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The Axiom of Choice

AC (Axiom of Choice)

Given a family (Ai )i∈I of non-empty sets, there exists a function
f : I → ∪i∈I Ai such that ∀i ∈ I f (i) ∈ Ai .

The function f is called a choice function for the family (Ai )i∈I .

We work in set-theory without the Axiom of Choice ZF:

∅, extension, pair, union, power-set, infinity, regularity,
replacement (and separation).
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Examples of “choice functions” existing in ZF

Let (Ai )i∈I be a family of non-empty sets.

In the following cases, this family has a choice function (in ZF):

1. (Ai , ∗i )i∈I is a family of groups;

2. (Ai )i∈I is a family of subsets of Q (or of any well-orderable
set);

3. (Ai )i∈I is a family of closed subsets of R (or of any
conditionnaly complete linear order)

4. (Ai )i∈I is a family of closed subsets of Rn

5. . . .
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A topological equivalent of AC

Say that a topological space X is compact if every family of closed
subsets of X satisfying the FIP (Finite Intersection Property) has a
non-empty intersection.

T (Tychonov axiom)

If (Xi )i∈I is a family of compact spaces, then the product space∏
i∈I Xi is also compact.

Theorem (Kelley 1950 [7])

AC⇔ T.

Proof.
Let ∞ be some set /∈ ∪i Xi . For each i ∈ I , let X̂i := Xi ∪ {∞}.
Endow each X̂i with the topology generated by {∞} and cofinite
subsets of X̂i . Each space X̂i is compact (and T1). Using the
axiom T, the space

∏
i Xi is compact. For each i ∈ I , let

Fi := Xi ×
∏

t 6=i X̂t . The family of closed sets (Fi )i satisfies the
FIP so ∩i Fi 6= ∅.
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Distinct consequences of the “Tychonov axiom” (1)

T2 “Tychonov for Hausdorff spaces”

If (Xi )i∈I is a family of Hausdorff compact spaces, then the
product space

∏
i∈I Xi is compact.

ACfin “Finite Axiom of Choice”
Every family of finite non-empty sets has a choice function.

ACfin
N “countable ACfin”

Every sequence (An)n∈N of finite non-empty sets has a choice
function.

Given a set I , we also consider the following statement:

ACfin(I ) “Choice in finite subsets of I”
The set of finite non-empty subsets of I has a choice function.
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Distinct consequences of the “Tychonov axiom” (2)

Known facts

I AC⇒ T2 ⇒ ACfin ⇒ ACfin
N

I The converse implications are false:

I T2 6⇒ AC (Halpern-Levy 67, [3])
I ACfin 6⇒ T2

I ACfin
N 6⇒ ACfin

I ACfin
N is not provable in ZF.

Proof.
For T2 ⇒ ACfin, use Kelley’s argument.
For the “non implications”, see References in Jech [5] or Howard
and Rubin [4].

Our aim is to prove that ACfin
N (resp. ACfin ) is equivalent to the

following statement: “The closed unit ball of a Hilbert space with
a hilbertian basis is compact (resp. closely compact) in the weak
topology.”
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ZF-provable consequences of Tychonov (1)

Say that a compact topological space X is closely compact if there
exists a function Φ which associates to every non-empty closed
subset F of X an element Φ(F ) ∈ F .

Examples

1. A complete linearly ordered set endowed with the order
topology is closely compact (and Hausdorff).

2. Given a set X , the “one-point compactification”
X̂ := X ∪ {∞} of the discrete space X is compact (and
Hausdorff). (The open subsets of X̂ are subsets of X and
cofinite subsets of X̂ containing ∞.) Moreover,
ACfin(X ) ⇔ X̂ is closely compact.
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ZF-provable consequences of Tychonov (2)

Theorem (F-M 1998, [2])

For every ordinal α, and every family (Xi ,Φi )i∈α of T1 closely
compact spaces, the space

∏
i∈α Xi is closely compact.

Proof.
Proof by transfinite recursion on α.

In particular, [0, 1]α (and so [0, 1]N) is closely compact.

Corollary

ACfin(I ) ⇔ “The space
∏

n∈N σn(I ) is closely compact.”.

Proof.
With ACfin(I ), σ1(I ) is closely compact: let Φ be a witness of this
close compactness. Thus, each space

(
σ1(I )

)n
is closely compact

with a witness definable frome Φ. So each space σn(I ) (continuous
image of

(
σ1(I )

)n
by ∪n) is closely compact with a witness

definable frome Φ.
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The space B+(I )

Given n ∈ N, consider the following closed subsets of [−1, 1]I :

Bp(I ) := {x = (xi )i∈I ∈ [−1, 1]I :
∑

i |xi |p ≤ 1} for 1 ≤ p < +∞;
B+(I ) := {x = (xi )i∈I ∈ [0, 1]I :

∑
i xi ≤ 1};

σn(I ) := {F ⊆ I : F has at most n elements}.

Remarks

1. B+(I ) is compact (resp. closely compact) iff B1(I ) is compact
(resp. closely compact) iff B2(I ) is compact (resp. closely
compact).

