UNIFORM SMOOTHNESS ENTAILS HAHN-BANACH
EDMOND ALBIUS, MARIANNE MORILLON

ABSTRACT. We show in set theory ZF (without the Axiom of Choice), that uniformly
smooth normed spaces satisfy an effective and geometric form of the Hahn-Banach property.
We also compare in ZF the two notions of Gateaux differentiability and smoothness of a
norm, and we obtain a new equivalent of the Hahn-Banach axiom.

1. INTRODUCTION

We work in Zermelo-Fraenkel set theory ZF (without the Axiom of Choice), and we denote
by ZFC set theory with the Axiom of Choice. Our paper deals with the rdle of the Axiom
of Choice in abstract functional analysis, and more particularly, with the necessity of using
the Axiom of Choice when invoking some consequence of the following Hahn-Banach aziom
HB :

(HB, Hahn-Banach). For every real vector space E, for every sublinear mapping p : E —
R, for every subspace F of E and every linear mapping f : I — R which is dominated by p
(i.e. satisfying Ve € F f(x) < p(zx)), there exists a linear mapping g : E — R which extends
f and such that g < p.

Here, a mapping p : £ — R is said to be sublinear if for every x,y € E and every A € R,
p(x +y) < p(z) + p(y) and p(Ax) = Ap(x).

Recall that HB is a consequence of the Axiom of Choice, but that HB is not provable
in set theory ZF (see [7]). However, several classes of Banach spaces satisfy in ZF some
classical geometric forms of the Hahn-Banach property : for example, see [6] for separable
Banach spaces which are both uniformly convex and Gateaux differentiable (in a constructive
setting) ; see [4] for Hilbert spaces, normed spaces which have a dense well-orderable subset,
and spaces (°(I) (see Notation 2) where I is any set ; see [3] for uniformly convex Géateaux
differentiable Banach spaces, and in particular for spaces LP(B,v) where 1 < p < 400, B is
a boolean algebra, and v : B — R, U {+o0o} is a finitely additive measure... Denoting by w
the first infinite ordinal, consider the following axiom of Dependent Choices :

(DC, Dependent Choices). For every binary relation R on a nonempty set E satisfying
Vo € E Jy € E xRy, there exists a sequence (T,)new Satisfying Vn € w x, R, 1.

In [3], it is also shown in (ZF+DC) that several geometric Hahn-Banach properties hold in
Gateaux differentiable spaces. Note that, obviously DC is a consequence of the Axiom of
Choice, but DC does not imply HB, and HB does not imply DC (see [7]). For a recent
account on links between numerous consequences of the Axiom of Choice, see [5].
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We adopt the following conventions about normed spaces : all vector spaces that we
consider are vector spaces over the field R of real numbers. Given a normed space (E, ||.]),
a real number R > 0 and a point a € F, we denote by B(a, R) the open ball {x € E :
|z —a|| < R}, and we denote by I'(a, R) the closed ball {x € E : ||z —al| < R}. Let
Ip:={z € FE :|z|| <1} and let Sg:={z € E : ||z|| = 1} respectively denote the closed
unit ball and the unit sphere of E. We denote by E’ continuous dual of E, i.e. the vector
space of all continuous linear mappings from F to R ; it is endowed with the dual norm :

for every f € E',[|f| = sup,er, f(2).

Definition 1 (Tangent form to a nonempty convex set). Let (F,||.||) be a normed
space, let C be a closed nonempty convex subset of E such that 0 ¢ C, and let p := inf c¢ |||
be the distance between 0 and C'. An element f € E’ is called a tangent form to C seen
from 0 if and only if f[I'(0, p)] < p < fIC].

Remark 1. In the conditions of Definition 1, supp , f = infc f = p hence [/ f[| = 1.

Remark 2. In the conditions of Definition 1, one can prove in (ZF+HB) that there exists
at least one tangent form to C' seen from 0.

Remark 3. In the conditions of Definition 1, if E is finite-dimensional, one can prove in ZF
(see Lemma 6) that there exists at least one tangent form to C' seen from 0.

Remark 4. More generally, given a nonempty closed convex subset C' of a normed space F,
a point a € E\C, an affine mapping f : F — R, say that f is a tangent form to C' seen from
a if f(a) = 0 and f[['(a,p)] < p < f[C], where p is the distance between a and C. (Recall
that a mapping f : £ — R is said to be affine if there exists a (unique) linear mapping
g : E'— R and a (unique) real number C such that f = g+ C).

