Uniform Eberlein Compactness and the Axiom of Choice

Marianne Morillon
University of La Réunion (France)

Kielce, 7-11 July 2008
The Axiom of Choice

AC (Axiom of Choice)

Given a family \((A_i)_{i \in I}\) of non-empty sets, there exists a function \(f : I \rightarrow \bigcup_{i \in I} A_i\) such that \(\forall i \in I\) \(f(i) \in A_i\).

The function \(f\) is called a choice function for the family \((A_i)_{i \in I}\).
The Axiom of Choice

AC (Axiom of Choice)

Given a family \((A_i)_{i \in I}\) of non-empty sets, there exists a function \(f : I \to \bigcup_{i \in I} A_i\) such that \(\forall i \in I \ f(i) \in A_i\).

The function \(f\) is called a *choice function* for the family \((A_i)_{i \in I}\).

We work in set-theory without the Axiom of Choice **ZF**: \(\emptyset\), extension, pair, union, power-set, infinity, regularity, replacement (and separation).
Examples of “choice functions” existing in ZF

1. \((A_i, \ast_i)_{i \in I}\) is a family of groups;
2. \((A_i)_{i \in I}\) is a family of subsets of \(\mathbb{Q}\) (or of any well-orderable set);
3. \((A_i)_{i \in I}\) is a family of closed subsets of \(\mathbb{R}\) (or of any conditionally complete linear order);
4. \((A_i)_{i \in I}\) is a family of closed subsets of \(\mathbb{R}^n\);
Examples of “choice functions” existing in \textbf{ZF}

Let $(A_i)_{i \in I}$ be a family of non-empty sets.

In the following cases, this family has a choice function (in \textbf{ZF}):
Examples of “choice functions” existing in ZF

Let \((A_i)_{i \in I}\) be a family of non-empty sets.
In the following cases, this family has a choice function (in ZF):

1. \((A_i, \ast_i)_{i \in I}\) is a family of groups;
Examples of “choice functions” existing in ZF

Let \((A_i)_{i \in I}\) be a family of non-empty sets.

In the following cases, this family has a choice function (in ZF):

1. \((A_i, \ast_i)_{i \in I}\) is a family of groups;
2. \((A_i)_{i \in I}\) is a family of subsets of \(\mathbb{Q}\) (or of any well-orderable set);
Examples of “choice functions” existing in \textbf{ZF}

Let $(A_i)_{i \in I}$ be a family of non-empty sets.

In the following cases, this family has a choice function (in \textbf{ZF}):

1. $(A_i, *_i)_{i \in I}$ is a family of groups;
2. $(A_i)_{i \in I}$ is a family of subsets of \mathbb{Q} (or of any well-orderable set);
3. $(A_i)_{i \in I}$ is a family of closed subsets of \mathbb{R} (or of any conditionnaly complete linear order)
Examples of “choice functions” existing in \textbf{ZF}

Let $(A_i)_{i \in I}$ be a family of non-empty sets.

In the following cases, this family has a choice function (in \textbf{ZF}):

1. $(A_i, *_{i})_{i \in I}$ is a family of groups;
2. $(A_i)_{i \in I}$ is a family of subsets of \mathbb{Q} (or of any well-orderable set);
3. $(A_i)_{i \in I}$ is a family of closed subsets of \mathbb{R} (or of any conditionnaly complete linear order);
4. $(A_i)_{i \in I}$ is a family of closed subsets of \mathbb{R}^n
Examples of “choice functions” existing in \(\text{ZF} \)

Let \((A_i)_{i \in I}\) be a family of non-empty sets.

In the following cases, this family has a choice function (in \(\text{ZF} \)):

1. \((A_i, \ast_i)_{i \in I}\) is a family of groups;
2. \((A_i)_{i \in I}\) is a family of subsets of \(\mathbb{Q} \) (or of any well-orderable set);
3. \((A_i)_{i \in I}\) is a family of closed subsets of \(\mathbb{R} \) (or of any conditionnaly complete linear order);
4. \((A_i)_{i \in I}\) is a family of closed subsets of \(\mathbb{R}^n \)
5. \(\ldots\)
A topological equivalent of AC
A topological equivalent of AC

Say that a topological space X is compact if every family of closed subsets of X satisfying the FIP (Finite Intersection Property) has a non-empty intersection.
A topological equivalent of AC

Say that a topological space X is \textit{compact} if every family of closed subsets of X satisfying the FIP (Finite Intersection Property) has a non-empty intersection.

\textbf{T} (Tychonov axiom)

\textit{If $(X_i)_{i \in I}$ is a family of compact spaces, then the product space $\prod_{i \in I} X_i$ is also compact.}
A topological equivalent of AC

Say that a topological space X is compact if every family of closed subsets of X satisfying the FIP (Finite Intersection Property) has a non-empty intersection.

T (Tychonov axiom)

If $(X_i)_{i \in I}$ is a family of compact spaces, then the product space $\prod_{i \in I} X_i$ is also compact.

Theorem (Kelley 1950 [7])

AC \iff T.
A topological equivalent of AC

Say that a topological space X is compact if every family of closed subsets of X satisfying the FIP (Finite Intersection Property) has a non-empty intersection.

\mathbf{T} (Tychonov axiom)

If $(X_i)_{i \in I}$ is a family of compact spaces, then the product space $\prod_{i \in I} X_i$ is also compact.

Theorem (Kelley 1950 [7])

$\mathbf{AC} \iff \mathbf{T}.$

Proof.

Let ∞ be some set $\not\in \bigcup_i X_i$. For each $i \in I$, let $\hat{X}_i := X_i \cup \{\infty\}$. Endow each \hat{X}_i with the topology generated by $\{\infty\}$ and cofinite subsets of \hat{X}_i. Each space \hat{X}_i is compact (and T_1). Using the axiom \mathbf{T}, the space $\prod_i \hat{X}_i$ is compact. For each $i \in I$, let $F_i := X_i \times \prod_{t \neq i} \hat{X}_t$. The family of closed sets $(F_i)_i$ satisfies the FIP so $\bigcap_i F_i \neq \emptyset$.
Distinct consequences of the “Tychonov axiom” (1)

\[T_2 \] “Tychonov for Hausdorff spaces”

If \((X_i)_{i \in I}\) is a family of Hausdorff compact spaces, then the product space \(\prod_{i \in I} X_i\) is compact.
Distinct consequences of the “Tychonov axiom” (1)

T_2 “Tychonov for Hausdorff spaces”
If $(X_i)_{i \in I}$ is a family of Hausdorff compact spaces, then the product space $\prod_{i \in I} X_i$ is compact.

AC^{fin} “Finite Axiom of Choice”
Every family of finite non-empty sets has a choice function.
Distinct consequences of the “Tychonov axiom” (1)

T_2 “Tychonov for Hausdorff spaces”
If $(X_i)_{i \in I}$ is a family of Hausdorff compact spaces, then the product space \(\prod_{i \in I} X_i \) is compact.

AC^{fin} “Finite Axiom of Choice”
Every family of finite non-empty sets has a choice function.

$\text{AC}^{\text{fin}}_\mathbb{N}$ “countable AC^{fin}”
Every sequence $(A_n)_{n \in \mathbb{N}}$ of finite non-empty sets has a choice function.
Distinct consequences of the “Tychonov axiom” (1)

T_2 “Tychonov for Hausdorff spaces”

If $(X_i)_{i \in I}$ is a family of Hausdorff compact spaces, then the product space $\prod_{i \in I} X_i$ is compact.

AC^{fin} “Finite Axiom of Choice”

Every family of finite non-empty sets has a choice function.

$\text{AC}_{\mathbb{N}}^{\text{fin}}$ “countable AC^{fin}”

Every sequence $(A_n)_{n \in \mathbb{N}}$ of finite non-empty sets has a choice function.
Distinct consequences of the “Tychonov axiom” (1)

\[T_2 \text{ “Tychonov for Hausdorff spaces”} \]
If \((X_i)_{i \in I}\) is a family of Hausdorff compact spaces, then the product space \(\prod_{i \in I} X_i\) is compact.

\[\text{AC}^{\text{fin}} \text{ “Finite Axiom of Choice”} \]
Every family of finite non-empty sets has a choice function.

\[\text{AC}^{\text{fin}}_{\mathbb{N}} \text{ “countable AC}^{\text{fin}}” \]
Every sequence \((A_n)_{n \in \mathbb{N}}\) of finite non-empty sets has a choice function.