2. With T2, the space B+(I ) is compact.

3. σ1(I ) is the one-point compactification of the discrete space I .

4. If B+(I ) is closely compact, then ACfin(I ) holds.

5. The function ∪n : σ1(I )n → σn(I ) which maps each (Fi )1≤i≤n

to ∪1≤i≤nFi is continuous and onto (and has a section if
ACfin(I ) holds).
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Close compactness of B+(I ) (1)

Our aim is to prove the following result:

Theorem, M.M., preprint [9]

Let I be a set. Then ACfin(I ) ⇔ “B+(I ) is closely compact”.

In particular, B+(R) is closely compact. This enhances results in
(M.M. 2008 [8]).

Consequence: ACfin is equivalent to the following statement: “The
closed unit ball of a Hilbert space with a hilbertian basis is weakly
compact.”
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Close compactness of B+(I ) (2)

Theorem (Benyamini, Rudin et Wage, 1977 [1])

The space B+(I ) is a continuous image of a closed subset of the
product space

∏
n∈N σ2n+1(I ).

Proof.
(sketch) Let φ : {0, 1}N → [0, 1] be the function
(εn)n∈N 7→

∑
n∈N

εn
2n+1 . Then φ is continuous, onto (with a

definable section). Let ψI := φI :
(
{0, 1}N

)I → [0, 1]I : then ψI is
continuous and onto (with a definable section). Let

Z := ψ−1
I [B+(I )]: then Z is a closed subset of

(
{0, 1}N

)I
and one

easily checks that Z ⊆
∏

n∈N σ2n+1(I ). And ψI [Z ] = B+(I ).

Proof of the main Theorem
If ACfin(I ) holds, then B+(I ) is closely compact.

Proof.
With ACfin(I ),

∏
n∈N σn(I ) is closely compact (Corollary of p. 8).

Thus the continuous image
∏

n∈N σ2n+1(I ) is also closely compact.
We end with Benyamini, Rudin et Wage’s result.

11/17



Close compactness of B+(I ) (2)

Theorem (Benyamini, Rudin et Wage, 1977 [1])

The space B+(I ) is a continuous image of a closed subset of the
product space

∏
n∈N σ2n+1(I ).

Proof.
(sketch) Let φ : {0, 1}N → [0, 1] be the function
(εn)n∈N 7→

∑
n∈N

εn
2n+1 . Then φ is continuous, onto (with a

definable section). Let ψI := φI :
(
{0, 1}N

)I → [0, 1]I : then ψI is
continuous and onto (with a definable section). Let

Z := ψ−1
I [B+(I )]: then Z is a closed subset of

(
{0, 1}N

)I
and one

easily checks that Z ⊆
∏

n∈N σ2n+1(I ). And ψI [Z ] = B+(I ).

Proof of the main Theorem
If ACfin(I ) holds, then B+(I ) is closely compact.

Proof.
With ACfin(I ),

∏
n∈N σn(I ) is closely compact (Corollary of p. 8).

Thus the continuous image
∏

n∈N σ2n+1(I ) is also closely compact.
We end with Benyamini, Rudin et Wage’s result.

11/17



Close compactness of B+(I ) (2)

Theorem (Benyamini, Rudin et Wage, 1977 [1])

The space B+(I ) is a continuous image of a closed subset of the
product space

∏
n∈N σ2n+1(I ).

Proof.
(sketch) Let φ : {0, 1}N → [0, 1] be the function
(εn)n∈N 7→

∑
n∈N

εn
2n+1 . Then φ is continuous, onto (with a

definable section). Let ψI := φI :
(
{0, 1}N

)I → [0, 1]I : then ψI is
continuous and onto (with a definable section). Let

Z := ψ−1
I [B+(I )]: then Z is a closed subset of

(
{0, 1}N

)I
and one

easily checks that Z ⊆
∏

n∈N σ2n+1(I ). And ψI [Z ] = B+(I ).

Proof of the main Theorem
If ACfin(I ) holds, then B+(I ) is closely compact.

Proof.
With ACfin(I ),

∏
n∈N σn(I ) is closely compact (Corollary of p. 8).

Thus the continuous image
∏

n∈N σ2n+1(I ) is also closely compact.
We end with Benyamini, Rudin et Wage’s result.

11/17



Close compactness of B+(I ) (2)

Theorem (Benyamini, Rudin et Wage, 1977 [1])

The space B+(I ) is a continuous image of a closed subset of the
product space

∏
n∈N σ2n+1(I ).

Proof.
(sketch) Let φ : {0, 1}N → [0, 1] be the function
(εn)n∈N 7→

∑
n∈N

εn
2n+1 . Then φ is continuous, onto (with a

definable section). Let ψI := φI :
(
{0, 1}N

)I → [0, 1]I : then ψI is
continuous and onto (with a definable section). Let

Z := ψ−1
I [B+(I )]: then Z is a closed subset of

(
{0, 1}N

)I
and one

easily checks that Z ⊆
∏

n∈N σ2n+1(I ). And ψI [Z ] = B+(I ).