In this paper, our aim is to prove in ZF (see Theorem 1), that given a uniformly smooth
normed space (E,||.||), for every nonempty closed convex subset C' of E, and for every
a € E\C, there exists a unique tangent form to C' seen from a ; moreover, this tangent form
is definable from (E,|.||), C' and a. Our proof relies on the following geometric fact (see
Lemma 3) : given a convex set C' which is contained in a thin crown of a uniformly smooth
normed space, for every z,y € C, the two Gateaux differentials at point  and y are close
to one another. As a consequence, it will follow that every uniformly smooth normed space
E satisfies the two following equivalent (see [3]) properties :

Effective Mazur property : There is a mapping ® which, to every ordered
pair (C,a) where C' is a nonempty closed convex subset of E and a € E\C,
associates a tangent form to C' seen from a.

Effective continuous Hahn-Banach property : There is a function ¥
such that, for every continuous sublinear mappingp : E — R, for every vector
subspace I of E, and for every linear mapping f : F' — R satisfying f < pr,
the triple (p, F, f) belongs to dom(¥) and ¥V (p, F, f) is a linear mapping from
E to R extending f and satisfying V(p, F, f) < p.

Notice that HB is equivalent to its “multiple form” :

Given a family (E;)ier of real vector spaces, and a family (p;)ier of sublinear
mappings p; - E; — R, for every family (F});cr of subspaces F; C E; and every
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family (f;)icr of linear mappings f; : F; — R satisfyingVx € F; fi(z) < pi(x)),
there exists a family (g;)ic; of linear mappings g; - E; — R such that for every
1 €1, g; extends f; and g; < p;.

It follows that in (ZF+HB), every normed space satisfies the effective continuous Hahn-
Banach property, hence it also satisfies the Effective Mazur property.

Remark 5. Although in ZFC every uniformly smooth normed space is superreflexive (see [1]),
hence it has an equivalent norm which is both uniformly convex and uniformly smooth
(see [2], Proposition 5.2, page 159), we cannot use these results because the classical proofs
depend on the Axiom of Choice : for example, the proof of the non-existence of bounded
infinite trees in a uniformly smooth Banach space F in [1] (Proposition 4 p.232-235) relies
on the weak compactness of the closed unit ball of E, and this weak compactness cannot be
proved in ZF, even in the case of Hilbert spaces (see [4]).

In Section 5, we will also compare two classical notions of differentiability for a norm :
in (ZF+HB), it is well known (see [1], Proposition 2 p.179) that given a normed space E,
smoothness of the norm at a point a € F\{0} is equivalent to Gateaux differentiability of
the norm at this point, but this equivalence is not provable in ZF (see Sections 5.1 and 5.2) :
this leads us to a new equivalent of the Hahn-Banach axiom (see Proposition 2).

Our paper is organized as follows : in Section 2 we present various notions of differentia-
bility for a norm ; in Section 3 we prove our main result Theorem 1, namely a choiceless
Hahn-Banach theorem in uniformly smooth spaces ; in Section 4 we give several examples
which show how Functional Analysis looks like without the Hahn-Banach axiom ; then fi-
nally, in Section 5 we compare the two notions of smoothness and Gateaux differentiability
for a norm.

2. VARIOUS NOTIONS OF DIFFERENTIABILITY OF THE NORM

In this Section, we recall the following notions of differentiability for a norm ||.|| on a
vector space E : smoothness, Gateaux differentiability, Fréchet differentiability and uniform
smoothness (these notions are stated from the weakest to the strongest).

2.1. Smoothness of the norm. A continuous linear mapping f € Sg/ is said to be norming
at a point @ € E\{0} if and only if f(a) = ||a|]|. The normed space (E,|.||) is said to be
smooth at point a € E\{0} if and only if there exists a unique norming mapping at this point
a. The space (E,||.]|) is said to be smooth (see [1] page 177) if and only if it is smooth at
every point a € E\{0}.

Note, for every a € E\{0}, the existence of a norming linear mapping at point a is provable
in (ZF + HB) ; so in (ZF + HB), smoothness at a point is equivalent to uniqueness of a
norming linear mapping at this point.

