ∈ Aν0
,

which is definable from X and (Fn)n∈N. If ν = 0, then the subsequence (Fn)n∈A converges
to ∞. Else, there exists a ∈ X such that the set Da := {n ∈ A : a ∈ Fn} is infinite.
Build by induction some infinite subset B of A such that there exists some element a ∈ X
satisfying ∀n ∈ B a ∈ Fn. Let R be the non-empty finite set ∩n∈BFn; let p be the cardinal
of R. The sequence (Fn\R)n∈B lives in σn+1−p(X) thus, using the witness Φn+1−p, it has
an infinite subsequence (Fn\R)n∈C which converges to some L ∈ σn+1−p(X). It follows that
(Fn ∪ R)n∈C converges to L ∪ R in σn+1(X).
(ii) Use Proposition 6-(ii) or Lemma 2. �

5.4.3. ACfin(X) and closed-compactness of the space
∏

n∈N
σn(X).

Theorem 1. Let X be a set.

(i) ACfin(X) ⇔ “
∏

n∈N
σn(X) is closely compact”.

(ii) T
fin(X)
N

⇔ “
∏

n∈N
σn(X) is compact”.
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Proof. We may assume that X is infinite. In both cases, we use Proposition 4 and the fact
that the space

∏
n∈N

σn(X) is a continuous image of
∏

n∈N
σ1(X)n, which is homeomorphic

with X̂N.
(i) ⇒: with ACfin(X), X̂N is closely compact (see Proposition 8), and so is its continuous
image

∏
n∈N

σn(X) . ⇐: if
∏

n∈N
σn(X) is closely compact, then so is its continuous image

σ1(X) = X̂, thus ACfin(X) holds.

(ii) ⇒: Using Proposition 8-(i), T
fin(X)
N

implies that “X̂N is compact”. Using Remark 13, it
follows that “

∏
n∈N

σn(X) is compact”. ⇐: if
∏

n∈N
σn(X) is compact, then its closed subset

σ1(X)N is also compact, thus T
fin(X)
N

holds by Proposition 8-(i). �

6. ACfin(I) and closed compactness of B1(I)

6.1. Dyadic representations.

Notation 5 (binary expansion of a real number). For every n ∈ N, let εn := 1
2n+1 .

Then the mapping φ : {0, 1}N → [0, 1] associating to every (xn)n∈N the real number
∑

n εnxn

is continuous (a uniformly convergent series of continuous functions), onto, and φ has a
(definable) section.

Theorem. [3, Lemma 1.1] Let I be a set, and for every n ∈ N, let In := {n}× I. Let F be a
closed subset of [0, 1]I. Consider the power mapping g := φI : {0, 1}N×I → [0, 1]I. For every
n ∈ N, let jn : {0, 1}In → {0, 1}N×I be the canonical inclusion mapping. Let Z := g−1[F ]
and, for every n ∈ N, let Zn := j−1

n [Z]: thus Z is a closed subset of
∏

n∈N
Zn and g : Z → F

is continuous, onto, with a definable section

(i) If F ⊆ B+
1 (I), then for every n0 ∈ N, Zn0

⊆ σMn0
(In0

) where Mn0
:= b 1

εn
c (the integral

part of 1
εn0

), thus F is the continuous image of some closed subset of ÎN.

(ii) If F ⊆ `0(I), then for every n0 ∈ N, Zn0
⊆ {0, 1}(In0

)

Proof. Let n0 ∈ N and let (xn0

i )i∈I ∈ Zn0
; let x = (xn

i )n∈N,i∈I ∈ Z such that jn0
((xn0

i )i∈I) = x.
(i) Since F ⊆ B+

1 (I),
∑

i,n εnx
n
i ≤ 1, thus

∑
i∈I εn0

xn0

i ≤ 1; it follows that the set {i ∈ I :

xn0

i = 1} has a cardinal ≤ 1
εn0

.

(ii) Since F ⊆ `0(I), (xn0

i )i∈I ∈ `0(I) ∩ {0, 1}I thus Zn0
⊆ {0, 1}(In0

). �

Remark 14. The mapping − : B+
1 (I)×B+

1 (I) → B1(I) is continuous and onto thus B1(I) is

also the continuous image of a closed subset of ÎN.

Remark 15. Aviles ([2]) proved that B+
1 (I) -and thus B1(I)- is a continuous image of ÎN

(and not only of a closed subset of ÎN).

6.2. Another equivalent of ACfin(I).

Theorem 2. Let I be a set.

(i) ACfin(I) ⇔ “B1(I) is closely compact.” Moreover, a witness of closed compactness on
B1(I) is definable from I and a choice function for non-empty finite subsets of I and
conversely.

(ii) T
fin(I)
N

implies that B1(I) is compact.
(iii) The space B1(I) is sequentially compact, with a witness definable from I.
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Proof. Using the previous Theorem and Remark 14, consider some sequence (Mn)n∈N, some
closed subset Z of

∏
n∈N

σMn
(I) and some continuous onto mapping g : Z → B1(I), with a

(definable) section.