Given a set \(I\), we also consider the following statement:

\[\text{AC}^{\text{fin}(I)} \text{ “Choice in finite subsets of } I\text{”} \]
The set of finite non-empty subsets of \(I\) has a choice function.
Distinct consequences of the “Tychonov axiom” (2)

Known facts
Distinct consequences of the “Tychonov axiom” (2)

Known facts

- $\text{AC} \implies \text{T}_2 \implies \text{AC}^{\text{fin}} \implies \text{AC}^{\text{fin}}_N$
Distinct consequences of the “Tychonov axiom” (2)

Known facts

- $\text{AC} \Rightarrow T_2 \Rightarrow \text{AC}^{\text{fin}} \Rightarrow \text{AC}^\mathbb{N}_{\text{fin}}$
- The converse implications are false:

- $T_2 \nRightarrow \text{AC}^{\text{fin}}$ (Halpern-Levy 67, [3])
- $\text{AC}^{\text{fin}} \nRightarrow T_2$
- $\text{AC}^{\text{fin}} \nRightarrow \text{AC}^\mathbb{N}_{\text{fin}}$
- $\text{AC}^\mathbb{N}_{\text{fin}}$ is not provable in ZF.

Proof.

For $T_2 \Rightarrow \text{AC}^{\text{fin}}$, use Kelley's argument.

For the "non implications", see References in Jech [5] or Howard and Rubin [4].

Our aim is to prove that $\text{AC}^{\text{fin}} \mathbb{N}$ (resp. $\text{AC}^\mathbb{N}_{\text{fin}}$) is equivalent to the following statement:

"The closed unit ball of a Hilbert space with a hilbertian basis is compact (resp. closely compact) in the weak topology."
Distinct consequences of the “Tychonov axiom” (2)

Known facts

- $\text{AC} \Rightarrow T_2 \Rightarrow \text{AC}^{\text{fin}} \Rightarrow \text{AC}_N^{\text{fin}}$

- The converse implications are false:
 - $T_2 \not\Rightarrow \text{AC}$ (Halpern-Levy 67, [3])

Our aim is to prove that AC^{fin}_N (resp. AC^{fin}) is equivalent to the following statement:

"The closed unit ball of a Hilbert space with a hilbertian basis is compact (resp. closely compact) in the weak topology."
Distinct consequences of the “Tychonov axiom” (2)

Known facts

- $\text{AC} \Rightarrow T_2 \Rightarrow AC_{\text{fin}} \Rightarrow AC_{\mathbb{N}}$
- The converse implications are false:
 - $T_2 \nRightarrow AC$ (Halpern-Levy 67, [3])
 - $AC_{\text{fin}} \nRightarrow T_2$

Proof.
For $T_2 \Rightarrow AC_{\text{fin}}$, use Kelley’s argument.
For the “non implications”, see References in Jech [5] or Howard and Rubin [4].

Our aim is to prove that AC_{fin} (resp. AC_{fin}) is equivalent to the following statement:
"The closed unit ball of a Hilbert space with a hilbertian basis is compact (resp. closely compact) in the weak topology."
Distinct consequences of the “Tychonov axiom” (2)

Known facts

- $\text{AC} \Rightarrow T_2 \Rightarrow \text{AC}^{\text{fin}} \Rightarrow \text{AC}^{\text{fin}}_\mathbb{N}$
- The converse implications are false:
 - $T_2 \nRightarrow \text{AC}$ (Halpern-Levy 67, [3])
 - $\text{AC}^{\text{fin}} \nRightarrow T_2$
 - $\text{AC}^{\text{fin}}_\mathbb{N} \nRightarrow \text{AC}^{\text{fin}}$

Proof.

For $T_2 \Rightarrow \text{AC}^{\text{fin}}$, use Kelley’s argument.

For the “non implications”, see References in Jech [5] or Howard and Rubin [4].

Our aim is to prove that $\text{AC}^{\text{fin}}_\mathbb{N}$ (resp. AC^{fin}) is equivalent to the following statement:

“The closed unit ball of a Hilbert space with a hilbertian basis is compact (resp. closely compact) in the weak topology.”
Distinct consequences of the “Tychonov axiom” (2)

Known facts

- $\text{AC} \Rightarrow \text{T}_2 \Rightarrow \text{AC}_{\text{fin}} \Rightarrow \text{AC}_{\mathbb{N}}$
- The converse implications are false:
 - $\text{T}_2 \nRightarrow \text{AC}$ (Halpern-Levy 67, [3])
 - $\text{AC}_{\text{fin}} \nRightarrow \text{T}_2$
 - $\text{AC}_{\mathbb{N}} \nRightarrow \text{AC}_{\text{fin}}$
 - $\text{AC}_{\mathbb{N}} \text{ is not provable in } \text{ZF}.$
Distinct consequences of the “Tychonov axiom” (2)

Known facts

- \(AC \Rightarrow T_2 \Rightarrow AC^{\text{fin}} \Rightarrow AC^{\text{fin}}_N \)
- The converse implications are false:
 - \(T_2 \nRightarrow AC \) (Halpern-Levy 67, [3])
 - \(AC^{\text{fin}} \nRightarrow T_2 \)
 - \(AC^{\text{fin}}_N \nRightarrow AC^{\text{fin}} \)
 - \(AC^{\text{fin}}_N \) is not provable in \(ZF \).

Proof.
For \(T_2 \Rightarrow AC^{\text{fin}} \), use Kelley’s argument.
For the “non implications”, see References in Jech [5] or Howard and Rubin [4].
Distinct consequences of the “Tychonov axiom” (2)

Known facts

- \(\text{AC} \Rightarrow T_2 \Rightarrow \text{AC}^{\text{fin}} \Rightarrow \text{AC}^{\text{fin}}_N \)
- The converse implications are false:
 - \(T_2 \not\Rightarrow \text{AC} \) (Halpern-Levy 67, [3])
 - \(\text{AC}^{\text{fin}} \not\Rightarrow T_2 \)
 - \(\text{AC}^{\text{fin}}_N \not\Rightarrow \text{AC}^{\text{fin}} \)
 - \(\text{AC}^{\text{fin}}_N \) is not provable in \(\text{ZF} \).

Proof.
For \(T_2 \Rightarrow \text{AC}^{\text{fin}} \), use Kelley’s argument.
For the “non implications”, see References in Jech [5] or Howard and Rubin [4].
Distinct consequences of the “Tychonov axiom” (2)

Known facts

- \[\text{AC} \Rightarrow \text{T}_2 \Rightarrow \text{AC}^{\text{fin}} \Rightarrow \text{AC}^{\text{fin}}_N \]
- The converse implications are false:
 - \[\text{T}_2 \not\Rightarrow \text{AC} \] (Halpern-Levy 67, [3])
 - \[\text{AC}^{\text{fin}} \not\Rightarrow \text{T}_2 \]
 - \[\text{AC}^{\text{fin}}_N \not\Rightarrow \text{AC}^{\text{fin}} \]
 - \[\text{AC}^{\text{fin}}_N \text{ is not provable in } \text{ZF}. \]

Proof.

For \[\text{T}_2 \Rightarrow \text{AC}^{\text{fin}} \], use Kelley’s argument.
For the “non implications”, see References in Jech [5] or Howard and Rubin [4].

Our aim is to prove that \[\text{AC}^{\text{fin}}_N \text{ (resp. AC}^{\text{fin}} \) is equivalent to the following statement: “The closed unit ball of a Hilbert space with a hilbertian basis is compact (resp. closely compact) in the weak topology.”
ZF-provable consequences of Tychonov (1)

Say that a compact topological space X is closely compact if there exists a function Φ which associates to every non-empty closed subset F of X an element $\Phi(F) \in F$.

Examples
1. A complete linearly ordered set endowed with the order topology is closely compact (and Hausdorff).
2. Given a set X, the "one-point compactification" $\hat{X} := X \cup \{\infty\}$ of the discrete space X is compact (and Hausdorff). (The open subsets of \hat{X} are subsets of X and cofinite subsets of \hat{X} containing ∞.)

Moreover, $\text{AC fin}(X) \iff \hat{X}$ is closely compact.
Say that a compact topological space X is \textit{closely compact} if there exists a function Φ which associates to every non-empty closed subset F of X an element $\Phi(F) \in F$.

Examples

1. A complete linearly ordered set endowed with the order topology is closely compact (and Hausdorff).
2. Given a set X, the "one-point compactification" $\hat{X} := X \cup \{\infty\}$ of the discrete space X is compact (and Hausdorff). (The open subsets of \hat{X} are subsets of X and cofinite subsets of \hat{X} containing ∞.)

Moreover, $AC_{\text{fin}}(X) \iff \hat{X}$ is closely compact.
Say that a compact topological space \(X \) is \textit{closely compact} if there exists a function \(\Phi \) which associates to every non-empty closed subset \(F \) of \(X \) an element \(\Phi(F) \in F \).

Examples
ZF-provable consequences of Tychonov (1)

Say that a compact topological space X is *closely compact* if there exists a function Φ which associates to every non-empty closed subset F of X an element $\Phi(F) \in F$.