2.2. Gateaux differentiability of the norm. Here are some classic facts about Gateauz
differentiability for a norm (see [1] pages 178-179). For every a € E\{0} and every h € E,
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the convexity of the norm implies that the function 7 : ¢ — is non-decreasing,

thus it has a limit when ¢ — 0~ (resp. when ¢t — 0%) and the following inequality holds :

lla-tth][—[lall
t

th| — th| —
L e thl = flall _ .l thl] =

t—0— t T t—0t t

(1)

Let G~ (a,h) := lim;_,o- WM and G*(a, h) := limy_o+ WM The sublinearity of
the norm implies that the mapping G*(a,.) is sublinear and satisfies

@) Vhe E, G*(ah) < ]
Moreover, since ||z|| = ||—z|| holds for every x € E,
(3) Vh € E, G"(a,—h)=—G (a,h)

Statement (3) implies that the mapping G~ (a, .) is superlinear, i.e. the two following condi-
tions are satisfied :

Vhl, hy € E, G_(a, hy + hg) > G_(a, hl) + G_(a, hg)

VAeR, Ve e E, G (a,\x) =)\G (a,x)

Now, the norm ||.|| is Gateaux differentiable at a point a € E\{0} if and only if, for every
h € E, limy .20 w exists in R, i.e. G*(a,h) = G~ (a,h) ; in this case, for every
h € E, we denote by G(a, h) the real number lim;_.q w ; then the mapping G(a, .)
is linear (because G (a, .) is sublinear and G~ (a, .) is superlinear), it is continuous with norm
< 1 (because of (2)), and in fact [|G(a,.)|| =1 (because G(a,a) = ||a||). The normed space
(E,|.]l) is Gateauz differentiable if and only if its norm is Gateaux differentiable at every

point a € E\{0}.

In Subsection 5.1 we will show that in ZF, Gateaux differentiability at a given point
implies smoothness of the norm at this point ; the converse is provable in (ZF+HB), but it
is not provable in ZF (see Proposition 2).

2.3. Fréchet differentiability. Given a normed space (E,|.||), the norm ||.|| is said to be
Fréchet differentiable at a point a € F\{0} if it is Gateaux differentiable and

is uniform in h € Sg

thl —
n p llatth] — Ja]
t—0, t£0 t

Since the function 7 is non-decreasing on R%, the norm ||| is Fréchet differentiable at point

a if and only if

5 L e thl =l fla— th) — Jjo]

b0 bt0 p — ) =0, uniformly in h € Sg

The normed space (E, ||.||) is said to be Fréchet differentiable if its norm is Fréchet differen-

tiable at every point a € E\{0}.
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2.4. Uniform smoothness. Let (E,||.||) be a normed space such that £ # {0}. The
normed space (E, ||.||) is said to be uniformly Fréchet differentiable (see [2] Definition 1.9
p.8) if

(6) i ot thl o]

exists for each a € Sg and each h € Sg,
t—0, t£0 t

and is uniform in (a,h) € Sg x Sg.
Notice that (£, ||.||) is uniformly Fréchet differentiable if and only if
th| — —th|| —
oy et =lal  a=th] = ol
t—0+ t£0 t —t

) =0, uniformly in a,h € Sg

Now, consider the following function pg, which is called the modulus of smoothness of the
normed space E (see [1] page 204) :

pp it sup la +tb|| + Jla —tbl|
lal|=[ibl|=1 2

1}
The space F is said to be uniformly smooth if

(8) lim 220

t—0t t

=0
This is equivalent to the following condition :

la + hll + lla = hl| = 2]|al
(9)

h—0, h#£0 1Al
Since (7) and (9) are equivalent, uniform Fréchet differentiability and uniform smoothness
are equivalent.

= 0, uniformly in a € Sg

It is easy to prove that every finite-dimensional normed space F which is Gateaux differen-
tiable is uniformly smooth (because I'g is compact), but in general, Gateaux differentiability,
Fréchet differentiability and uniform smoothness are three distinct notions.

