Uniform Eberlein Compactness and the Axiom of Choice

Marianne Morillon University of La Réunion (France)

Kielce, 7-11 july 2008

The Axiom of Choice

AC (Axiom of Choice)

Given a family $(A_i)_{i \in I}$ of non-empty sets, there exists a function $f: I \to \bigcup_{i \in I} A_i$ such that $\forall i \in I$ $f(i) \in A_i$.

The function f is called a *choice function* for the family $(A_i)_{i \in I}$.

The Axiom of Choice

AC (Axiom of Choice)

Given a family $(A_i)_{i \in I}$ of non-empty sets, there exists a function $f: I \to \bigcup_{i \in I} A_i$ such that $\forall i \in I$ $f(i) \in A_i$.

The function f is called a *choice function* for the family $(A_i)_{i \in I}$.

We work in set-theory without the Axiom of Choice **ZF**:

Ø, extension, pair, union, power-set, infinity, regularity, replacement (and separation).

Let $(A_i)_{i \in I}$ be a family of non-empty sets.

In the following cases, this family has a choice function (in ${\bf ZF}$):

Let $(A_i)_{i \in I}$ be a family of non-empty sets.

In the following cases, this family has a choice function (in **ZF**):

1. $(A_i, *_i)_{i \in I}$ is a family of groups;

Let $(A_i)_{i \in I}$ be a family of non-empty sets.

In the following cases, this family has a choice function (in **ZF**):

- 1. $(A_i, *_i)_{i \in I}$ is a family of groups;
- 2. $(A_i)_{i \in I}$ is a family of subsets of \mathbb{Q} (or of any well-orderable set);

Let $(A_i)_{i \in I}$ be a family of non-empty sets.

In the following cases, this family has a choice function (in **ZF**):

- 1. $(A_i, *_i)_{i \in I}$ is a family of groups;
- 2. $(A_i)_{i \in I}$ is a family of subsets of \mathbb{Q} (or of any well-orderable set);
- 3. $(A_i)_{i \in I}$ is a family of closed subsets of \mathbb{R} (or of any conditionnaly complete linear order)

Let $(A_i)_{i \in I}$ be a family of non-empty sets.

In the following cases, this family has a choice function (in **ZF**):

- 1. $(A_i, *_i)_{i \in I}$ is a family of groups;
- 2. $(A_i)_{i \in I}$ is a family of subsets of \mathbb{Q} (or of any well-orderable set);
- 3. $(A_i)_{i \in I}$ is a family of closed subsets of \mathbb{R} (or of any conditionnaly complete linear order)
- 4. $(A_i)_{i \in I}$ is a family of closed subsets of \mathbb{R}^n

Let $(A_i)_{i \in I}$ be a family of non-empty sets.

In the following cases, this family has a choice function (in **ZF**):

- 1. $(A_i, *_i)_{i \in I}$ is a family of groups;
- 2. $(A_i)_{i \in I}$ is a family of subsets of \mathbb{Q} (or of any well-orderable set);
- 3. $(A_i)_{i \in I}$ is a family of closed subsets of \mathbb{R} (or of any conditionnaly complete linear order)
- 4. $(A_i)_{i \in I}$ is a family of closed subsets of \mathbb{R}^n
- 5. . . .

Say that a topological space X is *compact* if every family of closed subsets of X satisfying the FIP (Finite Intersection Property) has a non-empty intersection.

Say that a topological space X is *compact* if every family of closed subsets of X satisfying the FIP (Finite Intersection Property) has a non-empty intersection.

T (Tychonov axiom)

If $(X_i)_{i \in I}$ is a family of compact spaces, then the product space $\prod_{i \in I} X_i$ is also compact.

Say that a topological space X is *compact* if every family of closed subsets of X satisfying the FIP (Finite Intersection Property) has a non-empty intersection.

T (Tychonov axiom)

If $(X_i)_{i \in I}$ is a family of compact spaces, then the product space $\prod_{i \in I} X_i$ is also compact.

Theorem (Kelley 1950 [7])

 $AC \Leftrightarrow T$.

Say that a topological space X is *compact* if every family of closed subsets of X satisfying the FIP (Finite Intersection Property) has a non-empty intersection.

T (Tychonov axiom)

If $(X_i)_{i \in I}$ is a family of compact spaces, then the product space $\prod_{i \in I} X_i$ is also compact.

Theorem (Kelley 1950 [7])

 $AC \Leftrightarrow T$.

Proof.

Let ∞ be some set $\notin \cup_i X_i$. For each $i \in I$, let $\hat{X}_i := X_i \cup \{\infty\}$. Endow each \hat{X}_i with the topology generated by $\{\infty\}$ and cofinite subsets of \hat{X}_i . Each space \hat{X}_i is compact (and T_1). Using the axiom \mathbf{T} , the space $\prod_i X_i$ is compact. For each $i \in I$, let $F_i := X_i \times \prod_{t \neq i} \hat{X}_t$. The family of closed sets $(F_i)_i$ satisfies the FIP so $\cap_i F_i \neq \emptyset$.

T₂ "Tychonov for Hausdorff spaces"

If $(X_i)_{i \in I}$ is a family of Hausdorff compact spaces, then the product space $\prod_{i \in I} X_i$ is compact.

T₂ "Tychonov for Hausdorff spaces"

If $(X_i)_{i \in I}$ is a family of Hausdorff compact spaces, then the product space $\prod_{i \in I} X_i$ is compact.

ACfin "Finite Axiom of Choice"

Every family of finite non-empty sets has a choice function.

T₂ "Tychonov for Hausdorff spaces"

If $(X_i)_{i \in I}$ is a family of Hausdorff compact spaces, then the product space $\prod_{i \in I} X_i$ is compact.

ACfin "Finite Axiom of Choice"

Every family of finite non-empty sets has a choice function.

AC^{fin} "countable **AC**^{fin}"

Every sequence $(A_n)_{n\in\mathbb{N}}$ of finite non-empty sets has a choice function.

T₂ "Tychonov for Hausdorff spaces"

If $(X_i)_{i \in I}$ is a family of Hausdorff compact spaces, then the product space $\prod_{i \in I} X_i$ is compact.

ACfin "Finite Axiom of Choice"

Every family of finite non-empty sets has a choice function.

AC^{fin} "countable **AC**^{fin}"

Every sequence $(A_n)_{n\in\mathbb{N}}$ of finite non-empty sets has a choice function.

T₂ "Tychonov for Hausdorff spaces"

If $(X_i)_{i \in I}$ is a family of Hausdorff compact spaces, then the product space $\prod_{i \in I} X_i$ is compact.

ACfin "Finite Axiom of Choice"

Every family of finite non-empty sets has a choice function.

AC^{fin} "countable **AC**^{fin}"

Every sequence $(A_n)_{n\in\mathbb{N}}$ of finite non-empty sets has a choice function.

Given a set I, we also consider the following statement:

$AC^{fin(I)}$ "Choice in finite subsets of I"

The set of finite non-empty subsets of I has a choice function.