(i) ⇒: Using ACfin(I) and Theorem 1-(i), Z is closely compact thus B1(I) = g[F ] is closely

compact. ⇐: If B1(I) is closely compact, then Î (which is a closed subset of B1(I) -see
Example 6 in Section 5.1-) is also closely compact.

(ii) Using T
fin(I)
N

and Theorem 1-(ii), Z is compact thus B1(I) = g[F ] is also compact.
(iii) By Proposition 10-(ii), Z is sequentially compact and g is continuous with a section,
thus Lemma 1 implies that B1(I) is also sequentially compact with a witness definable from
I. �

Corollary 1. Given a set I, the following statements are equivalent:

(i) Uwo
fin(I)
N

(ii) T
fin(I)
N

(iii) The space B1(I) is compact.
(iv) For every sequence (Fn)n∈N of finite subsets of I, the space B1(∪n∈NFn) is compact.

Proof. (i) ⇒ (ii) is easy and (ii) ⇒ (iii) follows from Theorem 2. (iii) ⇒ (iv) is easy. We
show that (iv) ⇒ (i). The idea of the implication is in [8, th. 9 p. 16]: we sketch it for sake
of completeness. Let (Fn)n∈N be a disjoint sequence of non-empty finite sets of I. Let us
show that D := ∪n∈NFn is countable. The Hilbert spaces H := `2(D) and ⊕`2(N)`

2(Fn) are
isometrically isomorph. For every n ∈ N, let εn : |Fn| →]0, 1[ be a strictly increasing mapping
such that

∑
n∈N

∑
0≤i<|Fn|

εn(i)2 = 1. For every n ∈ N, let F̃n := {x ∈ BH : ∀m 6= n, x�Fm
=

0 and x�Fn
is one-to-one from Fn onto rg(εn)}. Then each F̃n is a weakly closed subset of

B`2(D) and the sequence (F̃n)n∈N satisfies the finite intersection property. The compactness

of B2(D) implies that Z := ∩n∈NF̃n is non-empty. Given an element f = (fn)n∈N of Z, each
fn defines a well-order on the finite set Fn, thus ∪n∈NFn is countable. �

Remark 16. For I = P(R), none of the equivalent statements in Corollary 1 is provable in
ZF. Indeed, there is a model of ZF where there exists a sequence (Pn)n∈N of pairs of subsets
of R such that

∏
n∈N

Pn is empty.

Thus, the statement “The closed unit ball of `2(P(R)) is weakly compact.” is not provable
in ZF.

Corollary 2. The following statements are equivalent: A3, A4, ACfin

N
.

6.3. Consequences.

Corollary 3. If a set I is linearly orderable, then B1(I) is compact.

Proof. If I is linearly orderable, then ACfin(I) holds. �

For every ordinal α, the set P(α) is linearly orderable, thus ACfin(P(α)) holds. In partic-
ular, R is equipotent with P(N) so the closed unit ball of `2(R) is closely compact. This
solves Question 3 of [14].

Question 2. Does ACfin imply A2? What is the power of the statement “Every Hilbert
space has a hilbertian basis”? Is this statement provable in ZF? Does it imply AC?
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7. ACN and Eberlein spaces

Given a set I, a closed subset F of [0, 1]I is I-Corson if every element x ∈ F has a
countable support.

7.1. Sequential compactness of I-Eberlein spaces. Given a set I, denote by count(I)
the set of finite or countable subsets of I. Consider the following consequence of ACN:

Uwo
count(I)
N

: “Every countable union of countable subsets of I is countable.”

Proposition 11. Let I be a set and let F be a closed subset of [0, 1]I.

(i) Uwo
fin(I)
N

implies that:
-if F ⊆ [0, 1](I), then F is sequentially compact.
-if F ⊆ c0(I), then F is I-Corson.

(ii) Uwo
count(I)
N

implies that if F is I-Corson, then F is sequentially compact. Thus ACN

implies that every Eberlein space is sequentially compact.
(iii) ACfin(I) implies that if F ⊆ [0, 1](I), then F is sequentially compact and has a witness

of sequential compactness.

Proof. (i) If F ⊆ [0, 1](I), then F is sequentially compact using the fact that [0, 1]N is sequen-
tially compact (see Example 5). �

7.2. Countable product of finitely restricted spaces.

Theorem 3. Let F be a closed subset of [0, 1]I which is contained in [0, 1](I). Then ACN

implies that F is compact. In particular, ACN implies that every strong Eberlein space is
compact.