2.5. Smulian tests. We recall some necessary conditions for uniform smoothness of the
norm.

Definition 2 (Smulian test of uniform smoothness). A mapping 1 from R% to R* is

said to be a Smulian test of uniform smoothness for a normed space (E, ||.||) if and only if,
for every ¢ > 0, and for every f,g € Sg :

Ba € Sp. (f(a) > 1—n(e) and g(a) > 1 —n(e))] = [[f — gl <e

Proposition 1. Let (E, ||.||) be a uniformly smooth normed space with modulus of smoothness

p, and le6t(()5 : R — R be the mapping € — sup {t €]0,1] : @ < 3} Then the mapping

T isa Smulian test of uniform smoothness for E.

n:er

Proof. We follow the idea in the proof of Theorem 1.4 page 3 in [2], but, in order to work in

ZF, we avoid the use of sequences.
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p(t)
t

non-decreasing on R* , thus for every real number ¢, 0 < t < é(¢) = @ < §. It follows that,
for every h € E, for every a € Sg,

Let ¢ > 0. Clearly the function ¢ — p(t) is convex on R hence the function ¢ — is

€
Ihll < 6(e) = lla+n| +lla—h] =2 < S lAl
We deduce that for every f,g € I'g/, for every a € Sg and for every h € E :
€
Ihll < 6(¢) = fla+h) +g(a—h) < fla+h| +lla—hl] <2+ 5 [|A]
whence -
Ihll < 6(e) = (f = 9)(h) <2~ f(a) = g(a) + 5 |IA]
So, for every f,g € T'gr, for every a € Sg such that f(a) > 1 —n(e) and g(a) > 1 —n(e) :
€

vhe B, (|l <d(2) = (f —9)(h) < 20(e) + 5 ||k < £6(e))

Thus [|f — g <e. [

Remark 6. The following statement is provable in ZF :

Let E be a normed space which has a Smulian test of uniform smoothness.
If for every a € Sg, for every real number § €]0,1[, there exists f € Sg
satisfying f(a) > 0, then E is uniformly smooth.

Proof. We adapt the proof of Theorem 1.4 p.3-4 in [2], avoiding the use of sequences. Suppose
p(t)

that £ is not uniformly smooth ; consider some o > 0 such that infy-q 5~ > « ; then
th —tb
(10) Vt > 0 3(a,b) € Sg x Sk la+ H;Ha H >14at
Let n > 0. Let ¢ € R such that 0 < ¢ < L=. Using (10), let a,b € Sg satisying

|la+eb|| + [ja —eb|| > 2+ 2ae. Let f,g € SE/Q;rzftisfying fla+¢eb) > |la+eb|]| — % and
g(a —eb) > ||a —eb|| — . Then
fla) = fla+¢eb) —ef(b) > ||CL+€Z)H—%€—€Z1—8—%6—821—6(2—1-%) >1—n
and likewise, g(a) > 1 — 7. Besides
fla+eb)+gla—eb) > |la+eb|+ ||la—eb|| —ae >2+ae

hence
(f—9g)(eb) = fla+eb)+gla—eb) — f(a) —gla) > 24+ ac —2=ac
thus ||f — g|| > a. So E cannot have any Smulian test. O

Remark 7. It follows from Remark 6 that in ZF, every Gateaux differentiable normed space
which has a Smulian test is uniformly smooth. Since every uniformly smooth normed space
has a Smulian test (see Proposition 1) and since uniform smoothness implies Gateaux dif-
ferentiability, the two following properties are equivalent : “E' is uniformly smooth.”, “FE is
Gateaux differentiable and F admits a Smulyan test.”

Using Remark 6, the following statement is provable in (ZF+HB) :
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Every normed space which has a Smulian test of uniform smoothness is uni-
formly smooth.

Notice that this last converse statement is not provable in ZF (see Remark 13).

3. UNIFORM SMOOTHNESS ENTAILS THE EFFECTIVE MAZUR PROPERTY
This Section leads to our main result (see Theorem 1 and Corollary 2).

Lemma 1 (Uniqueness of the tangent form). Let (E,|.||) be a Gateauz differentiable
normed space which admits a Smulyan test. Let C' be a nonempty closed convex subset of E
such that 0 ¢ C. If g is a tangent form to C seen from 0 then g € Nx>,{G(a,.) 1a € C, |lal]| < A}.

Proof. Let  be a Smulian test for E. Let p := d(0,C). Let ¢ > 0 and let A\ > p ; by
definition of p, let @ € C such that |la]| < p(1 4+ n(e)) and ||a|| < A ; then g(a) > p hence

a

9<W) > it > 1—n(e), while G(a,a) =1 > 1—n(e), hence ||g — G(a,.)|| < €. It follows
that g € N>, {G(a,.) a € C,|al <A} O

Definition 3. Given a nonempty subset C' of a normed space E, and a point a € E, a point
m € C is said to be a best approzimation of a in C' when ||m — a|| = inf,c¢ ||z — al.