Known facts

 $lackbox{ AC} \Rightarrow lackbox{T}_2 \Rightarrow lackbox{AC}^{ extstyle fin} \Rightarrow lackbox{AC}^{ extstyle fin}_{\mathbb{N}}$

- $lackbox{ AC} \Rightarrow lackbox{\mathsf{T}}_2 \Rightarrow lackbox{\mathsf{AC}}^\mathsf{fin} \Rightarrow lackbox{\mathsf{AC}}^\mathsf{fin}_\mathbb{N}$
- ▶ The converse implications are false:

- ightharpoonup AC \Rightarrow T₂ \Rightarrow AC^{fin} \Rightarrow AC^{fin} $_{\mathbb{N}}$
- ▶ The converse implications are false:
 - ▶ $T_2 \not\Rightarrow AC$ (Halpern-Levy 67, [3])

- ightharpoonup AC \Rightarrow T₂ \Rightarrow AC^{fin} \Rightarrow AC^{fin} $_{\mathbb{N}}$
- ▶ The converse implications are false:
 - ▶ $\mathbf{T}_2 \not\Rightarrow \mathbf{AC}$ (Halpern-Levy 67, [3])
 - $\blacktriangle \mathbf{AC^{fin}} \not\Rightarrow \mathbf{T}_2$

- ightharpoonup AC \Rightarrow T₂ \Rightarrow AC^{fin} \Rightarrow AC^{fin} $_{\mathbb{N}}$
- ▶ The converse implications are false:
 - ▶ $\mathbf{T}_2 \not\Rightarrow \mathbf{AC}$ (Halpern-Levy 67, [3])
 - ightharpoonup AC^{fin} ightharpoonup T₂
 - ${}^{\blacktriangleright} \ \mathsf{AC}^{\mathsf{fin}}_{\mathbb{N}} \not\Rightarrow \mathsf{AC}^{\mathsf{fin}}$

- $lackbox{ AC} \Rightarrow lackbox{\mathsf{T}}_2 \Rightarrow lackbox{\mathsf{AC}}^\mathsf{fin} \Rightarrow lackbox{\mathsf{AC}}^\mathsf{fin}_\mathbb{N}$
- ▶ The converse implications are false:
 - ▶ $T_2 \not\Rightarrow AC$ (Halpern-Levy 67, [3])
 - ightharpoonup AC^{fin} ightharpoonup T₂

 - ▶ $AC_{\mathbb{N}}^{fin}$ is not provable in ZF.

Known facts

- $lackbox{ AC} \Rightarrow lackbox{\mathsf{T}}_2 \Rightarrow lackbox{\mathsf{AC}}^\mathsf{fin} \Rightarrow lackbox{\mathsf{AC}}^\mathsf{fin}_\mathbb{N}$
- ▶ The converse implications are false:
 - ▶ $T_2 \not\Rightarrow AC$ (Halpern-Levy 67, [3])
 - ightharpoonup AC^{fin} ightharpoonup T₂

 - ► AC^{fin} is not provable in **ZF**.

Proof.

For $T_2 \Rightarrow AC^{fin}$, use Kelley's argument.

For the "non implications", see References in Jech [5] or Howard and Rubin [4].

Known facts

- $lackbox{ AC} \Rightarrow lackbox{\mathsf{T}}_2 \Rightarrow lackbox{\mathsf{AC}}^\mathsf{fin} \Rightarrow lackbox{\mathsf{AC}}^\mathsf{fin}_\mathbb{N}$
- ▶ The converse implications are false:
 - ▶ $T_2 \not\Rightarrow AC$ (Halpern-Levy 67, [3])
 - ightharpoonup AC^{fin} ightharpoonup T₂

 - ► AC^{fin} is not provable in **ZF**.

Proof.

For $T_2 \Rightarrow AC^{fin}$, use Kelley's argument.

For the "non implications", see References in Jech [5] or Howard and Rubin [4].

Known facts

- ightharpoonup AC \Rightarrow T₂ \Rightarrow AC^{fin} \Rightarrow AC^{fin} $_{\mathbb{N}}$
- ▶ The converse implications are false:
 - ▶ $T_2 \not\Rightarrow AC$ (Halpern-Levy 67, [3])
 - ightharpoonup AC^{fin} ightharpoonup T₂

 - ► AC^{fin} is not provable in ZF.

Proof.

For $T_2 \Rightarrow AC^{fin}$, use Kelley's argument.

For the "non implications", see References in Jech [5] or Howard and Rubin [4].

Our aim is to prove that $\mathbf{AC_{\mathbb{N}}^{fin}}$ (resp. $\mathbf{AC_{\mathbb{N}}^{fin}}$) is equivalent to the following statement: "The closed unit ball of a Hilbert space with a hilbertian basis is compact (resp. closely compact) in the weak topology."

Say that a compact topological space X is closely compact if there exists a function Φ which associates to every non-empty closed subset F of X an element $\Phi(F) \in F$.

Say that a compact topological space X is closely compact if there exists a function Φ which associates to every non-empty closed subset F of X an element $\Phi(F) \in F$.

Examples

Say that a compact topological space X is closely compact if there exists a function Φ which associates to every non-empty closed subset F of X an element $\Phi(F) \in F$.

Examples

1. A complete linearly ordered set endowed with the order topology is closely compact (and Hausdorff).

Say that a compact topological space X is closely compact if there exists a function Φ which associates to every non-empty closed subset F of X an element $\Phi(F) \in F$.

Examples

- A complete linearly ordered set endowed with the order topology is closely compact (and Hausdorff).
- 2. Given a set X, the "one-point compactification" $\hat{X} := X \cup \{\infty\}$ of the discrete space X is compact (and Hausdorff). (The open subsets of \hat{X} are subsets of X and cofinite subsets of \hat{X} containing ∞ .)

Say that a compact topological space X is closely compact if there exists a function Φ which associates to every non-empty closed subset F of X an element $\Phi(F) \in F$.

Examples

- 1. A complete linearly ordered set endowed with the order topology is closely compact (and Hausdorff).
- 2. Given a set X, the "one-point compactification" $\hat{X} := X \cup \{\infty\}$ of the discrete space X is compact (and Hausdorff). (The open subsets of \hat{X} are subsets of X and cofinite subsets of \hat{X} containing ∞ .)

Say that a compact topological space X is *closely compact* if there exists a function Φ which associates to every non-empty closed subset F of X an element $\Phi(F) \in F$.

Examples

- 1. A complete linearly ordered set endowed with the order topology is closely compact (and Hausdorff).
- 2. Given a set X, the "one-point compactification" $\hat{X} := X \cup \{\infty\}$ of the discrete space X is compact (and Hausdorff). (The open subsets of \hat{X} are subsets of X and cofinite subsets of \hat{X} containing X.) Moreover, $\mathbf{AC}^{fin(X)} \Leftrightarrow \hat{X}$ is closely compact.

Theorem (F-M 1998, [2])

For every ordinal α , and every family $(X_i, \Phi_i)_{i \in \alpha}$ of T_1 closely compact spaces, the space $\prod_{i \in \alpha} X_i$ is closely compact.

Theorem (F-M 1998, [2])

For every ordinal α , and every family $(X_i, \Phi_i)_{i \in \alpha}$ of T_1 closely compact spaces, the space $\prod_{i \in \alpha} X_i$ is closely compact.

