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The Axiom of Choice

AC (Axiom of Choice)
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f | — UjejA; such that Vi € | f(i) € A;.
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The Axiom of Choice

AC (Axiom of Choice)

Given a family (A;)ie; of non-empty sets, there exists a function
f | — UjejA; such that Vi € | f(i) € A;.

The function f is called a choice function for the family (A;);c;.

We work in set-theory without the Axiom of Choice ZF:

&, extension, pair, union, power-set, infinity, regularity,
replacement (and separation).
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A topological equivalent of AC

Say that a topological space X is compact if every family of closed
subsets of X satisfying the FIP (Finite Intersection Property) has a
non-empty intersection.

T (Tychonov axiom)

If (Xi)ier is a family of compact spaces, then the product space
[I;c) Xi is also compact.

Theorem (Kelley 1950 [7])
AC & T.

Proof.

Let 0o be some set ¢ U;X;. For each i €, let Xj := X; U {oo}.
Endow each X; with the topology generated by {o0} and cofinite
subsets of X;. Each space X; is compact (and T;). Using the
axiom T, the space I1; Xi is compact. For each i €/, let

Fi:=Xi x [,z X:. The family of closed sets (F;); satisfies the
FIP so NjF; #+ @. O
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Distinct consequences of the “Tychonov axiom” (1)

T, “Tychonov for Hausdorff spaces”
If (Xi)ies is a family of Hausdorff compact spaces, then the

product space [[;c, Xi is compact.
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Distinct consequences of the “Tychonov axiom” (1)

T, “Tychonov for Hausdorff spaces”

If (Xi)iey is a family of Hausdorff compact spaces, then the
product space [[;c, Xi is compact.

AC'i" “Finite Axiom of Choice”

Every family of finite non-empty sets has a choice function.

AC/" “countable ACfin"

Every sequence (An)nen of finite non-empty sets has a choice
function.

Given a set /, we also consider the following statement:

AC() “Choice in finite subsets of /”
The set of finite non-empty subsets of | has a choice function.
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Distinct consequences of the “Tychonov axiom” (2)

Known facts

» AC = T, = ACfin = ACfin

» The converse implications are false:
T, # AC (Halpern-Levy 67, [3])
ACfin 4 T,

ACfin 4 ACFin

» ACHM s not provable in ZF.

v

v

v

Proof.
For T2 = ACfi" use Kelley's argument.
For the “non implications”, see References in Jech [5] or Howard

and Rubin [4]. O

Our aim is to prove that ACK{' (resp. ACfin ) is equivalent to the
following statement: “The closed unit ball of a Hilbert space with
a hilbertian basis is compact (resp. closely compact) in the weak
topology.”
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Say that a compact topological space X is closely compact if there
exists a function ® which associates to every non-empty closed
subset F of X an element ®(F) € F.

Examples

1. A complete linearly ordered set endowed with the order
topology is closely compact (and Hausdorff).

2. Given a set X, the “one-point compactification”
X := X U {0} of the discrete space X is compact (and
Hausdorff). (The open subsets of X are subsets of X and
cofinite subsets of X containing c0.) Moreover,
AC™X) o X is closely compact.
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ZF-provable consequences of Tychonov (2)

Theorem (F-M 1998, [2])

For every ordinal cv, and every family (X, ®;)icq of T1 closely
compact spaces, the space [[..,, Xi is closely compact.

Proof.

Proof by transfinite recursion on a. Ol

i€

In particular, [0,1]* (and so [0,1]") is closely compact.

Corollary
AC () & “The space [I,exon(!) is closely compact.”.

Proof.

With AC™() 1 (1) is closely compact: let & be a witness of this
close compactness. Thus, each space (al(l))n is closely compact
with a witness definable frome ®. So each space o,(/) (continuous
image of (01(/))" by Up) is closely compact with a witness
definable frome ®. O
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Given n € N, consider the following closed subsets of [—1,1]':
By(1) := {x = (xi)ies € [-1,1]' : 32, |xi|P <1} for 1 < p < +o0;
BY(1) = {x=(x)ier € [0,1]": 3, % <1};

on(l):={F CI: F has at most n elements}.

Remarks

1. B(!) is compact (resp. closely compact) iff By(/) is compact
(resp. closely compact) iff By(1) is compact (resp. closely
compact).

With T, the space B (/) is compact.

o1(l) is the one-point compactification of the discrete space /.
If B+(/) is closely compact, then AC™() holds.

The function Uy, : 01(/)" — (/) which maps each (Fj)i<i<n
to U.1<,-§,1F,- is continuous and onto (and has a section if
AC ) holds).

AN
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Close compactness of B*(/) (1)

Our aim is to prove the following result:
Theorem, M.M., preprint [9]
Let | be a set. Then AC"") < “B*(]) is closely compact”.

In particular, BT (R) is closely compact. This enhances results in
(M.M. 2008 [8]).

Consequence: AC™™ is equivalent to the following statement: “The
closed unit ball of a Hilbert space with a hilbertian basis is weakly
compact.”
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(En)neN + D _pen 31+ Then ¢ is continuous, onto (with a
definable section). Let ¢ := ¢ : ({0,1}")' — [0,1]': then ¢ is
continuous and onto (with a definable section). Let

Z =1 [BF(1)]: then Z is a closed subset of ({0, 1}N)l and one
easily checks that Z C [, oy oonri(1). And 4[Z] = BT (/). O

Proof.of the main Theorem
If AC"() holds, then B, (1) is closely compact.

Proof.

With ACfin(), [Tnen on(!) is closely compact (Corollary of p. 8).

Thus the continuous image [[,,cy 02n+1(/) is also closely compact.

We end with Benyamini, Rudin et Wage's result. O 17
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build by recursion a sequence (F,)nen of finite subsets of (/)
such that for every n € N, [, Fi x o1 (1)N\" is F-stationnar (i.e.
meets every element of F). Then, using Tj"(l), the space

F :=[ley Fi is compact and non-empty. Now {FNZ: Z € F}
is a family of closed subsets of F satisfying the FIP, thus NF # &.

Proposition
If o1(1)N is compact, then [1,en 02n1(1) -and thus B*(1)- is
compact.
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Some questions

Given a set I, AETF:

“BT(I) is compact”; “The subset

Bi(1) :={x = (x)ies € [-1,1]" : 3. |x| <1} of [0,1] is
compact”; “The closed unit ball By(/) of the Hilbert space ¢2(/) is
compact in the weak topology.”
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AH: The closed unit ball of a Hilbert space is weakly compact.

BH: “Every Hilbert space has a Hilbertian basis.”
Then AH = ACf" and ACf"+BH = AH.

Questions

Does ACfin imply AH?

Does BH imply AC or some classical consequence of AC?

Is BH provable in ZF? in ZF+ACi"? What about the existence of
Markhushevich bases in WCG Banach spaces?
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