Examples

1. A complete linearly ordered set endowed with the order topology is closely compact (and Hausdorff).
ZF-provable consequences of Tychonov (1)

Say that a compact topological space X is *closely compact* if there exists a function Φ which associates to every non-empty closed subset F of X an element $\Phi(F) \in F$.

Examples

1. A complete linearly ordered set endowed with the order topology is closely compact (and Hausdorff).

2. Given a set X, the “one-point compactification” $\hat{X} := X \cup \{\infty\}$ of the discrete space X is compact (and Hausdorff). (The open subsets of \hat{X} are subsets of X and cofinite subsets of \hat{X} containing ∞.)
ZF-provable consequences of Tychonov (1)

Say that a compact topological space X is *closely compact* if there exists a function Φ which associates to every non-empty closed subset F of X an element $\Phi(F) \in F$.

Examples

1. A complete linearly ordered set endowed with the order topology is closely compact (and Hausdorff).
2. Given a set X, the “one-point compactification” $\hat{X} := X \cup \{\infty\}$ of the discrete space X is compact (and Hausdorff). (The open subsets of \hat{X} are subsets of X and cofinite subsets of \hat{X} containing ∞.)
ZF-provable consequences of Tychonov (1)

Say that a compact topological space X is closely compact if there exists a function Φ which associates to every non-empty closed subset F of X an element $\Phi(F) \in F$.

Examples

1. A complete linearly ordered set endowed with the order topology is closely compact (and Hausdorff).
2. Given a set X, the “one-point compactification” $\hat{X} := X \cup \{\infty\}$ of the discrete space X is compact (and Hausdorff). (The open subsets of \hat{X} are subsets of X and cofinite subsets of \hat{X} containing ∞.) Moreover, $\text{AC}^{\text{fin}(X)} \Leftrightarrow \hat{X}$ is closely compact.
ZF-provable consequences of Tychonov (2)

Theorem (F-M 1998, [2])

For every ordinal α, and every family $(X_i, \Phi_i)_{i \in \alpha}$ of T_1 closely compact spaces, the space $\prod_{i \in \alpha} X_i$ is closely compact.

Proof.

Proof by transfinite recursion on α.

In particular, $[0, 1)^\alpha$ (and so $[0, 1)^\mathbb{N}$) is closely compact.

Corollary $\text{AC}_\text{fin}(I) \iff \text{"The space } \prod_{n \in \mathbb{N}} \sigma_n(I) \text{ is closely compact."}$.

Proof.

With $\text{AC}_\text{fin}(I)$, $\sigma_1(I)$ is closely compact: let Φ be a witness of this close compactness. Thus, each space $(\sigma_1(I))_n$ is closely compact with a witness definable from Φ. So each space $\sigma_n(I)$ (continuous image of $(\sigma_1(I))_n$ by \bigcup_n) is closely compact with a witness definable from Φ.

ZF-provable consequences of Tychonov (2)

Theorem (F-M 1998, [2])

For every ordinal α, and every family $(X_i, \Phi_i)_{i \in \alpha}$ of T_1 closely compact spaces, the space $\prod_{i \in \alpha} X_i$ is closely compact.

Proof.
Proof by transfinite recursion on α. \square
Theorem (F-M 1998, [2])

For every ordinal α, and every family $(X_i, \Phi_i)_{i \in \alpha}$ of T_1 closely compact spaces, the space $\prod_{i \in \alpha} X_i$ is closely compact.

Proof.

Proof by transfinite recursion on α.

\[\square \]
ZF-provable consequences of Tychonov (2)

Theorem (F-M 1998, [2])

For every ordinal α, and every family $(X_i, \Phi_i)_{i \in \alpha}$ of T_1 closely compact spaces, the space $\prod_{i \in \alpha} X_i$ is closely compact.

Proof.

Proof by transfinite recursion on α.

In particular, $[0, 1]^{\alpha}$ (and so $[0, 1]^\mathbb{N}$) is closely compact.
ZF-provable consequences of Tychonov (2)

Theorem (F-M 1998, [2])

For every ordinal α, *and every family* $(X_i, \Phi_i)_{i \in \alpha}$ *of* T_1 *closely compact spaces, the space* $\prod_{i \in \alpha} X_i$ *is closely compact.*

Proof.

Proof by transfinite recursion on α. In particular, $[0, 1]^\alpha$ (and so $[0, 1]^\mathbb{N}$) is closely compact.

Corollary

$\mathbf{AC}^{\text{fin}(I)} \iff \text{“The space } \prod_{n \in \mathbb{N}} \sigma_n(I) \text{ is closely compact.”}$.
ZF-provable consequences of Tychonov (2)

Theorem (F-M 1998, [2])

For every ordinal α, and every family $(X_i, \Phi_i)_{i \in \alpha}$ of T_1 closely compact spaces, the space $\prod_{i \in \alpha} X_i$ is closely compact.

Proof.
Proof by transfinite recursion on α.

In particular, $[0, 1]^\alpha$ (and so $[0, 1]^\mathbb{N}$) is closely compact.

Corollary

$\textbf{AC}^{\text{fin}(I)} \iff \text{"The space } \prod_{n \in \mathbb{N}} \sigma_n(I) \text{ is closely compact."}.$

Proof.

With $\textbf{AC}^{\text{fin}(I)}$, $\sigma_1(I)$ is closely compact: let Φ be a witness of this close compactness. Thus, each space $(\sigma_1(I))^n$ is closely compact with a witness definable from Φ. So each space $\sigma_n(I)$ (continuous image of $(\sigma_1(I))^n$ by \cup_n) is closely compact with a witness definable from Φ.

The space $B^+(I)$

Given $n \in \mathbb{N}$, consider the following closed subsets of $[-1, 1]^I$:

\begin{align*}
B_p(I) := \{ & x = (x_i)_{i \in I} \in [-1, 1]^I : \sum_{i} |x_i|^p \leq 1 \} \\
B^+ (I) := \{ & x = (x_i)_{i \in I} \in [0, 1]^I : \sum_{i} x_i \leq 1 \} \\
\sigma_n(I) := \{ & F \subseteq I : F \text{ has at most } n \text{ elements} \}
\end{align*}

Remarks

1. $B^+ (I)$ is compact (resp. closely compact) iff $B_1(I)$ is compact (resp. closely compact).

2. With T_2, the space $B^+ (I)$ is compact.

3. $\sigma_1(I)$ is the one-point compactification of the discrete space I.

4. If $B^+(I)$ is closely compact, then $AC_{fin}(I)$ holds.

5. The function $\bigcup_n : \sigma_1(I) \rightarrow \sigma_n(I)$ which maps each $(F_i)_{1 \leq i \leq n}$ to $\bigcup_{1 \leq i \leq n} F_i$ is continuous and onto (and has a section if $AC_{fin}(I)$ holds).
The space $B^+(I)$

Given $n \in \mathbb{N}$, consider the following closed subsets of $[-1, 1]^I$:

- $B_p(I) := \{ x = (x_i)_{i \in I} \in [-1, 1]^I : \sum_i |x_i|^p \leq 1 \}$ for $1 \leq p < +\infty$;
- $B^+(I) := \{ x = (x_i)_{i \in I} \in [0, 1]^I : \sum_i x_i \leq 1 \}$;
- $\sigma_n(I) := \{ F \subseteq I : F \text{ has at most } n \text{ elements} \}$.

Remarks

1. $B^+(I)$ is compact (resp. closely compact) iff $B_1(I)$ is compact (resp. closely compact).
2. With T_2, the space $B^+(I)$ is compact.
3. $\sigma_1(I)$ is the one-point compactification of the discrete space I.
4. If $B^+(I)$ is closely compact, then $AC_{\text{fin}}(I)$ holds.
5. The function $\bigcup_n : \sigma_1(I) \to \sigma_n(I)$ which maps each $(F_i)_{1 \leq i \leq n}$ to $\bigcup_{1 \leq i \leq n} F_i$ is continuous and onto (and has a section if $AC_{\text{fin}}(I)$ holds).
The space $B^+(I)$

Given $n \in \mathbb{N}$, consider the following closed subsets of $[-1, 1]^I$:

$B_p(I) := \{ x = (x_i)_{i \in I} \in [-1, 1]^I : \sum_i |x_i|^p \leq 1 \} \text{ for } 1 \leq p < +\infty$;

$B^+(I) := \{ x = (x_i)_{i \in I} \in [0, 1]^I : \sum_i x_i \leq 1 \}$;

$\sigma_n(I) := \{ F \subseteq I : F \text{ has at most } n \text{ elements} \}$.