Proof.

Proof by transfinite recursion on α .

Theorem (F-M 1998, [2])

For every ordinal α , and every family $(X_i, \Phi_i)_{i \in \alpha}$ of T_1 closely compact spaces, the space $\prod_{i \in \alpha} X_i$ is closely compact.

Proof.

Proof by transfinite recursion on α .

Theorem (F-M 1998, [2])

For every ordinal α , and every family $(X_i, \Phi_i)_{i \in \alpha}$ of T_1 closely compact spaces, the space $\prod_{i \in \alpha} X_i$ is closely compact.

Proof.

Proof by transfinite recursion on α .

In particular, $[0,1]^{\alpha}$ (and so $[0,1]^{\mathbb{N}}$) is closely compact.

Theorem (F-M 1998, [2])

For every ordinal α , and every family $(X_i, \Phi_i)_{i \in \alpha}$ of T_1 closely compact spaces, the space $\prod_{i \in \alpha} X_i$ is closely compact.

Proof.

Proof by transfinite recursion on α .

In particular, $[0,1]^{\alpha}$ (and so $[0,1]^{\mathbb{N}}$) is closely compact.

Corollary

 $\mathsf{AC}^{\mathit{fin}(I)} \Leftrightarrow \text{``The space } \prod_{n \in \mathbb{N}} \sigma_n(I) \text{ is closely compact.''}.$

Theorem (F-M 1998, [2])

For every ordinal α , and every family $(X_i, \Phi_i)_{i \in \alpha}$ of T_1 closely compact spaces, the space $\prod_{i \in \alpha} X_i$ is closely compact.

Proof.

Proof by transfinite recursion on α .

In particular, $[0,1]^{\alpha}$ (and so $[0,1]^{\mathbb{N}}$) is closely compact.

Corollary

 $\mathsf{AC}^{\mathit{fin}(I)} \Leftrightarrow \text{``The space } \prod_{n \in \mathbb{N}} \sigma_n(I) \text{ is closely compact.''}.$

Proof.

With $\mathbf{AC}^{\mathit{fin}(I)}$, $\sigma_1(I)$ is closely compact: let Φ be a witness of this close compactness. Thus, each space $(\sigma_1(I))^n$ is closely compact with a witness definable frome Φ . So each space $\sigma_n(I)$ (continuous image of $(\sigma_1(I))^n$ by \cup_n) is closely compact with a witness definable frome Φ .

Given $n \in \mathbb{N}$, consider the following closed subsets of $[-1,1]^I$:

```
Given n \in \mathbb{N}, consider the following closed subsets of [-1,1]^I: \mathcal{B}_p(I) := \{x = (x_i)_{i \in I} \in [-1,1]^I : \sum_i |x_i|^p \le 1\} for 1 \le p < +\infty; \mathcal{B}^+(I) := \{x = (x_i)_{i \in I} \in [0,1]^I : \sum_i x_i \le 1\}; \sigma_n(I) := \{F \subseteq I : F \text{ has at most } n \text{ elements}\}.
```

```
Given n \in \mathbb{N}, consider the following closed subsets of [-1,1]^I:

B_p(I) := \{x = (x_i)_{i \in I} \in [-1,1]^I : \sum_i |x_i|^p \le 1\} for 1 \le p < +\infty;

B^+(I) := \{x = (x_i)_{i \in I} \in [0,1]^I : \sum_i x_i \le 1\};

\sigma_n(I) := \{F \subseteq I : F \text{ has at most } n \text{ elements}\}.
```

Remarks

Given $n \in \mathbb{N}$, consider the following closed subsets of $[-1,1]^I$: $\mathcal{B}_p(I) := \{x = (x_i)_{i \in I} \in [-1,1]^I : \sum_i |x_i|^p \le 1\}$ for $1 \le p < +\infty$; $\mathcal{B}^+(I) := \{x = (x_i)_{i \in I} \in [0,1]^I : \sum_i x_i \le 1\}$; $\sigma_n(I) := \{F \subseteq I : F \text{ has at most } n \text{ elements}\}.$

Remarks

1. $B_+(I)$ is compact (resp. closely compact) iff $B_1(I)$ is compact (resp. closely compact) iff $B_2(I)$ is compact (resp. closely compact).

Given $n \in \mathbb{N}$, consider the following closed subsets of $[-1,1]^I$: $\mathcal{B}_p(I) := \{x = (x_i)_{i \in I} \in [-1,1]^I : \sum_i |x_i|^p \le 1\}$ for $1 \le p < +\infty$; $\mathcal{B}^+(I) := \{x = (x_i)_{i \in I} \in [0,1]^I : \sum_i x_i \le 1\}$; $\sigma_n(I) := \{F \subseteq I : F \text{ has at most } n \text{ elements}\}.$

Remarks

- 1. $B_+(I)$ is compact (resp. closely compact) iff $B_1(I)$ is compact (resp. closely compact) iff $B_2(I)$ is compact (resp. closely compact).
- 2. With T_2 , the space $B^+(I)$ is compact.

Given $n \in \mathbb{N}$, consider the following closed subsets of $[-1,1]^I$: $B_p(I) := \{x = (x_i)_{i \in I} \in [-1,1]^I : \sum_i |x_i|^p \le 1\}$ for $1 \le p < +\infty$; $B^+(I) := \{x = (x_i)_{i \in I} \in [0,1]^I : \sum_i x_i \le 1\}$; $\sigma_p(I) := \{F \subset I : F \text{ has at most } n \text{ elements}\}.$

Remarks

- 1. $B_+(I)$ is compact (resp. closely compact) iff $B_1(I)$ is compact (resp. closely compact) iff $B_2(I)$ is compact (resp. closely compact).
- 2. With T_2 , the space $B^+(I)$ is compact.
- 3. $\sigma_1(I)$ is the one-point compactification of the discrete space I.

Given $n \in \mathbb{N}$, consider the following closed subsets of $[-1,1]^l$: $B_p(l) := \{x = (x_i)_{i \in I} \in [-1,1]^l : \sum_i |x_i|^p \le 1\} \text{ for } 1 \le p < +\infty;$

 $B^+(I) := \{x = (x_i)_{i \in I} \in [0, 1]^I : \sum_i x_i \le 1\};$ $\sigma_n(I) := \{F \subseteq I : F \text{ has at most } n \text{ elements}\}.$

Remarks

- 1. $B_+(I)$ is compact (resp. closely compact) iff $B_1(I)$ is compact (resp. closely compact) iff $B_2(I)$ is compact (resp. closely compact).
- 2. With T_2 , the space $B^+(I)$ is compact.
- 3. $\sigma_1(I)$ is the one-point compactification of the discrete space I.
- 4. If $B^+(I)$ is closely compact, then $AC^{fin(I)}$ holds.