Remark 8. A point may have several best approximations in a given closed convex set : for
example, consider the space £ = R? endowed with the “sup norm”, then the set of best
approximations of (2,0) in I'g is the segment [(1,—1),(1,1)].

Remark 9. Given a nonempty closed convex subset C' of a finite dimensional normed space
E, it is provable in ZF that every point of F has a best approximation in C'. More generally,
the same conclusion holds in ZFC for every reflexive space E, but this statement is not
provable in ZF (see Subsection 4.4).

Lemma 2 (Ishihara, see [6]). Let (E, ||.||) be a normed space. Let C' be a nonempty convex
subset of E such that 0 ¢ C. If 0 has a best approzimation a € C and if the norm ||.|| is
Gateauz differentiable at point a, then G(a,.) is a tangent form to C seen from 0.

Proof. Since a is a best approximation of 0 in C, d(0,C) = ||a||. For every z € C, G(a,z) =
G(a,a) + G(a,z — a) = |la]| + G(a,z — a) ; moreover, for every ¢t € [0,1], a + t(z — a) =
(1—t)a+tz € C, hence ||a+t(z — a)|| > ||al|. Tt follows that for every z € C, G(a,z —a) =
lim, g 1eHCE=alZlel > whence G(a, 2) > ||al. O

Lemma 3. Let (E, ||.||) be a Gateaur differentiable normed space which admits a Smulyan
testm. Let e, u be positive real numbers, let D be the crown {x € E: p < ||z| < pu(1+n(e))},
and let C' be a nonempty closed convex subset of this crown. Then the diameter of the subset
{G(x,.) : x € C} of the dual E' is less than 2¢.

Proof. We are to prove that
Va,b e C ||G(a,.) — G(b,.)|| < 2¢

hence it is sufficient to prove the Lemma in the case F is finite-dimensional (and even three-

dimensional) : let p be the distance between 0 and C' (notice that p > u). Since F is
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finite-dimensional, let u € C' be a best approximation of 0 in C ; le G(u,.) ; then

f € Sgr and, using Lemma 2, p < f[C]. Given a € C, f(a) > p so f(ﬁ m >
#(a) > 1 —n(e), while G(a, %) =1 > 1 —n(e), hence ||G(a,.) — f|| . Thus, for every

a,be C,||G(a,.)—G(b,.)] < 2e. O

o Vs

N

Definition 4 (complete metric space). We say that a metric space is complete if and
only if every Cauchy filter has a limit point.

Remark 10. Note that the above notion of completeness implies the notion of sequential
completeness : “Every Cauchy sequence is convergent.”, but the converse does not hold in
ZF, see Subsection 4.5.

It is easy to prove that R endowed with the standard metric is complete, and more gener-
ally, for every set I, the normed space £>°(I) endowed with the uniform norm (see Notation 2)
is complete. It follows that the continuous dual E' of every normed space E is complete,
since it is a closed subset of (>°(I'g).

Lemma 4 (Geometric interpretation of uniform smoothness). Let (E,|.||) be a
Gateauz differentiable normed space which admits a Smulyan test and let C' be a nonempty
closed convex subset of E such that 0 ¢ C. Let p be the distance between 0 and C, and for
every integer n > 1, denote by C,, the closure in E' of {G(z,.) :x € C and ||z|| < p+ =5}
The set (., Cn is a singleton.

Proof. The sequence of nonempty sets (Cy,)ne, is decreasing and, using Lemma 3, the se-
quence of the diameters of the sets C,, tends to 0. Since E’ is complete, it follows that
MNheo On 1s a singleton. O

Notation 1. In the conditions of Lemma 4, the element of the singleton () _ C, is denoted

by fc.

necw

Lemma 5. Let (E, ||.||) be a Gateaus differentiable normed space which admits a Smulyan
test and let C' be a nonempty closed conver subset of E such that 0 ¢ C. If 0 has a best
approximation a € C, then fo = G(a,.) and fc is the unique tangent form to C seen from
0.