Proof of the main Theorem
If ACfin(I ) holds, then B+(I ) is closely compact.

Proof.
With ACfin(I ),

∏
n∈N σn(I ) is closely compact (Corollary of p. 8).

Thus the continuous image
∏

n∈N σ2n+1(I ) is also closely compact.
We end with Benyamini, Rudin et Wage’s result.

11/17



Close compactness of B+(I ) (2)

Theorem (Benyamini, Rudin et Wage, 1977 [1])

The space B+(I ) is a continuous image of a closed subset of the
product space

∏
n∈N σ2n+1(I ).

Proof.
(sketch) Let φ : {0, 1}N → [0, 1] be the function
(εn)n∈N 7→

∑
n∈N

εn
2n+1 . Then φ is continuous, onto (with a

definable section). Let ψI := φI :
(
{0, 1}N

)I → [0, 1]I : then ψI is
continuous and onto (with a definable section). Let

Z := ψ−1
I [B+(I )]: then Z is a closed subset of

(
{0, 1}N

)I
and one

easily checks that Z ⊆
∏

n∈N σ2n+1(I ). And ψI [Z ] = B+(I ).

Proof of the main Theorem
If ACfin(I ) holds, then B+(I ) is closely compact.

Proof.
With ACfin(I ),

∏
n∈N σn(I ) is closely compact (Corollary of p. 8).

Thus the continuous image
∏

n∈N σ2n+1(I ) is also closely compact.
We end with Benyamini, Rudin et Wage’s result. 11/17



Compactness of B+(I ) (1)
Given a set I , consider the following axiom:

T
fin(I )
ω : If (Fn)n∈N is a sequence of finite discrete subsets of I , then∏
n∈N Fn is compact.

Theorem (M 2008 -preprint-)

“B+(I ) is compact” ⇔ T
fin(I )
ω .

Proof.
⇒ Let (Fn)n∈N be a sequence of finite subsets of I . Let
D := ∪n∈NFn. We show that D is countable (thus

∏
n∈N Fn is

compact). We may assume that the Fn are pairwise disjoint. Since
B+(I ) is compact, B+(D) is also compact. For every n ∈ N, let
εn : |Fn| →]0, 1[ be an increasing function such that∑

n∈N
∑

0≤i<|Fn| εn(i) = 1; let

F̃n := {x ∈ B+(D) : x�Fn is a bijection from Fn to rg(εn)}. Each
F̃n is a closed subset of B+(D) and the sequence (F̃n)n∈N satisfies
the FIP . Thus Z := ∩n∈NF̃n is non-empty. Let f = (fi )i∈D ∈ Z .
Each f�Fn defines a well order on Fn, and thus D is countable.
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Compactness of B+(I ) (2)

Lemma: T
fin(I )
ω ⇒ “σ1(I )N is compact”.

Let P := σ1(I )N. let L be the lattice of subsets of P generated by

closed subsets of the form Fi × σ1(I )N\{i}. Let F be a filter of L.

Since each closed subset of σ1(I ) is finite or contains ∞, we can
build by recursion a sequence (Fn)n∈N of finite subsets of σ1(I )

such that for every n ∈ N,
∏

i<n Fi × σ1(I )N\n is F-stationnar (i.e.

meets every element of F). Then, using T
fin(I )
ω , the space

F :=
∏

i∈N Fi is compact and non-empty. Now {F ∩ Z : Z ∈ F}
is a family of closed subsets of F satisfying the FIP, thus ∩F 6= ∅.

Proposition

If σ1(I )N is compact, then
∏

n∈N σ2n+1(I ) -and thus B+(I )- is
compact.
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Compactness of B+(I ) (3)

Using Kelley’s argument, T
fin(I )
ω implies the following statement:

AC
fin(I )
ω : “Every sequence (Fn)n∈N of non-empty finite subsets of I

has a non-empty product.”

Consequence

One cannot prove in ZF that B+(P(R)) is compact.

Proof.
Consider a model of ZF with a sequence (Pn)n∈N of pairs of
subsets of R such that

∏
n∈N Pn is empty.Let I := ∪n∈NPn. Then

ACfin(I ) does not hold, thus B+(I ) is not compact.But I ⊆ P(R),
so B+(P(R)) is not compact.

Proposition

ACfin
N ⇔ Tfin

N .
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Some questions

Given a set I , AETF:
“B+(I ) is compact”; “The subset
B1(I ) := {x = (xi )i∈I ∈ [−1, 1]I :

∑
i |xi | ≤ 1} of [0, 1]I is

compact”; “The closed unit ball B2(I ) of the Hilbert space `2(I ) is
compact in the weak topology.”

Consider the following statements:
AH: The closed unit ball of a Hilbert space is weakly compact.
BH: “Every Hilbert space has a Hilbertian basis.”
Then AH⇒ ACfin and ACfin+BH⇒ AH.

Questions
Does ACfin imply AH?
Does BH imply AC or some classical consequence of AC?
Is BH provable in ZF? in ZF+ACfin? What about the existence of
Markhushevich bases in WCG Banach spaces?
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