Given $n \in \mathbb{N}$, consider the following closed subsets of $[-1,1]^I$:

$$B_{p}(I) := \{x = (x_{i})_{i \in I} \in [-1, 1]^{I} : \sum_{i} |x_{i}|^{p} \le 1\} \text{ for } 1 \le p < +\infty; \\ B^{+}(I) := \{x = (x_{i})_{i \in I} \in [0, 1]^{I} : \sum_{i} x_{i} \le 1\}; \\ \sigma_{n}(I) := \{F \subseteq I : F \text{ has at most } n \text{ elements}\}.$$

Remarks

- 1. $B_+(I)$ is compact (resp. closely compact) iff $B_1(I)$ is compact (resp. closely compact) iff $B_2(I)$ is compact (resp. closely compact).
- 2. With T_2 , the space $B^+(I)$ is compact.
- 3. $\sigma_1(I)$ is the one-point compactification of the discrete space I.
- 4. If $B^+(I)$ is closely compact, then $AC^{fin(I)}$ holds.
- 5. The function $\bigcup_n : \sigma_1(I)^n \to \sigma_n(I)$ which maps each $(F_i)_{1 \le i \le n}$ to $\bigcup_{1 \le i \le n} F_i$ is continuous and onto (and has a section if $\mathbf{AC}^{fin(I)}$ holds).

Our aim is to prove the following result:

Our aim is to prove the following result:

Theorem, M.M., preprint [9]

Let I be a set. Then $\mathbf{AC}^{fin(I)} \Leftrightarrow "B^+(I)$ is closely compact".

Our aim is to prove the following result:

Theorem, M.M., preprint [9]

Let I be a set. Then $\mathbf{AC}^{fin(I)} \Leftrightarrow "B^+(I)$ is closely compact".

Our aim is to prove the following result:

Theorem, M.M., preprint [9]

Let I be a set. Then $\mathbf{AC}^{fin(I)} \Leftrightarrow "B^+(I)$ is closely compact".

In particular, $B^+(\mathbb{R})$ is closely compact. This enhances results in (M.M. 2008 [8]).

Our aim is to prove the following result:

Theorem, M.M., preprint [9]

Let I be a set. Then $\mathbf{AC}^{fin(I)} \Leftrightarrow "B^+(I)$ is closely compact".

In particular, $B^+(\mathbb{R})$ is closely compact. This enhances results in (M.M. 2008 [8]).

Consequence: **AC**^{fin} is equivalent to the following statement: "The closed unit ball of a Hilbert space with a hilbertian basis is weakly compact."

Theorem (Benyamini, Rudin et Wage, 1977 [1])

The space $B^+(I)$ is a continuous image of a closed subset of the product space $\prod_{n\in\mathbb{N}} \sigma_{2^{n+1}}(I)$.

Theorem (Benyamini, Rudin et Wage, 1977 [1])

The space $B^+(I)$ is a continuous image of a closed subset of the product space $\prod_{n\in\mathbb{N}} \sigma_{2^{n+1}}(I)$.

Proof.

```
(sketch) Let \phi:\{0,1\}^{\mathbb{N}}\to [0,1] be the function (\varepsilon_n)_{n\in\mathbb{N}}\mapsto \sum_{n\in\mathbb{N}}\frac{\varepsilon_n}{2^{n+1}}. Then \phi is continuous, onto (with a definable section). Let \psi_I:=\phi^I:\left(\{0,1\}^{\mathbb{N}}\right)^I\to [0,1]^I: then \psi_I is continuous and onto (with a definable section). Let Z:=\psi_I^{-1}[B^+(I)]: then Z is a closed subset of \left(\{0,1\}^{\mathbb{N}}\right)^I and one easily checks that Z\subseteq\prod_{n\in\mathbb{N}}\sigma_{2^{n+1}}(I). And \psi_I[Z]=B^+(I).
```

Theorem (Benyamini, Rudin et Wage, 1977 [1])

The space $B^+(I)$ is a continuous image of a closed subset of the product space $\prod_{n\in\mathbb{N}} \sigma_{2^{n+1}}(I)$.

Proof.

```
(sketch) Let \phi:\{0,1\}^{\mathbb{N}}\to [0,1] be the function (\varepsilon_n)_{n\in\mathbb{N}}\mapsto \sum_{n\in\mathbb{N}}\frac{\varepsilon_n}{2^{n+1}}. Then \phi is continuous, onto (with a definable section). Let \psi_I:=\phi^I:\left(\{0,1\}^{\mathbb{N}}\right)^I\to [0,1]^I: then \psi_I is continuous and onto (with a definable section). Let Z:=\psi_I^{-1}[B^+(I)]: then Z is a closed subset of \left(\{0,1\}^{\mathbb{N}}\right)^I and one easily checks that Z\subseteq\prod_{n\in\mathbb{N}}\sigma_{2^{n+1}}(I). And \psi_I[Z]=B^+(I).
```

Theorem (Benyamini, Rudin et Wage, 1977 [1])

The space $B^+(I)$ is a continuous image of a closed subset of the product space $\prod_{n\in\mathbb{N}} \sigma_{2^{n+1}}(I)$.

Proof.

(sketch) Let
$$\phi:\{0,1\}^{\mathbb{N}}\to [0,1]$$
 be the function $(\varepsilon_n)_{n\in\mathbb{N}}\mapsto \sum_{n\in\mathbb{N}}\frac{\varepsilon_n}{2^{n+1}}$. Then ϕ is continuous, onto (with a definable section). Let $\psi_I:=\phi^I:\left(\{0,1\}^{\mathbb{N}}\right)^I\to [0,1]^I$: then ψ_I is continuous and onto (with a definable section). Let

$$Z:=\psi_I^{-1}[B^+(I)]$$
: then Z is a closed subset of $\left(\{0,1\}^{\mathbb{N}}\right)^I$ and one easily checks that $Z\subseteq\prod_{n\in\mathbb{N}}\sigma_{2^{n+1}}(I)$. And $\psi_I[Z]=B^+(I)$.

Proof of the main Theorem

If $AC^{fin(I)}$ holds, then $B_+(I)$ is closely compact.

Theorem (Benyamini, Rudin et Wage, 1977 [1])

The space $B^+(I)$ is a continuous image of a closed subset of the product space $\prod_{n\in\mathbb{N}} \sigma_{2^{n+1}}(I)$.

Proof.

(sketch) Let $\phi: \{0,1\}^{\mathbb{N}} \to [0,1]$ be the function $(\varepsilon_n)_{n \in \mathbb{N}} \mapsto \sum_{n \in \mathbb{N}} \frac{\varepsilon_n}{2^{n+1}}$. Then ϕ is continuous, onto (with a

definable section). Let $\psi_I := \phi^I : \left(\{0,1\}^{\mathbb{N}}\right)^I \to [0,1]^I$: then ψ_I is continuous and onto (with a definable section). Let

 $Z := \psi_I^{-1}[B^+(I)]$: then Z is a closed subset of $(\{0,1\}^{\mathbb{N}})^I$ and one easily checks that $Z \subseteq \prod_{n \in \mathbb{N}} \sigma_{2^{n+1}}(I)$. And $\psi_I[Z] = B^+(I)$.

Proof of the main Theorem

If $AC^{fin(I)}$ holds, then $B_+(I)$ is closely compact.

Proof.

With $\mathbf{AC}^{fin(I)}$, $\prod_{n\in\mathbb{N}} \sigma_n(I)$ is closely compact (Corollary of p. 8). Thus the continuous image $\prod_{n\in\mathbb{N}} \sigma_{2^{n+1}}(I)$ is also closely compact.