Proof. Let p :=d(0,C). Since

1
. ) o < _—
G(a,) € ({G(z,.) 12 € C and |z <Pt

new

it follows that G(a,.) = fc ; moreover, using Lemma 2, G(a,.) is a tangent form to C' seen
from 0. The uniqueness of the tangent form follows from Lemma 1. 0

Remark 11 (ZFC). If E is uniformly smooth space, if C'is a nonempty closed convex subset
of E such that 0 ¢ C, one can prove in ZFC that fc is the unique tangent form to C' seen
from 0 : in fact, since E is a uniformly smooth Banach space, every bounded closed convex
subset of E is weakly compact because E is reflexive (here, we use the Axiom of Choice), so
0 has a best approximation in C', hence, using Lemma 5, fo is the unique tangent form to

C seen from 0.
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In fact, Remark 11 holds in ZF :

Theorem 1. Let (E,||.||) be a Gateauz differentiable normed space which admits a Smulyan
test. Let C be a nonempty closed convex subset of E such that 0 ¢ C'. Then fc is the unique
tangent form to C seen from 0.

Proof. The uniqueness of the tangent form follows from Lemma 1. We now show that the
mapping fc is a tangent form to C' seen from 0. Let p := d(0,C) > 0. Since fc € Sp,
it is sufficient to prove that Vx € C' fo(x) > p. Denote by F the set of finite-dimensional
subspaces F' of E meeting C' ; the partial ordered set (F, C) is directed. For every F' € F,
let C'r be the closed convex subset C' N F' of F, let pr be the distance between 0 and Cfp,
and let fo, € F be the (unique) tangent form to C, seen from 0. Let z € E. By definition

of fC’ .
(11) felz) = lim G(a,z) = lim G(a,x)

a€l,||al|—p FeF,acCr,|all=pF
For each F' € F such that F' 5 z, for each a € Cp such that |la|| = pp, it follows from
Lemma 5 that G(a,z) = feo.(x), while fo,(z) > pr > p, hence using equality (11), fo(x) >
p- U

Note that given a Gateaux differentiable normed space (F, ||.||) which admits a Smulian
test, a nonempty closed convex subset C' of F, and a point a € E\C, then the closed convex
set C,, := C'—a does not contain 0, and the affine mapping fc, — fe, (a) is the unique tangent
form to C seen from a (see Remark 4).

Corollary 1. Every Gateauz differentiable normed space which admits a Smulian test sat-
1sfies the effective Mazur property.

Proof. Let E be Gateaux differentiable normed space which admits a Smulian test. Consider
the mapping ® which, to every ordered pair (C,a) where C' is a nonempty closed convex
subset of E and a € E\C, associates the (unique) tangent form to C' seen from a. Then ®
witnesses the effective Mazur property on F. 0

Using Remark 7, Corollary 1 can be reformulated as follows :

Corollary 2. Every uniformly smooth normed space satisfies the effective Mazur property.

Remark 12. Using Lemma 6 below, every finite-dimensional normed space F satisfies the
two following properties :

Hahn-Banach property : For every sublinear mapping p : E — R, for
every vector subspace ' C E, and for every linear mapping f : FF' — R such
that f < pip, there exists a linear mapping g : EE — R such that g < p and g
extends f.

Mazur property : For every ordered pair (C,a) such that C' is a nonempty
closed convex subset of E and a € E\C, there exists a tangent form to C' seen
from a.



Lemma 6. (Hahn-Banach’s “finite extension lemma”) Let V' be a vector space, let K be a
subspace of V', let p : V — R be a sublinear mapping, and let f : K — R be a linear mapping
satisfying f < p. If there exists a finite subset F' of V' such that K UF' spans the whole vector
space V', then there exists a linear mapping g :'V — R that extends f and such that g < p.

Proof. Let F' be a minimal finite subset F' such that K U F spans V.

First case : F'is a singleton {e}. Let m = sup,cy {f(y) — p(y —e)} and M = inf ey {p(y +¢) — f(y)}.
Since p is sublinear, m < M. For every real number \ € [m, M], the linear mapping g which

extends f and such that g(e) = \ satisfies g < p.

General case. By induction on the cardinal of F', using the previous case. U

4. HORRORS OF FUNCTIONAL ANALYSIS WITHOUT CHOICE

In this Section, we give some examples of classical theorems of Functional Analysis which
hold in ZFC but which are not provable in ZF. Given a normed space E, we denote by
jEg : E — E" the canonical mapping which is defined as follows : for all z € E, for all f € E,
Jje(@)(f) = f(x). Clearly, jg is linear, continuous and ||jg|| < 1. Using HB, one can prove
that jg is isometric, i.e. for every x € E, ||jg(z)| = ||z||, but this result does not hold in
ZF (see Subsection 4.2 below). In ZFC, there are many equivalent definitions of reflexivity
for a normed space ; since we work in ZF, we now provide a definition for reflexivity :

Definition 5. A normed space F is said to be reflerive when jg is isometric and onto.