Remarks
The space $B^+(I)$

Given $n \in \mathbb{N}$, consider the following closed subsets of $[-1, 1]^I$:
\[B_p(I) := \{ x = (x_i)_{i \in I} \in [-1, 1]^I : \sum_i |x_i|^p \leq 1 \} \text{ for } 1 \leq p < +\infty; \]
\[B^+(I) := \{ x = (x_i)_{i \in I} \in [0, 1]^I : \sum_i x_i \leq 1 \}; \]
\[\sigma_n(I) := \{ F \subseteq I : F \text{ has at most } n \text{ elements} \}. \]

Remarks

1. $B_+(I)$ is compact (resp. closely compact) iff $B_1(I)$ is compact (resp. closely compact) iff $B_2(I)$ is compact (resp. closely compact).
The space $B^+(I)$

Given $n \in \mathbb{N}$, consider the following closed subsets of $[-1, 1]^I$:

$B_p(I) := \{ x = (x_i)_{i \in I} \in [-1, 1]^I : \sum_i |x_i|^p \leq 1 \} \text{ for } 1 \leq p < +\infty$;

$B^+(I) := \{ x = (x_i)_{i \in I} \in [0, 1]^I : \sum_i x_i \leq 1 \}$;

$\sigma_n(I) := \{ F \subseteq I : F \text{ has at most } n \text{ elements} \}$.

Remarks

1. $B_+(I)$ is compact (resp. closely compact) iff $B_1(I)$ is compact (resp. closely compact) iff $B_2(I)$ is compact (resp. closely compact).

2. With T_2, the space $B^+(I)$ is compact.
The space $B^+(I)$

Given $n \in \mathbb{N}$, consider the following closed subsets of $[-1, 1]^I$:

$B_p(I) := \{ x = (x_i)_{i \in I} \in [-1, 1]^I : \sum_i |x_i|^p \leq 1 \}$ for $1 \leq p < +\infty$;

$B^+(I) := \{ x = (x_i)_{i \in I} \in [0, 1]^I : \sum_i x_i \leq 1 \}$;

$\sigma_n(I) := \{ F \subseteq I : F \text{ has at most } n \text{ elements} \}$.

Remarks

1. $B_+(I)$ is compact (resp. closely compact) iff $B_1(I)$ is compact (resp. closely compact) iff $B_2(I)$ is compact (resp. closely compact).

2. With T_2, the space $B^+(I)$ is compact.

3. $\sigma_1(I)$ is the one-point compactification of the discrete space I.
The space $B^+(I)$

Given $n \in \mathbb{N}$, consider the following closed subsets of $[-1, 1]^I$:

$B_p(I) := \{ x = (x_i)_{i \in I} \in [-1, 1]^I : \sum_i |x_i|^p \leq 1 \}$ for $1 \leq p < +\infty$;

$B^+(I) := \{ x = (x_i)_{i \in I} \in [0, 1]^I : \sum_i x_i \leq 1 \}$;

$\sigma_n(I) := \{ F \subseteq I : F \text{ has at most } n \text{ elements} \}$.

Remarks

1. $B_+(I)$ is compact (resp. closely compact) iff $B_1(I)$ is compact (resp. closely compact) iff $B_2(I)$ is compact (resp. closely compact).

2. With T_2, the space $B^+(I)$ is compact.

3. $\sigma_1(I)$ is the one-point compactification of the discrete space I.

4. If $B^+(I)$ is closely compact, then $AC^{\text{fin}(I)}$ holds.
The space $B^+(I)$

Given $n \in \mathbb{N}$, consider the following closed subsets of $[-1, 1]^I$:

- $B_p(I) := \{ x = (x_i)_{i \in I} \in [-1, 1]^I : \sum_i |x_i|^p \leq 1 \}$ for $1 \leq p < +\infty$;
- $B^+(I) := \{ x = (x_i)_{i \in I} \in [0, 1]^I : \sum_i x_i \leq 1 \}$;
- $\sigma_n(I) := \{ F \subseteq I : F \text{ has at most } n \text{ elements} \}$.

Remarks

1. $B_+(I)$ is compact (resp. closely compact) iff $B_1(I)$ is compact (resp. closely compact) iff $B_2(I)$ is compact (resp. closely compact).

2. With T_2, the space $B^+(I)$ is compact.

3. $\sigma_1(I)$ is the one-point compactification of the discrete space I.

4. If $B^+(I)$ is closely compact, then $\text{AC}^{\text{fin}(I)}$ holds.

5. The function $\cup_n : \sigma_1(I)^n \rightarrow \sigma_n(I)$ which maps each $(F_i)_{1 \leq i \leq n}$ to $\cup_{1 \leq i \leq n} F_i$ is continuous and onto (and has a section if $\text{AC}^{\text{fin}(I)}$ holds).
Close compactness of $B^+(I)$ (1)

Our aim is to prove the following result:

Theorem, M.M., preprint [9]

Let I be a set. Then $\text{AC}_{\text{fin}}(I) \iff \text{"B}^+(I)\text{ is closely compact}."

In particular, $B^+(\mathbb{R})$ is closely compact. This enhances results in (M.M. 2008 [8]).

Consequence: AC_{fin} is equivalent to the following statement:

"The closed unit ball of a Hilbert space with a hilbertian basis is weakly compact."
Close compactness of $B^+(I)$ (1)

Our aim is to prove the following result:

Theorem, M.M., preprint [9]

Let I be a set. Then $\text{AC}^{\text{fin}(I)} \iff \text{“}B^+(I) \text{ is closely compact}\text{”}$.
Our aim is to prove the following result:

Theorem, M.M., preprint [9]

Let I be a set. Then $\text{AC}^{\text{fin}(I)} \iff \text{“} B^+(I) \text{ is closely compact} \text{“.})
Close compactness of $B^+(I)$ (1)

Our aim is to prove the following result:

Theorem, M.M., preprint [9]

Let I be a set. Then $\text{AC}^{\text{fin}(I)} \iff "B^+(I) \text{ is closely compact}"$.

In particular, $B^+(\mathbb{R})$ is closely compact. This enhances results in (M.M. 2008 [8]).
Close compactness of $B^+(I)$ (1)

Our aim is to prove the following result:

Theorem, M.M., preprint [9]

Let I be a set. Then $\text{AC}^{\text{fin}(I)} \iff \text{“$B^+(I)$ is closely compact”}$.

In particular, $B^+(\mathbb{R})$ is closely compact. This enhances results in (M.M. 2008 [8]).

Consequence: AC^{fin} is equivalent to the following statement: *“The closed unit ball of a Hilbert space with a hilbertian basis is weakly compact.”*
The space $B^+(I)$ is a continuous image of a closed subset of the product space $\prod_{n \in \mathbb{N}} \sigma_{2^{n+1}}(I)$.

Proof. (sketch) Let $\phi: \{0, 1\}^\mathbb{N} \rightarrow [0, 1]^I$ be the function $(\varepsilon_n)_{n \in \mathbb{N}} \mapsto \sum_{n \in \mathbb{N}} \varepsilon_n 2^{n+1}$. Then ϕ is continuous, onto (with a definable section). Let $\psi_I := \phi_I: (\{0, 1\}^\mathbb{N})^I \rightarrow [0, 1]^I$; then ψ_I is continuous and onto (with a definable section). Let $Z := \psi_I^{-1}(B^+(I))$: then Z is a closed subset of $(\{0, 1\}^\mathbb{N})^I$ and one easily checks that $Z \subseteq \prod_{n \in \mathbb{N}} \sigma_{2^{n+1}}(I)$. And $\psi_I[Z] = B^+(I)$.

Proof of the main Theorem
If $\text{AC} \text{ fin}(I)$ holds, then $B^+(I)$ is closely compact.

Proof. With $\text{AC} \text{ fin}(I)$, $\prod_{n \in \mathbb{N}} \sigma_n(I)$ is closely compact (Corollary of p. 8). Thus the continuous image $\prod_{n \in \mathbb{N}} \sigma_{2^{n+1}}(I)$ is also closely compact. We end with Benyamini, Rudin et Wage’s result.
Close compactness of $B^+(I)$ (2)

Theorem (Benyamini, Rudin et Wage, 1977 [1])

The space $B^+(I)$ is a continuous image of a closed subset of the product space $\prod_{n \in \mathbb{N}} \sigma_{2^n+1}(I)$.

Proof.

(sketch) Let $\phi : \{0, 1\}^\mathbb{N} \rightarrow [0, 1]$ be the function $(\varepsilon_n)_{n \in \mathbb{N}} \mapsto \sum_{n \in \mathbb{N}} \frac{\varepsilon_n}{2^{n+1}}$. Then ϕ is continuous, onto (with a definable section). Let $\psi_I := \phi^I : (\{0, 1\}^\mathbb{N})^I \rightarrow [0, 1]^I$: then ψ_I is continuous and onto (with a definable section). Let $Z := \psi_I^{-1}[B^+(I)]$: then Z is a closed subset of $(\{0, 1\}^\mathbb{N})^I$ and one easily checks that $Z \subseteq \prod_{n \in \mathbb{N}} \sigma_{2^n+1}(I)$. And $\psi_I[Z] = B^+(I)$. \qed
Close compactness of $B^+(I)$ (2)

Theorem (Benyamini, Rudin et Wage, 1977 [1])

The space $B^+(I)$ is a continuous image of a closed subset of the product space $\prod_{n \in \mathbb{N}} \sigma_{2^{n+1}}(I)$.