We end with Benyamini, Rudin et Wage's result.

Given a set I, consider the following axiom:

 $\mathbf{T}_{\omega}^{fin(I)}$: If $(F_n)_{n\in\mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n\in\mathbb{N}}F_n$ is compact.

Given a set I, consider the following axiom:

 $\mathbf{T}_{\omega}^{fin(I)}$: If $(F_n)_{n\in\mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n\in\mathbb{N}}F_n$ is compact.

Theorem (M 2008 -preprint-)

" $B^+(I)$ is compact" $\Leftrightarrow \mathbf{T}_{\omega}^{fin(I)}$.

Given a set I, consider the following axiom:

 $\mathsf{T}^{\mathit{fin}(I)}_{\omega}$: If $(F_n)_{n\in\mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n\in\mathbb{N}}F_n$ is compact.

Theorem (M 2008 -preprint-)

" $B^+(I)$ is compact" $\Leftrightarrow \mathbf{T}_{\omega}^{fin(I)}$.

Proof.

 \Rightarrow Let $(F_n)_{n\in\mathbb{N}}$ be a sequence of finite subsets of I.

Given a set I, consider the following axiom:

 $\mathsf{T}^{\mathit{fin}(I)}_{\omega}$: If $(F_n)_{n\in\mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n\in\mathbb{N}}F_n$ is compact.

Theorem (M 2008 -preprint-)

" $B^+(I)$ is compact" $\Leftrightarrow \mathbf{T}_{\omega}^{fin(I)}$.

Proof.

 \Rightarrow Let $(F_n)_{n\in\mathbb{N}}$ be a sequence of finite subsets of I.

Given a set I, consider the following axiom:

 $\mathsf{T}^{\mathit{fin}(I)}_{\omega}$: If $(F_n)_{n\in\mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n\in\mathbb{N}}F_n$ is compact.

Theorem (M 2008 -preprint-)

" $B^+(I)$ is compact" $\Leftrightarrow \mathbf{T}_{\omega}^{fin(I)}$.

Proof.

 \Rightarrow Let $(F_n)_{n\in\mathbb{N}}$ be a sequence of finite subsets of I. Let $D:=\cup_{n\in\mathbb{N}}F_n$. We show that D is countable (thus $\prod_{n\in\mathbb{N}}F_n$ is compact).

Given a set I, consider the following axiom:

 $\mathsf{T}^{\mathit{fin}(I)}_{\omega}$: If $(F_n)_{n\in\mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n\in\mathbb{N}}F_n$ is compact.

Theorem (M 2008 -preprint-)

" $B^+(I)$ is compact" $\Leftrightarrow \mathbf{T}_{\omega}^{fin(I)}$.

Proof.

 \Rightarrow Let $(F_n)_{n\in\mathbb{N}}$ be a sequence of finite subsets of I. Let $D:=\cup_{n\in\mathbb{N}}F_n$. We show that D is countable (thus $\prod_{n\in\mathbb{N}}F_n$ is compact). We may assume that the F_n are pairwise disjoint.

Given a set I, consider the following axiom:

 $\mathsf{T}^{\mathit{fin}(I)}_{\omega}$: If $(F_n)_{n\in\mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n\in\mathbb{N}}F_n$ is compact.

Theorem (M 2008 -preprint-)

" $B^+(I)$ is compact" $\Leftrightarrow \mathbf{T}_{\omega}^{fin(I)}$.

Proof.

 \Rightarrow Let $(F_n)_{n\in\mathbb{N}}$ be a sequence of finite subsets of I. Let $D:=\cup_{n\in\mathbb{N}}F_n$. We show that D is countable (thus $\prod_{n\in\mathbb{N}}F_n$ is compact). We may assume that the F_n are pairwise disjoint. Since $B^+(I)$ is compact, $B^+(D)$ is also compact.

Given a set I, consider the following axiom:

 $\mathsf{T}^{\mathit{fin}(I)}_{\omega}$: If $(F_n)_{n\in\mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n\in\mathbb{N}}F_n$ is compact.

Theorem (M 2008 -preprint-)

" $B^+(I)$ is compact" $\Leftrightarrow \mathbf{T}_{\omega}^{fin(I)}$.

Proof.

 \Rightarrow Let $(F_n)_{n\in\mathbb{N}}$ be a sequence of finite subsets of I. Let $D:=\cup_{n\in\mathbb{N}}F_n$. We show that D is countable (thus $\prod_{n\in\mathbb{N}}F_n$ is compact). We may assume that the F_n are pairwise disjoint. Since $B^+(I)$ is compact, $B^+(D)$ is also compact. For every $n\in\mathbb{N}$, let $\varepsilon_n:|F_n|\to]0,1[$ be an increasing function such that $\sum_{n\in\mathbb{N}}\sum_{0\leq i<|F_n|}\varepsilon_n(i)=1;$

Given a set I, consider the following axiom:

 $\mathsf{T}^{\mathit{fin}(I)}_{\omega}$: If $(F_n)_{n\in\mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n\in\mathbb{N}}F_n$ is compact.

Theorem (M 2008 -preprint-) " $B^+(I)$ is compact" $\Leftrightarrow \mathbf{T}_{\omega}^{fin(I)}$.

Proof.

 \Rightarrow Let $(F_n)_{n\in\mathbb{N}}$ be a sequence of finite subsets of I. Let $D:=\cup_{n\in\mathbb{N}}F_n$. We show that D is countable (thus $\prod_{n\in\mathbb{N}}F_n$ is compact). We may assume that the F_n are pairwise disjoint. Since $B^+(I)$ is compact, $B^+(D)$ is also compact. For every $n\in\mathbb{N}$, let $\varepsilon_n:|F_n|\to]0,1[$ be an increasing function such that $\sum_{n\in\mathbb{N}}\sum_{0\leq i<|F_n|}\varepsilon_n(i)=1;$ let $\tilde{F}_n:=\{x\in B^+(D): x_{|F_n|} \text{ is a bijection from } F_n \text{ to } rg(\varepsilon_n)\}.$

Given a set I, consider the following axiom:

 $\mathsf{T}^{\mathit{fin}(I)}_{\omega}$: If $(F_n)_{n\in\mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n\in\mathbb{N}}F_n$ is compact.

Theorem (M 2008 -preprint-)

" $B^+(I)$ is compact" $\Leftrightarrow \mathbf{T}_{\omega}^{fin(I)}$.

Proof.

 \Rightarrow Let $(F_n)_{n\in\mathbb{N}}$ be a sequence of finite subsets of I. Let $D:=\cup_{n\in\mathbb{N}}F_n$. We show that D is countable (thus $\prod_{n\in\mathbb{N}}F_n$ is compact). We may assume that the F_n are pairwise disjoint. Since $B^+(I)$ is compact, $B^+(D)$ is also compact. For every $n\in\mathbb{N}$, let $\varepsilon_n:|F_n|\to]0,1[$ be an increasing function such that $\sum_{n\in\mathbb{N}}\sum_{0\leq i<|F_n|}\varepsilon_n(i)=1;$ let

 $\tilde{F}_n := \{x \in B^+(D) : x_{\upharpoonright F_n} \text{ is a bijection from } F_n \text{ to } rg(\varepsilon_n)\}$. Each \tilde{F}_n is a closed subset of $B^+(D)$ and the sequence $(\tilde{F}_n)_{n \in \mathbb{N}}$ satisfies the FIP .