Notation 2. For every set I, denote by ¢>°(I) the space of bounded mappings f: I — R
endowed with the wuniform norm ||.|| which is defined as follows : for every f e (1),
|/l := sup;er |f(i)]. Denote by €°(I) the subspace of £>°(I) which is defined as follows :

O :=={f el>(I):Ve > 03F, € P;(I) Vi€ I\Fy |f(i)| <&}

Denote by ¢'(I) the space of elements f € R such that Y, ;| f(¢)] < +oo, endowed with
the norm ||.||; which is defined as follows : for every f € £*(I), || fll, == > ;s [f ()]

It is well known that the continuous dual of ¢°(I) is ¢!(I), and that the continuous dual
of ¢1(T) is ¢>°(I). If I is finite, then ¢>(I) = (°(I), so the continuous dual of ¢>°(1) is ¢! (1),
and the following question is natural :

If I is infinite, what is the continuous dual of (1) ¢
Note that in ZF, the canonical mapping ju() : ¢'(I) — (¢'(I))” is isometric, and in
(ZF+HB), jo (5 is not onto, but this is not provable in ZF, see Subsection 4.1.

4.1. A model of ZF in which ¢*(w) and (*(w) are reflexive. Pincus and Solovay
(see [8]) have built a model M of set theory ZF in which, for every set I, every finitely
additive measure m on I is discrete, i.e. there is an element (\;);c; € ¢*(I) such that for
every subset A of I, m(A) = > .., Ai. In this model, the continuous dual of the normed
space (>(I) is £(I), hence for every set I, each of the normed spaces ¢'(I) and £>(I) is
reflexive. Also observe that the reflexive space [*°(w) has a closed subspace which is not
reflexive : for example, consider the subspace (°(w) : (°(w))” = ({*(w))" = £>°(w) hence
(°(w) is not reflexive. Also remark that, though ¢!(w) is a reflexive separable Banach space,
its continuous dual /*°(w) is not separable. Also note that, although °(w) is not reflexive,
its continuous dual ¢*(w) is reflexive.
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4.2. A Banach space F for which jg is not isometric. Given any model M of (ZF+-HB),
there exists in this model, (see [4], Lemma 5 p.12), an infinite dimensional normed space
(E,|.]]) such that E" = {0} (for example, in the above model of Pincus and Solovay, the
normed space (*°(w)/¢°(w) is infinite dimensional, but its continuous dual is {0}). It follows
that the canonical mapping jg is equal to 0 and jg is not isometric. Moreover, the weak
topology o(E, E') on E (i.e. the topology generated by the sets {x € E : f(x) < A} where

f € E' and X € R) has only two open sets which are () and E. It follows that the closed unit
ball of E is not weakly closed, and that singletons of E are not weakly closed either, hence
the weak topology on E is not Hausdorff.

4.3. A Banach space which is smooth at a point but not Gateaux differentiable
at this point. Let M be a model of (ZF+—-HB) : in this model, there exists an infinite
dimensional Banach space (E,||.||) such that E' = {0}. Let ' = E @ R the vector space
endowed with the norm N : F — R which is defined as follows : for all z € F, for all A € R,
let N(x,\) = ||z||+ | A|. Clearly, every f € F’ is of the following type : (z, \) — mA\ where
m € R. Let a = (0g,1). Since (x,\) +— A is the only norming mapping at point a, the
normed space (F, N) is smooth at point a ; however, (F, N) is not Gateaux differentiable at
point a because, given any point u € Sg, observe that for h := (u,0) € S, G*(a,h) =1
and G~ (a,h) = —1.

Remark 13. Given a model (ZF 4+ —HB), and an infinite dimensional normed space E of
this model such that £ = {0}, observe that £ is not Géateaux differentiable though any
mapping 7 : R} — R% is a Smulian test of uniform smoothness for E.

4.4. A separable reflexive space which does not satisfy the projection property.
We say that a normed space E has the projection property if and only if for every nonempty
closed convex subset of E, every point of £ has a best approximation in C. In ZFC, it is
well known (see [9] Theorem 28.41. p.177) that, for a Banach space E, the three following
properties are equivalent:

i) The space F is reflexive ;

ii) The closed unit ball of E is Hausdorff compact in the weak topology ;

iii) The space E satisfies the projection property.