Proof. For every n ∈ N, recall that the subset σn(I) := {x ∈ [0, 1](I) : |supp(x)| ≤ n} is
compact (see Proposition 9). Let F be a filter of the lattice of closed subsets of F . If there
exists an integer n such that σn(I) is F -stationar, then ∩F is non-empty by compactness of
σn(I) and using Remark 10. Else, using ACN, consider a sequence (Fn)n∈N of closed subsets
of F belonging to F such that for every n ∈ N, Fn ∩ σn(I) = ∅. Re-using ACN, choose
for every n ∈ N an element xn ∈ Fn. A new use of ACN and Proposition 11-(i) implies the
existence of some infinite subset A of N such that (xn)n∈A converges to some element x ∈ F .
Then, for every n ∈ N, x ∈ Fn (which is disjoint with σn(I)) so the element x of F has an
infinite support: this is contradictory! �

Remark 17. It does not seem provable in ZF that every closed subset of [0, 1]I contained in
[0, 1](I) is compact, or has a witness of sequential compactness.

7.3. Countable products of strong Eberlein spaces.

Theorem 4. Let (In)n∈N be a sequence of pairwise disjoint sets and let I := ∪n∈NIn. For
every n ∈ N, let Fn be a closed subset of {0, 1}(In). Let F be the closed subset

∏
n∈N

Fn of
{0, 1}I. Then ACN implies that F is sequentially compact and compact.

Proof. Using ACN, F is sequentially compact: given a sequence (xn)n∈N of F , ACN implies
that for every n ∈ N, the support Dn of xn is countable, thus re-using ACN, the set D :=
∪n∈NDn is also countable; since each xn belongs to [0, 1]D × {0}I\D, and since [0, 1]D is
sequentially compact (see Example 5), it follows that (xn)n∈N has an infinite subsequence
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which converges in F . Using ACN and Theorem 3, each Fn is compact. Using ACN and
Remark 11-(iii), it follows that F is compact. �

7.4. ACN and Eberlein closed subsets of [0, 1]I.

Corollary 4. ACN implies that every Eberlein space is both sequentially compact and com-
pact.

Proof. Let X be an Eberlein space. Then X is sequentially compact by Proposition 11-
(i). Let I be a set such that X is homeomorphic with a closed subset F of [0, 1]I , with
F ⊆ [0, 1](I). Using the Theorem of Section 6.1, there exists a family (Zk)k∈N such that for
each k ∈ N, Zk is I-strong Eberlein, and such that F is the continuous image of a closed
subset Z of

∏
k∈N

Zk. Using ACN and Theorem 4, the space
∏

k∈N
Zk is sequentially compact.

With ACN, each Zk is compact; with Remark 11-(iii) and ACN, it follows that prodk∈NZk

(and thus its continuous image F ) is also compact. �

Recall that (see Theorem 2-(iii)) every I-uniform Eberlein space is sequentially compact,
with a witness definable from I.

Question 3. Does ACN implies that every Eberlein space is sequentially compact with a
witness?

7.5. Convex-compactness and the Hahn-Banach property. Given a set I, say that a
subset F of R

I is convex-compact if for every set C of closed convex subsets of R
I such that

{F ∩ C : C ∈ C} satisfies the FIP, C ∩
⋂

C is non-empty; moreover, if there is a mapping
associating to each such C an element of C ∩

⋂
C, then say that F is closely convex-compact.

Given a topological vector space E, say that E satisfies the continuous Hahn-Banach property
if, for every continuous sublinear functional p : E → R, for every vector subspace F of E,
and every linear functional f : F → R such that f ≤ p|F , there exists a linear functional
g : E → R that extends f and such that g ≤ p. Moreover, if there is a mapping associating to
each such f some g satisfying the previous conditions, then say that E satisfies the effective
continuous Hahn-Banach property.

Theorem ([8], [6]). Given a set I, the normed space `0(I) satisfies the effective continuous
Hahn-Banach property. For every real number p ∈ [1, +∞[, `p(I) satisfies the effective
continuous Hahn-Banach property.

Corollary. For every set I, and every real number p ∈ [1, +∞[, Bp(I) is closely convex-
compact.

Proof. The continuous dual of `0(I) is (isometrically isomorphic with) `1(I) and, for every
p ∈]1, +∞[, the continuous dual of `p(I) is `q(I) where 1

p
+ 1

q
= 1 thus 1 < q < +∞. We end

the proof using the fact (see [8]) that if a normed space E satisfies the (effective) continuous
Hahn-Banach property, then the closed unit ball of the continuous dual E ′ is (closely) weak*
compact. �

Question 4. Given a set I, and a closed convex subset C of [0, 1]I which is I-Eberlein, is C
convex-compact (in ZF)?

Question 5. Same question if the closed convex subset C of [0, 1]I is I-Corson.
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avenue René Cassin - BP 7151 - 97715 Saint-Denis Messag. Cedex 9 FRANCE

E-mail address, Marianne Morillon: mar@univ-reunion.fr
URL: http://personnel.univ-reunion.fr/mar

16