Given a set I, consider the following axiom:

 $\mathsf{T}^{\mathit{fin}(I)}_{\omega}$: If $(F_n)_{n\in\mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n\in\mathbb{N}}F_n$ is compact.

Theorem (M 2008 -preprint-)

" $B^+(I)$ is compact" $\Leftrightarrow \mathbf{T}_{\omega}^{fin(I)}$.

Proof.

 \Rightarrow Let $(F_n)_{n\in\mathbb{N}}$ be a sequence of finite subsets of I. Let $D:=\cup_{n\in\mathbb{N}}F_n$. We show that D is countable (thus $\prod_{n\in\mathbb{N}}F_n$ is compact). We may assume that the F_n are pairwise disjoint. Since $B^+(I)$ is compact, $B^+(D)$ is also compact. For every $n\in\mathbb{N}$, let $\varepsilon_n:|F_n|\to]0,1[$ be an increasing function such that $\sum_{n\in\mathbb{N}}\sum_{0\leq i<|F_n|}\varepsilon_n(i)=1;$ let

 $\tilde{F}_n:=\{x\in B^+(D): x_{\restriction F_n} \text{ is a bijection from } F_n \text{ to } rg(\varepsilon_n)\}$. Each \tilde{F}_n is a closed subset of $B^+(D)$ and the sequence $(\tilde{F}_n)_{n\in\mathbb{N}}$ satisfies the FIP . Thus $Z:=\cap_{n\in\mathbb{N}}\tilde{F}_n$ is non-empty.

Given a set I, consider the following axiom:

 $\mathsf{T}^{\mathit{fin}(I)}_{\omega}$: If $(F_n)_{n\in\mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n\in\mathbb{N}}F_n$ is compact.

Theorem (M 2008 -preprint-)

" $B^+(I)$ is compact" $\Leftrightarrow \mathbf{T}_{\omega}^{fin(I)}$.

Proof.

 \Rightarrow Let $(F_n)_{n\in\mathbb{N}}$ be a sequence of finite subsets of I. Let $D:=\cup_{n\in\mathbb{N}}F_n$. We show that D is countable (thus $\prod_{n\in\mathbb{N}}F_n$ is compact). We may assume that the F_n are pairwise disjoint. Since $B^+(I)$ is compact, $B^+(D)$ is also compact. For every $n\in\mathbb{N}$, let $\varepsilon_n:|F_n|\to]0,1[$ be an increasing function such that $\sum_{n\in\mathbb{N}}\sum_{0\leq i\leq |F_n|}\varepsilon_n(i)=1;$ let

 $\tilde{F}_n := \{x \in B^+(D) : x_{\uparrow F_n} \text{ is a bijection from } F_n \text{ to } rg(\varepsilon_n)\}$. Each \tilde{F}_n is a closed subset of $B^+(D)$ and the sequence $(\tilde{F}_n)_{n \in \mathbb{N}}$ satisfies the FIP . Thus $Z := \cap_{n \in \mathbb{N}} \tilde{F}_n$ is non-empty. Let $f = (f_i)_{i \in D} \in Z$.

Given a set I, consider the following axiom:

 $\mathbf{T}_{\omega}^{fin(I)}$: If $(F_n)_{n\in\mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n\in\mathbb{N}}F_n$ is compact.

Theorem (M 2008 -preprint-) " $B^+(I)$ is compact" $\Leftrightarrow \mathbf{T}_{\omega}^{fin(I)}$.

Proof.

 \Rightarrow Let $(F_n)_{n\in\mathbb{N}}$ be a sequence of finite subsets of I. Let $D:=\cup_{n\in\mathbb{N}}F_n$. We show that D is countable (thus $\prod_{n\in\mathbb{N}}F_n$ is compact). We may assume that the F_n are pairwise disjoint. Since $B^+(I)$ is compact, $B^+(D)$ is also compact. For every $n\in\mathbb{N}$, let $\varepsilon_n:|F_n|\to]0,1[$ be an increasing function such that $\sum_{n\in\mathbb{N}}\sum_{0\leq i\leq |F_n|}\varepsilon_n(i)=1;$ let

 $\tilde{F}_n := \{x \in B^+(D) : x_{\upharpoonright F_n} \text{ is a bijection from } F_n \text{ to } rg(\varepsilon_n)\}$. Each \tilde{F}_n is a closed subset of $B^+(D)$ and the sequence $(\tilde{F}_n)_{n \in \mathbb{N}}$ satisfies the FIP . Thus $Z := \cap_{n \in \mathbb{N}} \tilde{F}_n$ is non-empty. Let $f = (f_i)_{i \in D} \in Z$.

Each $f_{\upharpoonright F_n}$ defines a well order on F_n , and thus D is countable.

Lemma: $T_{\omega}^{fin(I)} \Rightarrow "\sigma_1(I)^{\mathbb{N}}$ is compact".

Let $P := \sigma_1(I)^{\mathbb{N}}$. let \mathcal{L} be the lattice of subsets of P generated by closed subsets of the form $F_i \times \sigma_1(I)^{\mathbb{N}\setminus\{i\}}$. Let \mathcal{F} be a filter of \mathcal{L} .

13/1

Lemma: $T_{\omega}^{fin(I)} \Rightarrow "\sigma_1(I)^{\mathbb{N}}$ is compact".

Let $P := \sigma_1(I)^{\mathbb{N}}$. let \mathcal{L} be the lattice of subsets of P generated by closed subsets of the form $F_i \times \sigma_1(I)^{\mathbb{N}\setminus\{i\}}$. Let \mathcal{F} be a filter of \mathcal{L} .

13/1

Lemma: $T_{\omega}^{fin(I)} \Rightarrow "\sigma_1(I)^{\mathbb{N}}$ is compact".

Let $P:=\sigma_1(I)^{\mathbb{N}}$. let \mathcal{L} be the lattice of subsets of P generated by closed subsets of the form $F_i\times\sigma_1(I)^{\mathbb{N}\setminus\{i\}}$. Let \mathcal{F} be a filter of \mathcal{L} . Since each closed subset of $\sigma_1(I)$ is finite or contains ∞ , we can build by recursion a sequence $(F_n)_{n\in\mathbb{N}}$ of finite subsets of $\sigma_1(I)$ such that for every $n\in\mathbb{N}$, $\prod_{i< n}F_i\times\sigma_1(I)^{\mathbb{N}\setminus n}$ is \mathcal{F} -stationnar (i.e. meets every element of \mathcal{F}).

Lemma: $T_{\omega}^{fin(I)} \Rightarrow "\sigma_1(I)^{\mathbb{N}}$ is compact".