Proof.

(sketch) Let $\phi : \{0, 1\}^\mathbb{N} \to [0, 1]$ be the function $(\varepsilon_n)_{n \in \mathbb{N}} \mapsto \sum_{n \in \mathbb{N}} \frac{\varepsilon_n}{2^{n+1}}$. Then ϕ is continuous, onto (with a definable section). Let $\psi_I := \phi^I : (\{0, 1\}^\mathbb{N})^I \to [0, 1]^I$: then ψ_I is continuous and onto (with a definable section). Let $Z := \psi_I^{-1}[B^+(I)]$: then Z is a closed subset of $(\{0, 1\}^\mathbb{N})^I$ and one easily checks that $Z \subseteq \prod_{n \in \mathbb{N}} \sigma_{2^{n+1}}(I)$. And $\psi_I[Z] = B^+(I)$. \qed
Close compactness of $B^+(I)$ (2)

Theorem (Benyamini, Rudin et Wage, 1977 [1])

The space $B^+(I)$ is a continuous image of a closed subset of the product space $\prod_{n \in \mathbb{N}} \sigma_{2^{n+1}}(I)$.

Proof.

(sketch) Let $\phi : \{0, 1\}^\mathbb{N} \to [0, 1]$ be the function $(\varepsilon_n)_{n \in \mathbb{N}} \mapsto \sum_{n \in \mathbb{N}} \frac{\varepsilon_n}{2^{n+1}}$. Then ϕ is continuous, onto (with a definable section). Let $\psi_I := \phi^I : (\{0, 1\}^\mathbb{N})^I \to [0, 1]^I$: then ψ_I is continuous and onto (with a definable section). Let $Z := \psi_I^{-1}[B^+(I)]$: then Z is a closed subset of $(\{0, 1\}^\mathbb{N})^I$ and one easily checks that $Z \subseteq \prod_{n \in \mathbb{N}} \sigma_{2^{n+1}}(I)$. And $\psi_I[Z] = B^+(I)$. \qed

Proof of the main Theorem

If $\text{AC}^{\text{fin}(I)}$ holds, then $B_+(I)$ is closely compact.
Close compactness of $B^+(I)$ (2)

Theorem (Benyamini, Rudin et Wage, 1977 [1])

The space $B^+(I)$ is a continuous image of a closed subset of the product space $\prod_{n \in \mathbb{N}} \sigma_{2^{n+1}}(I)$.

Proof.

(sketch) Let $\phi : \{0, 1\}^\mathbb{N} \to [0, 1]$ be the function $(\varepsilon_n)_{n \in \mathbb{N}} \mapsto \sum_{n \in \mathbb{N}} \frac{\varepsilon_n}{2^{n+1}}$. Then ϕ is continuous, onto (with a definable section). Let $\psi_I := \phi^I : (\{0, 1\}^\mathbb{N})^I \to [0, 1]^I$: then ψ_I is continuous and onto (with a definable section). Let

$Z := \psi_I^{-1}[B^+(I)]:$ then Z is a closed subset of $(\{0, 1\}^\mathbb{N})^I$ and one easily checks that $Z \subseteq \prod_{n \in \mathbb{N}} \sigma_{2^{n+1}}(I)$. And $\psi_I[Z] = B^+(I)$.

Proof of the main Theorem

If $\text{AC}^{\text{fin}(I)}$ holds, then $B_+(I)$ is closely compact.

Proof.

With $\text{AC}^{\text{fin}(I)}$, $\prod_{n \in \mathbb{N}} \sigma_n(I)$ is closely compact (Corollary of p. 8). Thus the continuous image $\prod_{n \in \mathbb{N}} \sigma_{2^{n+1}}(I)$ is also closely compact.

We end with Benyamini, Rudin et Wage’s result.
Compactness of $B^+(I)$ (1)

Given a set I, consider the following axiom:

$T^\text{fin}(I)_\omega$: If $(F_n)_{n \in \mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n \in \mathbb{N}} F_n$ is compact.
Compactness of $B^+(I)$ (1)

Given a set I, consider the following axiom:

$T^\text{fin}(I)_\omega$: If $(F_n)_{n \in \mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n \in \mathbb{N}} F_n$ is compact.

Theorem (M 2008 -preprint-)

“$B^+(I)$ is compact” $\iff T^\text{fin}(I)_\omega$.

Proof.

\Rightarrow Let $(F_n)_{n \in \mathbb{N}}$ be a sequence of finite subsets of I. Let $D := \bigcup_{n \in \mathbb{N}} F_n$. We show that D is countable (thus $\prod_{n \in \mathbb{N}} F_n$ is compact).

We may assume that the F_n are pairwise disjoint.

Since $B^+(I)$ is compact, $B^+(D)$ is also compact.

For every $n \in \mathbb{N}$, let $\varepsilon_n : |F_n| \to [0,1]$ be an increasing function such that $\sum_{n \in \mathbb{N}} \sum_{0 < i < |F_n|} \varepsilon_n(i) = 1$;

let $\tilde{F}_n := \{ x \in B^+(D) : x \upharpoonright F_n \text{ is a bijection from } F_n \text{ to } \text{rg}(\varepsilon_n) \}$.

Each \tilde{F}_n is a closed subset of $B^+(D)$ and the sequence $(\tilde{F}_n)_{n \in \mathbb{N}}$ satisfies the FIP.

Thus $Z := \bigcap_{n \in \mathbb{N}} \tilde{F}_n$ is non-empty.

Let $f = (f_i)_{D \in Z}$. Each $f \upharpoonright F_n$ defines a well order on F_n, and thus D is countable.
Compactness of $B^+(I)$ (1)

Given a set I, consider the following axiom:

$T_{\omega}^{\text{fin}(I)}$: If $(F_n)_{n \in \mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n \in \mathbb{N}} F_n$ is compact.

Theorem (M 2008 -preprint-)

“$B^+(I)$ is compact” $\iff T_{\omega}^{\text{fin}(I)}$.

Proof.

\Rightarrow Let $(F_n)_{n \in \mathbb{N}}$ be a sequence of finite subsets of I.

Compactness of $B^+(I)$ (1)

Given a set I, consider the following axiom:

$\mathbf{T}^{\text{fin}(I)}_\omega$: If $(F_n)_{n \in \mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n \in \mathbb{N}} F_n$ is compact.

Theorem (M 2008 -preprint-)

"$B^+(I)$ is compact" \Leftrightarrow $\mathbf{T}^{\text{fin}(I)}_\omega$.

Proof.

\Rightarrow Let $(F_n)_{n \in \mathbb{N}}$ be a sequence of finite subsets of I.

Compactness of $B^+(I)$ (1)

Given a set I, consider the following axiom:

$T_{\omega}^{\text{fin}(I)}$: If $(F_n)_{n \in \mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n \in \mathbb{N}} F_n$ is compact.

Theorem (M 2008 -preprint-)

“$B^+(I)$ is compact” \iff $T_{\omega}^{\text{fin}(I)}$.

Proof.

\Rightarrow Let $(F_n)_{n \in \mathbb{N}}$ be a sequence of finite subsets of I. Let $D := \bigcup_{n \in \mathbb{N}} F_n$. We show that D is countable (thus $\prod_{n \in \mathbb{N}} F_n$ is compact).
Compactness of $B^+(I)$ (1)

Given a set I, consider the following axiom:

$$T_{\omega}^{\text{fin}(I)}: \text{If } (F_n)_{n \in \mathbb{N}} \text{ is a sequence of finite discrete subsets of } I, \text{ then } \prod_{n \in \mathbb{N}} F_n \text{ is compact.}$$

Theorem (M 2008 -preprint-)

"$B^+(I)$ is compact" $\iff T_{\omega}^{\text{fin}(I)}$.

Proof.

\Rightarrow Let $(F_n)_{n \in \mathbb{N}}$ be a sequence of finite subsets of I. Let $D := \bigcup_{n \in \mathbb{N}} F_n$. We show that D is countable (thus $\prod_{n \in \mathbb{N}} F_n$ is compact). We may assume that the F_n are pairwise disjoint.
Compactness of $B^+(I)$ (1)

Given a set I, consider the following axiom:

$T_{\omega}^{\text{fin}(I)}$: If $(F_n)_{n \in \mathbb{N}}$ is a sequence of finite discrete subsets of I, then

$\prod_{n \in \mathbb{N}} F_n$ is compact.

Theorem (M 2008 -preprint-)

"$B^+(I)$ is compact" $\iff T_{\omega}^{\text{fin}(I)}$.