It is easy to show that statement “ii) = iii)” holds in ZF, but statement “i) = iii)” is not
provable in ZF : in fact, the space £!(w) does not satisfy the projection property, because if we
consider the continuous linear mapping f : £!(w) — R such that for every x = (x;)ie,, € *(w),
f(x) = Y e, 754, then f does not attain its norm on the closed unit ball hence 0 does not
have a best approximation on the closed hyperplane H := {x € I'(w); f(z) = 1} ; however,
in some models of ZF, the space (! (w) is reflexive (see Subsection 4.1).

4.5. A metric space which is sequentially complete but not complete. In Cohen’s
first model (see [7]), there are dense subsets of R without any infinite countable subset :
such a subset A of R is not complete (because it is not closed), but it is sequential complete
because every Cauchy sequence of A converges (such a sequence is eventually constant).
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5. GATEAUX DIFFERENTIABILITY AND SMOOTHNESS

In this Section, we compare in ZF the two notions of Gateaux differentiability and smooth-
ness for a norm.

5.1. Gateaux differentiability at a point implies smoothness at this point. Given
a normed space E, given a point a € E\{0}, Gateaux differentiability of the norm at point
a provides a linear mapping f € S which is norming at point a ; the following easy Lemma
shows that Gateaux differentiability at point a also implies uniqueness of a norming linear
mapping at point a :

Lemma 7. Let (E,|.||) be a normed space, let a € E\{0}. For every linear mapping
f+ E — R, the three following conditions are equivalent :

i) The mapping f is norming at point a ;

ii) For every h € E, G~ (a,h) < f(h) < G*(a,h) ;

iii) For every h € E, f(h) < G*(a,h).

Proof. i) = ii). If f is norming at point a, then, given any h € E :

>0, oy = L0 _ ot )= 110) _ ot 0] = ol
thus f(h) < G*(a,h). In particular, for every h € E, f(—h) < G*(a,—h), hence —f(h) <
—G~(a,h) thus G~ (a, h) < f(h).

i) = iii) is trivial.

i1i) = i). Since G (a,.) < |||, it follows that f is continuous and [[f|| < 1 ; moreover,
f(=a) < G*(a,—a) = — ||a||, hence f(a) > ||a|| so f(a) = ||a|| and f is norming at point
a. U

5.2. From smoothness at a point to Gateaux differentiability at this point. Con-
sider the following statement :

S2G (”Smoothness to Gateaux differentiability”) : Every normed space which
is smooth at a point a € E\{0} is Gateauz differentiable at this point a.

Proposition 2. Aziom HB is equivalent to S2G.

Proof. HB = S2G : classical, see [1] page 181. Suppose that some normed space (E, ||.||)
is not Gateaux differentiable at a given point a € Sg ; then there exists h € E such that
G~ (a,h) < G*(a,h). Using HB, consider linear mappings f,g € E’ such that f < G*(a,.),
g <G*(a,.), f(h) =G (a,h) and g(h) = G*(a,h). Then, using Lemma 7, f and g are both
norming at point a, while f # ¢g. It follows that F is not smooth at point a.

S2G = HB : it follows from Subsection 4.3 that -HB implies =-S2G. [l

We end with some questions.

Question 1. Is the Mazur property provable in ZF for Gateaux differentiable Banach
spaces ? (it is provable in (ZF+DC), see [3]).

Recall that uniform smoothness means that lim;_.g, +2o ”C‘LW exists for each a, h € Sg,
and is uniform in (a,h) € Sg X Sg.
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In the published version of this paper,
I exchanged “Fréchet differentiability” and “uniform Gateaux differentiability”.

Since uniform smoothness yields the Mazur property, it is natural to ask whether the
existence for every a € E\{0} of lim; ¢ 10 w uniformly in A € Sg (i.e. Fréchet
differentiability), or the existence for every h € E\{0} uniformly in a € Sg (i.e. uniform
Gateauz differentiability, see [2], Definition 6.5 p.63) is sufficient to imply the Mazur property
in ZF :

Question 2. Is the Mazur property provable in ZF for Fréchet differentiable Banach spaces ?

Question 3. Is the Mazur property provable in ZF for uniformly Gateaux differentiable
Banach spaces 7
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