Let $P:=\sigma_1(I)^{\mathbb{N}}$. let \mathcal{L} be the lattice of subsets of P generated by closed subsets of the form $F_i\times\sigma_1(I)^{\mathbb{N}\setminus\{i\}}$. Let \mathcal{F} be a filter of \mathcal{L} . Since each closed subset of $\sigma_1(I)$ is finite or contains ∞ , we can build by recursion a sequence $(F_n)_{n\in\mathbb{N}}$ of finite subsets of $\sigma_1(I)$ such that for every $n\in\mathbb{N}$, $\prod_{i< n}F_i\times\sigma_1(I)^{\mathbb{N}\setminus n}$ is \mathcal{F} -stationnar (i.e. meets every element of \mathcal{F}). Then, using $T_\omega^{fin(I)}$, the space $F:=\prod_{i\in\mathbb{N}}F_i$ is compact and non-empty.

Lemma: $T_{\omega}^{fin(I)} \Rightarrow "\sigma_1(I)^{\mathbb{N}}$ is compact".

Let $P:=\sigma_1(I)^{\mathbb{N}}$. let \mathcal{L} be the lattice of subsets of P generated by closed subsets of the form $F_i\times\sigma_1(I)^{\mathbb{N}\setminus\{i\}}$. Let \mathcal{F} be a filter of \mathcal{L} . Since each closed subset of $\sigma_1(I)$ is finite or contains ∞ , we can build by recursion a sequence $(F_n)_{n\in\mathbb{N}}$ of finite subsets of $\sigma_1(I)$ such that for every $n\in\mathbb{N}$, $\prod_{i< n}F_i\times\sigma_1(I)^{\mathbb{N}\setminus n}$ is \mathcal{F} -stationnar (i.e. meets every element of \mathcal{F}). Then, using $T_\omega^{fin(I)}$, the space $F:=\prod_{i\in\mathbb{N}}F_i$ is compact and non-empty. Now $\{F\cap Z: Z\in\mathcal{F}\}$ is a family of closed subsets of F satisfying the FIP, thus $\cap\mathcal{F}\neq\varnothing$.

Lemma: $T_{\omega}^{fin(I)} \Rightarrow "\sigma_1(I)^{\mathbb{N}}$ is compact".

Let $P:=\sigma_1(I)^{\mathbb{N}}$. let \mathcal{L} be the lattice of subsets of P generated by closed subsets of the form $F_i\times\sigma_1(I)^{\mathbb{N}\setminus\{i\}}$. Let \mathcal{F} be a filter of \mathcal{L} . Since each closed subset of $\sigma_1(I)$ is finite or contains ∞ , we can build by recursion a sequence $(F_n)_{n\in\mathbb{N}}$ of finite subsets of $\sigma_1(I)$ such that for every $n\in\mathbb{N}$, $\prod_{i< n}F_i\times\sigma_1(I)^{\mathbb{N}\setminus n}$ is \mathcal{F} -stationnar (i.e. meets every element of \mathcal{F}). Then, using $T_\omega^{fin(I)}$, the space $F:=\prod_{i\in\mathbb{N}}F_i$ is compact and non-empty. Now $\{F\cap Z: Z\in\mathcal{F}\}$ is a family of closed subsets of F satisfying the FIP, thus $\cap\mathcal{F}\neq\varnothing$.

Proposition

If $\sigma_1(I)^{\mathbb{N}}$ is compact, then $\prod_{n\in\mathbb{N}} \sigma_{2^{n+1}}(I)$ -and thus $B^+(I)$ - is compact.

Using Kelley's argument, $\mathbf{T}_{\omega}^{\mathit{fin}(I)}$ implies the following statement:

Using Kelley's argument, $\mathbf{T}_{\omega}^{\mathit{fin}(I)}$ implies the following statement:

 $\mathsf{AC}^{\mathit{fin}(I)}_{\omega}$: "Every sequence $(F_n)_{n\in\mathbb{N}}$ of non-empty finite subsets of I has a non-empty product."

Consequence

One cannot prove in **ZF** that $B^+(\mathcal{P}(\mathbb{R}))$ is compact.

Using Kelley's argument, $\mathbf{T}_{\omega}^{\mathit{fin}(I)}$ implies the following statement:

 $\mathsf{AC}^{\mathit{fin}(I)}_{\omega}$: "Every sequence $(F_n)_{n\in\mathbb{N}}$ of non-empty finite subsets of I has a non-empty product."

Consequence

One cannot prove in **ZF** that $B^+(\mathcal{P}(\mathbb{R}))$ is compact.

Proof.

Consider a model of **ZF** with a sequence $(P_n)_{n\in\mathbb{N}}$ of pairs of subsets of \mathbb{R} such that $\prod_{n\in\mathbb{N}} P_n$ is empty.

Using Kelley's argument, $\mathbf{T}_{\omega}^{\mathit{fin}(I)}$ implies the following statement:

 $\mathsf{AC}^{\mathit{fin}(I)}_{\omega}$: "Every sequence $(F_n)_{n\in\mathbb{N}}$ of non-empty finite subsets of I has a non-empty product."

Consequence

One cannot prove in **ZF** that $B^+(\mathcal{P}(\mathbb{R}))$ is compact.

Proof.

Consider a model of **ZF** with a sequence $(P_n)_{n\in\mathbb{N}}$ of pairs of subsets of \mathbb{R} such that $\prod_{n\in\mathbb{N}} P_n$ is empty.

Using Kelley's argument, $\mathbf{T}_{\omega}^{\mathit{fin}(I)}$ implies the following statement:

 $\mathbf{AC}^{fin(I)}_{\omega}$: "Every sequence $(F_n)_{n\in\mathbb{N}}$ of non-empty finite subsets of I has a non-empty product."

Consequence

One cannot prove in **ZF** that $B^+(\mathcal{P}(\mathbb{R}))$ is compact.

Proof.

Consider a model of **ZF** with a sequence $(P_n)_{n\in\mathbb{N}}$ of pairs of subsets of \mathbb{R} such that $\prod_{n\in\mathbb{N}} P_n$ is empty.Let $I := \bigcup_{n\in\mathbb{N}} P_n$.

Using Kelley's argument, $\mathbf{T}_{\omega}^{fin(I)}$ implies the following statement:

 $\mathbf{AC}^{fin(I)}_{\omega}$: "Every sequence $(F_n)_{n\in\mathbb{N}}$ of non-empty finite subsets of I has a non-empty product."

Consequence

One cannot prove in **ZF** that $B^+(\mathcal{P}(\mathbb{R}))$ is compact.

Proof.

Consider a model of **ZF** with a sequence $(P_n)_{n\in\mathbb{N}}$ of pairs of subsets of \mathbb{R} such that $\prod_{n\in\mathbb{N}}P_n$ is empty.Let $I:=\bigcup_{n\in\mathbb{N}}P_n$. Then $\mathbf{AC}^{fin(I)}$ does not hold, thus $B^+(I)$ is not compact.

Using Kelley's argument, $\mathbf{T}_{\omega}^{fin(I)}$ implies the following statement:

 $\mathbf{AC}^{fin(I)}_{\omega}$: "Every sequence $(F_n)_{n\in\mathbb{N}}$ of non-empty finite subsets of I has a non-empty product."