Proof.

\Rightarrow Let $(F_n)_{n \in \mathbb{N}}$ be a sequence of finite subsets of I. Let $D := \bigcup_{n \in \mathbb{N}} F_n$. We show that D is countable (thus $\prod_{n \in \mathbb{N}} F_n$ is compact). We may assume that the F_n are pairwise disjoint. Since $B^+(I)$ is compact, $B^+(D)$ is also compact.
Compactness of $B^+(I)$ (1)

Given a set I, consider the following axiom:

$T^{\text{fin}(I)}_\omega$: If $(F_n)_{n \in \mathbb{N}}$ is a sequence of finite discrete subsets of I, then

$\prod_{n \in \mathbb{N}} F_n$ is compact.

Theorem (M 2008 -preprint-)

"$B^+(I)$ is compact" $\iff T^{\text{fin}(I)}_\omega$.

Proof.

\Rightarrow Let $(F_n)_{n \in \mathbb{N}}$ be a sequence of finite subsets of I. Let

$D := \bigcup_{n \in \mathbb{N}} F_n$. We show that D is countable (thus $\prod_{n \in \mathbb{N}} F_n$ is compact). We may assume that the F_n are pairwise disjoint. Since

$B^+(I)$ is compact, $B^+(D)$ is also compact. For every $n \in \mathbb{N}$, let

$\varepsilon_n : |F_n| \rightarrow]0,1[$ be an increasing function such that

$\sum_{n \in \mathbb{N}} \sum_{0 \leq i < |F_n|} \varepsilon_n(i) = 1$;
Compactness of $B^+(I)$ (1)

Given a set I, consider the following axiom:

$T_{\omega}^{\text{fin}(I)}$: If $(F_n)_{n \in \mathbb{N}}$ is a sequence of finite discrete subsets of I, then

$\prod_{n \in \mathbb{N}} F_n$ is compact.

Theorem (M 2008 -preprint-)

"$B^+(I)$ is compact" $\iff T_{\omega}^{\text{fin}(I)}$.

Proof.

\Rightarrow Let $(F_n)_{n \in \mathbb{N}}$ be a sequence of finite subsets of I. Let $D := \bigcup_{n \in \mathbb{N}} F_n$. We show that D is countable (thus $\prod_{n \in \mathbb{N}} F_n$ is compact). We may assume that the F_n are pairwise disjoint. Since $B^+(I)$ is compact, $B^+(D)$ is also compact. For every $n \in \mathbb{N}$, let $\varepsilon_n : |F_n| \rightarrow]0, 1[$ be an increasing function such that

$\sum_{n \in \mathbb{N}} \sum_{0 \leq i < |F_n|} \varepsilon_n(i) = 1$; let

$\tilde{F}_n := \{ x \in B^+(D) : x|_{F_n} \text{ is a bijection from } F_n \text{ to } rg(\varepsilon_n) \}$.
Compactness of $B^+(I)$ (1)

Given a set I, consider the following axiom:

$T^{\text{fin}(I)}_\omega$: If $(F_n)_{n \in \mathbb{N}}$ is a sequence of finite discrete subsets of I, then

$\prod_{n \in \mathbb{N}} F_n$ is compact.

Theorem (M 2008 -preprint-)

“$B^+(I)$ is compact” \iff $T^{\text{fin}(I)}_\omega$.

Proof.

\Rightarrow Let $(F_n)_{n \in \mathbb{N}}$ be a sequence of finite subsets of I. Let $D := \bigcup_{n \in \mathbb{N}} F_n$. We show that D is countable (thus $\prod_{n \in \mathbb{N}} F_n$ is compact). We may assume that the F_n are pairwise disjoint. Since $B^+(I)$ is compact, $B^+(D)$ is also compact. For every $n \in \mathbb{N}$, let $\varepsilon_n : |F_n| \to]0, 1[$ be an increasing function such that

$\sum_{n \in \mathbb{N}} \sum_{0 \leq i < |F_n|} \varepsilon_n(i) = 1$; let

$\tilde{F}_n := \{x \in B^+(D) : x|_{F_n} \text{ is a bijection from } F_n \text{ to } \text{rg}(\varepsilon_n)\}$. Each \tilde{F}_n is a closed subset of $B^+(D)$ and the sequence $(\tilde{F}_n)_{n \in \mathbb{N}}$ satisfies the FIP.
Compactness of $B^+(I)$ (1)

Given a set I, consider the following axiom:

$T_{\omega}^{\text{fin}(I)}$: If $(F_n)_{n \in \mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n \in \mathbb{N}} F_n$ is compact.

Theorem (M 2008 -preprint-)

"$B^+(I)$ is compact" $\iff T_{\omega}^{\text{fin}(I)}$.

Proof.

\Rightarrow Let $(F_n)_{n \in \mathbb{N}}$ be a sequence of finite subsets of I. Let $D := \bigcup_{n \in \mathbb{N}} F_n$. We show that D is countable (thus $\prod_{n \in \mathbb{N}} F_n$ is compact). We may assume that the F_n are pairwise disjoint. Since $B^+(I)$ is compact, $B^+(D)$ is also compact. For every $n \in \mathbb{N}$, let $\varepsilon_n : |F_n| \to]0, 1[\,$ be an increasing function such that $\sum_{n \in \mathbb{N}} \sum_{0 \leq i < |F_n|} \varepsilon_n(i) = 1$; let $\tilde{F}_n := \{ x \in B^+(D) : x \upharpoonright F_n \text{ is a bijection from } F_n \text{ to } \text{rg}(\varepsilon_n) \}$. Each \tilde{F}_n is a closed subset of $B^+(D)$ and the sequence $(\tilde{F}_n)_{n \in \mathbb{N}}$ satisfies the FIP. Thus $Z := \bigcap_{n \in \mathbb{N}} \tilde{F}_n$ is non-empty.
Compactness of $B^+(I)$ (1)

Given a set I, consider the following axiom:

$\mathbf{T}_{\omega}^{\text{fin}(I)}$: If $(F_n)_{n \in \mathbb{N}}$ is a sequence of finite discrete subsets of I, then $\prod_{n \in \mathbb{N}} F_n$ is compact.

Theorem (M 2008 -preprint-)

"$B^+(I)$ is compact" $\iff \mathbf{T}_{\omega}^{\text{fin}(I)}$.

Proof.

\Rightarrow Let $(F_n)_{n \in \mathbb{N}}$ be a sequence of finite subsets of I. Let $D := \bigcup_{n \in \mathbb{N}} F_n$. We show that D is countable (thus $\prod_{n \in \mathbb{N}} F_n$ is compact). We may assume that the F_n are pairwise disjoint. Since $B^+(I)$ is compact, $B^+(D)$ is also compact. For every $n \in \mathbb{N}$, let $\varepsilon_n : |F_n| \to]0, 1[$ be an increasing function such that $\sum_{n \in \mathbb{N}} \sum_{0 \leq i < |F_n|} \varepsilon_n(i) = 1$; let

$\tilde{F}_n := \{x \in B^+(D) : x_{|F_n} \text{ is a bijection from } F_n \text{ to } \text{rg}(\varepsilon_n)\}$. Each \tilde{F}_n is a closed subset of $B^+(D)$ and the sequence $(\tilde{F}_n)_{n \in \mathbb{N}}$ satisfies the FIP. Thus $Z := \cap_{n \in \mathbb{N}} \tilde{F}_n$ is non-empty. Let $f = (f_i)_{i \in D} \in Z$.

Compactness of $B^+(I)$ (1)

Given a set I, consider the following axiom:

$\mathbf{T}^{\text{fin}(I)}_\omega$: If $(F_n)_{n \in \mathbb{N}}$ is a sequence of finite discrete subsets of I, then

$\prod_{n \in \mathbb{N}} F_n$ is compact.

Theorem (M 2008 -preprint-)

“$B^+(I)$ is compact” \iff $\mathbf{T}^{\text{fin}(I)}_\omega$.

Proof.

\Rightarrow Let $(F_n)_{n \in \mathbb{N}}$ be a sequence of finite subsets of I. Let

$D := \bigcup_{n \in \mathbb{N}} F_n$. We show that D is countable (thus $\prod_{n \in \mathbb{N}} F_n$ is compact). We may assume that the F_n are pairwise disjoint. Since $B^+(I)$ is compact, $B^+(D)$ is also compact. For every $n \in \mathbb{N}$, let

$\varepsilon_n : |F_n| \to]0,1[$ be an increasing function such that

$\sum_{n \in \mathbb{N}} \sum_{0 \leq i < |F_n|} \varepsilon_n(i) = 1$; let

$\tilde{F}_n := \{ x \in B^+(D) : x|_{F_n} \text{ is a bijection from } F_n \text{ to } \text{rg}(\varepsilon_n) \}$. Each

\tilde{F}_n is a closed subset of $B^+(D)$ and the sequence $(\tilde{F}_n)_{n \in \mathbb{N}}$ satisfies the FIP. Thus $Z := \bigcap_{n \in \mathbb{N}} \tilde{F}_n$ is non-empty. Let $f = (f_i)_{i \in D} \in Z$.