Consequence

One cannot prove in **ZF** that $B^+(\mathcal{P}(\mathbb{R}))$ is compact.

Proof.

Consider a model of **ZF** with a sequence $(P_n)_{n\in\mathbb{N}}$ of pairs of subsets of \mathbb{R} such that $\prod_{n\in\mathbb{N}}P_n$ is empty.Let $I:=\cup_{n\in\mathbb{N}}P_n$. Then $\mathbf{AC}^{fin(I)}$ does not hold, thus $B^+(I)$ is not compact.But $I\subseteq\mathcal{P}(\mathbb{R})$, so $B^+(\mathcal{P}(\mathbb{R}))$ is not compact.

Proposition

 $\mathbf{AC}^{\mathit{fin}}_{\mathbb{N}} \Leftrightarrow \mathbf{T}^{\mathit{fin}}_{\mathbb{N}}.$


```
Given a set I, AETF: 
"B^+(I) is compact"; "The subset B_1(I) := \{x = (x_i)_{i \in I} \in [-1,1]^I : \sum_i |x_i| \le 1\} of [0,1]^I is compact"; "The closed unit ball B_2(I) of the Hilbert space \ell^2(I) is compact in the weak topology."
```

15/1

```
Given a set I, AETF: 
"B^+(I) is compact"; "The subset B_1(I) := \{x = (x_i)_{i \in I} \in [-1,1]^I : \sum_i |x_i| \le 1\} of [0,1]^I is compact"; "The closed unit ball B_2(I) of the Hilbert space \ell^2(I) is compact in the weak topology."
```

15/1

Given a set *I*, *AETF*:

" $B^+(I)$ is compact"; "The subset $B_1(I) := \{x = (x_i)_{i \in I} \in [-1, 1]^I : \sum_i |x_i| \le 1 \}$ of $[0, 1]^I$ is compact"; "The closed unit ball $B_2(I)$ of the Hilbert space $\ell^2(I)$ is compact in the weak topology."

Consider the following statements:

AH: The closed unit ball of a Hilbert space is weakly compact.

Given a set *I*, *AETF*:

" $B^+(I)$ is compact"; "The subset

 $B_1(I) := \{x = (x_i)_{i \in I} \in [-1,1]^I : \sum_i |x_i| \le 1\}$ of $[0,1]^I$ is compact"; "The closed unit ball $B_2(I)$ of the Hilbert space $\ell^2(I)$ is compact in the weak topology."

Consider the following statements:

AH: The closed unit ball of a Hilbert space is weakly compact.

BH: "Every Hilbert space has a Hilbertian basis."

Given a set *I*, *AETF*:

" $B^+(I)$ is compact"; "The subset

$$B_1(I) := \{x = (x_i)_{i \in I} \in [-1,1]^I : \sum_i |x_i| \le 1\}$$
 of $[0,1]^I$ is compact"; "The closed unit ball $B_2(I)$ of the Hilbert space $\ell^2(I)$ is compact in the weak topology."

Consider the following statements:

AH: The closed unit ball of a Hilbert space is weakly compact.

BH: "Every Hilbert space has a Hilbertian basis."

Then $AH \Rightarrow AC^{fin}$ and $AC^{fin}+BH \Rightarrow AH$.

Given a set *I*, *AETF*:

" $B^+(I)$ is compact"; "The subset

$$B_1(I) := \{x = (x_i)_{i \in I} \in [-1,1]^I : \sum_i |x_i| \le 1\}$$
 of $[0,1]^I$ is compact"; "The closed unit ball $B_2(I)$ of the Hilbert space $\ell^2(I)$ is compact in the weak topology."

Consider the following statements:

AH: The closed unit ball of a Hilbert space is weakly compact.

BH: "Every Hilbert space has a Hilbertian basis."

Then $AH \Rightarrow AC^{fin}$ and $AC^{fin}+BH \Rightarrow AH$.

Questions

Does **AC**^{fin} imply **AH**?

Given a set *I*, *AETF*:

" $B^+(I)$ is compact"; "The subset

$$B_1(I) := \{x = (x_i)_{i \in I} \in [-1,1]^I : \sum_i |x_i| \le 1\}$$
 of $[0,1]^I$ is compact"; "The closed unit ball $B_2(I)$ of the Hilbert space $\ell^2(I)$ is compact in the weak topology."

Consider the following statements:

AH: The closed unit ball of a Hilbert space is weakly compact.

BH: "Every Hilbert space has a Hilbertian basis."

Then $AH \Rightarrow AC^{fin}$ and $AC^{fin}+BH \Rightarrow AH$.

Questions

Does **AC**^{fin} imply **AH**?

Given a set *I*, *AETF*:

" $B^+(I)$ is compact"; "The subset

$$B_1(I):=\{x=(x_i)_{i\in I}\in [-1,1]^I: \sum_i |x_i|\leq 1\}$$
 of $[0,1]^I$ is compact"; "The closed unit ball $B_2(I)$ of the Hilbert space $\ell^2(I)$ is compact in the weak topology."

Consider the following statements:

AH: The closed unit ball of a Hilbert space is weakly compact.

BH: "Every Hilbert space has a Hilbertian basis."

Then $AH \Rightarrow AC^{fin}$ and $AC^{fin}+BH \Rightarrow AH$.

Questions

Does **AC**^{fin} imply **AH**?

Does BH imply AC or some classical consequence of AC?

Given a set *I*, *AETF*:

" $B^+(I)$ is compact"; "The subset $B_1(I) := \{x = (x_i)_{i \in I} \in [-1,1]^I : \sum_i |x_i| \le 1\}$ of $[0,1]^I$ is compact"; "The closed unit ball $B_2(I)$ of the Hilbert space $\ell^2(I)$ is compact in the weak topology."

Consider the following statements:

AH: The closed unit ball of a Hilbert space is weakly compact.

BH: "Every Hilbert space has a Hilbertian basis."

Then $AH \Rightarrow AC^{fin}$ and $AC^{fin}+BH \Rightarrow AH$.

Questions

Does **AC**^{fin} imply **AH**?

Does **BH** imply **AC** or some classical consequence of **AC**?

Is **BH** provable in **ZF**? in **ZF**+**AC**^{fin}? What about the existence of Markhushevich bases in WCG Banach spaces?

References (1)

- Y. Benyamini, M.E. Rudin and M. Wage, Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math., 70, 1977, 2, p.309-324.
- 2. J. Fossy, J. et M.Morillon, The Baire category property and some notions of compactness, J. Lond. Math. Soc., II. Ser., 1998, vol.57, (1) p.1-19.
- Halpern, J. D. and Lévy, A., The Boolean prime ideal theorem does not imply the axiom of choice., Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), 1971.
- 4. Howard, P. and Rubin, J.E., Consequences of the Axiom of Choice, AMS, 1998, vol.59.
- 5. Jech, The Axiom of Choice, NHPC.

References (2)

- 7. Kelley, The Tychonov product theorem implies the Axiom of Choice, Fund. Math., 1950, p.75-76.
- 8. M. Morillon, Countable choice and compactness, Topology and its Applications (2008).
- 9. M. Morillon, Uniform Eberlein spaces and the finite axiom of Choice, preprint 2008.

17/1