Each $f|_{F_n}$ defines a well order on F_n, and thus D is countable.
Compactness of $B^+(I)$ (2)

Lemma: $T^\text{fin}(I)_\omega \Rightarrow \text{"}\sigma_1(I)^\mathbb{N} \text{ is compact}\text{"}$. Let $P := \sigma_1(I)^\mathbb{N}$. Let \mathcal{L} be the lattice of subsets of P generated by closed subsets of the form $F_i \times \sigma_1(I)^\mathbb{N}\setminus\{i\}$. Let \mathcal{F} be a filter of \mathcal{L}. Since each closed subset of $\sigma_1(I)^\mathbb{N}$ is finite or contains ∞, we can build by recursion a sequence $(F_n)_{n \in \mathbb{N}}$ of finite subsets of $\sigma_1(I)^\mathbb{N}$ such that for every $n \in \mathbb{N}$, $\prod_{i < n} F_i \times \sigma_1(I)^\mathbb{N}\setminus\{i\}$ is \mathcal{F}-stationary (i.e. meets every element of \mathcal{F}). Then, using $T^\text{fin}(I)_\omega$, the space $F := \prod_{i \in \mathbb{N}} F_i$ is compact and non-empty. Now $\{F \cap Z : Z \in \mathcal{F}\}$ is a family of closed subsets of F satisfying the FIP, thus $\bigcap \mathcal{F} \neq \emptyset$. Proposition If $\sigma_1(I)^\mathbb{N}$ is compact, then $\prod_{n \in \mathbb{N}} \sigma_2(n+1)^\mathbb{N}$ and thus $B^+(I)$ is compact.
Compactness of $B^+(I)$ (2)

Lemma: $T_{\omega}^{\text{fin}(I)} \Rightarrow \text{“}\sigma_1(I)^\mathbb{N}\text{ is compact”}$.

Let $P := \sigma_1(I)^\mathbb{N}$. Let \mathcal{L} be the lattice of subsets of P generated by closed subsets of the form $F_i \times \sigma_1(I)^\mathbb{N}\{i\}$. Let \mathcal{F} be a filter of \mathcal{L}.
Compactness of $B^+(I)$ (2)

Lemma: $T^{\text{fin}(I)}_\omega \Rightarrow \text{"}\sigma_1(I)^\mathbb{N}\text{ is compact"}.$

Let $P := \sigma_1(I)^\mathbb{N}$. Let \mathcal{L} be the lattice of subsets of P generated by closed subsets of the form $F_i \times \sigma_1(I)^\mathbb{N}\setminus\{i\}$. Let \mathcal{F} be a filter of \mathcal{L}. Since each closed subset of $\sigma_1(I)$ is finite or contains ∞, we can build by recursion a sequence $(F_n)_{n \in \mathbb{N}}$ of finite subsets of $\sigma_1(I)$ such that for every $n \in \mathbb{N}$, $\prod_{i < n} F_i \times \sigma_1(I)^\mathbb{N}\setminus n$ is \mathcal{F}-stationnar (i.e. meets every element of \mathcal{F}).
Lemma: $T^{\text{fin}(I)}_\omega \Rightarrow \text{“}\sigma_1(I)^\mathbb{N} \text{ is compact”}$.

Let $P := \sigma_1(I)^\mathbb{N}$. Let \mathcal{L} be the lattice of subsets of P generated by closed subsets of the form $F_i \times \sigma_1(I)^\mathbb{N}\{i\}$. Let \mathcal{F} be a filter of \mathcal{L}. Since each closed subset of $\sigma_1(I)$ is finite or contains ∞, we can build by recursion a sequence $(F_n)_{n \in \mathbb{N}}$ of finite subsets of $\sigma_1(I)$ such that for every $n \in \mathbb{N}$, $\prod_{i \leq n} F_i \times \sigma_1(I)^\mathbb{N}\{n\}$ is \mathcal{F}-stationnar (i.e. meets every element of \mathcal{F}). Then, using $T^{\text{fin}(I)}_\omega$, the space $F := \prod_{i \in \mathbb{N}} F_i$ is compact and non-empty.
Compactness of $B^+(I)$ (2)

Lemma: $T^{\text{fin}(I)}_\omega \Rightarrow \text{"}\sigma_1(I)^N\text{ is compact".}$

Let $P := \sigma_1(I)^N$. Let \mathcal{L} be the lattice of subsets of P generated by closed subsets of the form $F_i \times \sigma_1(I)^N \setminus \{i\}$. Let \mathcal{F} be a filter of \mathcal{L}. Since each closed subset of $\sigma_1(I)$ is finite or contains ∞, we can build by recursion a sequence $(F_n)_{n \in \mathbb{N}}$ of finite subsets of $\sigma_1(I)$ such that for every $n \in \mathbb{N}$, $\prod_{i < n} F_i \times \sigma_1(I)^N \setminus n$ is \mathcal{F}-stationnary (i.e. meets every element of \mathcal{F}). Then, using $T^{\text{fin}(I)}_\omega$, the space $F := \prod_{i \in \mathbb{N}} F_i$ is compact and non-empty. Now $\{F \cap Z : Z \in \mathcal{F}\}$ is a family of closed subsets of F satisfying the FIP, thus $\cap \mathcal{F} \neq \emptyset$.
Compactness of $B^+(I)$ (2)

Lemma: $T_{\omega}^{\text{fin}(I)} \Rightarrow \text{“} \sigma_1(I)^\mathbb{N} \text{ is compact”}$.

Let $P := \sigma_1(I)^\mathbb{N}$. Let \mathcal{L} be the lattice of subsets of P generated by closed subsets of the form $F_i \times \sigma_1(I)^\mathbb{N}\setminus\{i\}$. Let \mathcal{F} be a filter of \mathcal{L}. Since each closed subset of $\sigma_1(I)$ is finite or contains ∞, we can build by recursion a sequence $(F_n)_{n \in \mathbb{N}}$ of finite subsets of $\sigma_1(I)$ such that for every $n \in \mathbb{N}$, $\prod_{i < n} F_i \times \sigma_1(I)^\mathbb{N}\setminus n$ is \mathcal{F}-stationnary (i.e. meets every element of \mathcal{F}). Then, using $T_{\omega}^{\text{fin}(I)}$, the space $F := \prod_{i \in \mathbb{N}} F_i$ is compact and non-empty. Now $\{F \cap Z : Z \in \mathcal{F}\}$ is a family of closed subsets of F satisfying the FIP, thus $\cap \mathcal{F} \neq \emptyset$.

Proposition

If $\sigma_1(I)^\mathbb{N}$ is compact, then $\prod_{n \in \mathbb{N}} \sigma_2^{n+1}(I)$ -and thus $B^+(I)$- is compact.
Compactness of $B^+ (I)$ (3)

Using Kelley’s argument, $T^\text{fin}(I)$ implies the following statement:
Compactness of $B^+(I)$ (3)

Using Kelley's argument, $T_{\omega}^{\text{fin}(I)}$ implies the following statement: $\text{AC}_{\omega}^{\text{fin}(I)}$: "Every sequence $(F_n)_{n \in \mathbb{N}}$ of non-empty finite subsets of I has a non-empty product."

Consequence

One cannot prove in ZF that $B^+(\mathcal{P}(\mathbb{R}))$ is compact.
Compactness of $B^+(I)$ (3)

Using Kelley’s argument, $T_{\omega}^{\text{fin}(I)}$ implies the following statement: $\text{AC}_{\omega}^{\text{fin}(I)}$: “Every sequence $(F_n)_{n \in \mathbb{N}}$ of non-empty finite subsets of I has a non-empty product.”

Consequence
One cannot prove in ZF that $B^+(\mathcal{P}(\mathbb{R}))$ is compact.

Proof.
Consider a model of ZF with a sequence $(P_n)_{n \in \mathbb{N}}$ of pairs of subsets of \mathbb{R} such that $\prod_{n \in \mathbb{N}} P_n$ is empty.
Compactness of $B^+(I)$ (3)

Using Kelley’s argument, $T_{\omega}^{\text{fin}(I)}$ implies the following statement:

$\text{AC}_{\omega}^{\text{fin}(I)}$: “Every sequence $(F_n)_{n \in \mathbb{N}}$ of non-empty finite subsets of I has a non-empty product.”

Consequence

One cannot prove in ZF that $B^+(\mathcal{P}(\mathbb{R}))$ is compact.

Proof.

Consider a model of ZF with a sequence $(P_n)_{n \in \mathbb{N}}$ of pairs of subsets of \mathbb{R} such that $\prod_{n \in \mathbb{N}} P_n$ is empty.
Compactness of $B^+(I)$ (3)

Using Kelley’s argument, $T^\text{fin}(I)$ implies the following statement:

$AC^\text{fin}(I)$: “Every sequence $(F_n)_{n \in \mathbb{N}}$ of non-empty finite subsets of I has a non-empty product.”

Consequence

One cannot prove in ZF that $B^+(\mathcal{P}(\mathbb{R}))$ is compact.

Proof.

Consider a model of ZF with a sequence $(P_n)_{n \in \mathbb{N}}$ of pairs of subsets of \mathbb{R} such that $\prod_{n \in \mathbb{N}} P_n$ is empty. Let $I := \bigcup_{n \in \mathbb{N}} P_n$.
Compactness of $B^+(I)$ (3)

Using Kelley’s argument, $T^\text{fin}(I)$ implies the following statement:

$\text{AC}^\text{fin}(I)$: “Every sequence $(F_n)_{n \in \mathbb{N}}$ of non-empty finite subsets of I has a non-empty product.”

Consequence

One cannot prove in ZF that $B^+(\mathcal{P}(\mathbb{R}))$ is compact.

Proof.

Consider a model of ZF with a sequence $(P_n)_{n \in \mathbb{N}}$ of pairs of subsets of \mathbb{R} such that $\prod_{n \in \mathbb{N}} P_n$ is empty. Let $I := \bigcup_{n \in \mathbb{N}} P_n$. Then $\text{AC}^\text{fin}(I)$ does not hold, thus $B^+(I)$ is not compact.
Compactness of $B^+(I)$ (3)

Using Kelley's argument, $T_\omega^{\text{fin}(I)}$ implies the following statement:

$AC_\omega^{\text{fin}(I)}$: “Every sequence $(F_n)_{n \in \mathbb{N}}$ of non-empty finite subsets of I has a non-empty product.”

Consequence

One cannot prove in ZF that $B^+(\mathcal{P}(\mathbb{R}))$ is compact.

Proof.

Consider a model of ZF with a sequence $(P_n)_{n \in \mathbb{N}}$ of pairs of subsets of \mathbb{R} such that $\prod_{n \in \mathbb{N}} P_n$ is empty. Let $I := \bigcup_{n \in \mathbb{N}} P_n$. Then $AC^{\text{fin}(I)}$ does not hold, thus $B^+(I)$ is not compact. But $I \subseteq \mathcal{P}(\mathbb{R})$, so $B^+(\mathcal{P}(\mathbb{R}))$ is not compact.

Proposition

$AC_\mathbb{N}^{\text{fin}} \iff T_\mathbb{N}^{\text{fin}}$.
Some questions

Given a set I, $AETF$:

"$B^+(I)$ is compact"; "The subset $B_1(I) := \{x = (x_i)_{i \in I} \in [-1, 1]^I : \sum_i |x_i| \leq 1\}$ of $[0, 1]^I$ is compact"; "The closed unit ball $B_2(I)$ of the Hilbert space $\ell^2(I)$ is compact in the weak topology."
Some questions

Given a set I, \textit{AETF}:

“$B^+(I)$ is compact”; “The subset $B_1(I) := \{x = (x_i)_{i \in I} \in [-1, 1]^I : \sum_i |x_i| \leq 1\}$ of $[0, 1]^I$ is compact”; “The closed unit ball $B_2(I)$ of the Hilbert space $\ell^2(I)$ is compact in the weak topology.”
Some questions

Given a set I, AETF:

“$B^+(I)$ is compact”; “The subset $B_1(I) := \{x = (x_i)_{i \in I} \in [-1, 1]^I : \sum_i |x_i| \leq 1\}$ of $[0, 1]^I$ is compact”; “The closed unit ball $B_2(I)$ of the Hilbert space $\ell^2(I)$ is compact in the weak topology.”

Consider the following statements:

AH: *The closed unit ball of a Hilbert space is weakly compact.*
Some questions

Given a set I, $AETF$:

“$B^+(I)$ is compact”; “The subset $B_1(I) := \{ x = (x_i)_{i \in I} \in [-1, 1]^I : \sum_i |x_i| \leq 1 \}$ of $[0, 1]^I$ is compact”; “The closed unit ball $B_2(I)$ of the Hilbert space $\ell^2(I)$ is compact in the weak topology.”

Consider the following statements:

AH: The closed unit ball of a Hilbert space is weakly compact.

BH: “Every Hilbert space has a Hilbertian basis.”
Some questions

Given a set I, AETF:

“$B^+(I)$ is compact”; “The subset

$B_1(I) := \{ x = (x_i)_{i \in I} \in [-1, 1]^I : \sum_i |x_i| \leq 1 \}$ of $[0, 1]^I$ is compact”; “The closed unit ball $B_2(I)$ of the Hilbert space $\ell^2(I)$ is compact in the weak topology.”

Consider the following statements:

AH: *The closed unit ball of a Hilbert space is weakly compact.*

BH: “*Every Hilbert space has a Hilbertian basis.*”

Then $\textbf{AH} \Rightarrow \textbf{AC}^{\text{fin}}$ and $\textbf{AC}^{\text{fin}} + \textbf{BH} \Rightarrow \textbf{AH}$.
Some questions

Given a set \(I \), **AETF**:

“\(B^+(I) \) is compact”; “The subset \(B_1(I) := \{ x = (x_i)_{i \in I} \in [-1, 1]^I : \sum_i |x_i| \leq 1 \} \) of \([0, 1]^I\) is compact”; “The closed unit ball \(B_2(I) \) of the Hilbert space \(\ell^2(I) \) is compact in the weak topology.”

Consider the following statements:

AH: *The closed unit ball of a Hilbert space is weakly compact.*

BH: “Every Hilbert space has a Hilbertian basis.”

Then \(\text{AH} \Rightarrow \text{AC}^{\text{fin}} \) and \(\text{AC}^{\text{fin}} + \text{BH} \Rightarrow \text{AH} \).

Questions

Does \(\text{AC}^{\text{fin}} \) imply \(\text{AH} \)?
Some questions

Given a set I, $AETF$:

“$B^+(I)$ is compact”; “The subset

$B_1(I) := \{ x = (x_i)_{i \in I} \in [-1, 1]^I : \sum_i |x_i| \leq 1 \}$ of $[0, 1]^I$ is compact”; “The closed unit ball $B_2(I)$ of the Hilbert space $\ell^2(I)$ is compact in the weak topology.”

Consider the following statements:

AH: *The closed unit ball of a Hilbert space is weakly compact.*

BH: *“Every Hilbert space has a Hilbertian basis.”*

Then $AH \Rightarrow AC_{\text{fin}}$ and $AC_{\text{fin}} + BH \Rightarrow AH$.

Questions

Does AC_{fin} imply AH?
Some questions

Given a set I, $AETF$:

“$B^+(I)$ is compact”; “The subset $B_1(I) := \{ x = (x_i)_{i \in I} \in [-1, 1]^I : \sum_i |x_i| \leq 1 \}$ of $[0, 1]^I$ is compact”; “The closed unit ball $B_2(I)$ of the Hilbert space $l^2(I)$ is compact in the weak topology.”

Consider the following statements:

\textbf{AH}: The closed unit ball of a Hilbert space is weakly compact.

\textbf{BH}: “Every Hilbert space has a Hilbertian basis.”

Then $\textbf{AH} \Rightarrow \textbf{AC}^{\text{fin}}$ and $\textbf{AC}^{\text{fin}} + \textbf{BH} \Rightarrow \textbf{AH}$.

Questions

Does \textbf{AC}^{fin} imply \textbf{AH}?

Does \textbf{BH} imply \textbf{AC} or some classical consequence of \textbf{AC}?
Some questions

Given a set I, AETF:

"$B^+(I)$ is compact"; "The subset
$B_1(I) := \{x = (x_i)_{i \in I} \in [-1, 1]^I : \sum_i |x_i| \leq 1\}$ of $[0, 1]^I$ is compact"; "The closed unit ball $B_2(I)$ of the Hilbert space $\ell^2(I)$ is compact in the weak topology."

Consider the following statements:

AH: *The closed unit ball of a Hilbert space is weakly compact.*

BH: *“Every Hilbert space has a Hilbertian basis.”*

Then $\text{AH} \Rightarrow \text{AC}^{\text{fin}}$ and $\text{AC}^{\text{fin}} + \text{BH} \Rightarrow \text{AH}$.

Questions

Does AC^{fin} imply AH?

Does BH imply AC or some classical consequence of AC?

Is BH provable in ZF? in $\text{ZF} + \text{AC}^{\text{fin}}$? What about the existence of Markhushevich bases in WCG Banach spaces?

