UNIFORM SMOOTHNESS ENTAILS HAHN-BANACH

EDMOND ALBIUS, MARIANNE MORILLON

ABSTRACT. We show in set theory **ZF** (without the Axiom of Choice), that uniformly smooth normed spaces satisfy an effective and geometric form of the Hahn-Banach property. We also compare in **ZF** the two notions of Gâteaux differentiability and smoothness of a norm, and we obtain a new equivalent of the Hahn-Banach axiom.

1. Introduction

We work in Zermelo-Fraenkel set theory \mathbf{ZF} (without the Axiom of Choice), and we denote by \mathbf{ZFC} set theory with the Axiom of Choice. Our paper deals with the $r\hat{o}le$ of the Axiom of Choice in abstract functional analysis, and more particularly, with the necessity of using the Axiom of Choice when invoking some consequence of the following Hahn-Banach axiom HB:

(HB, Hahn-Banach). For every real vector space E, for every sublinear mapping $p: E \to \mathbb{R}$, for every subspace F of E and every linear mapping $f: F \to \mathbb{R}$ which is dominated by p (i.e. satisfying $\forall x \in F$ $f(x) \leq p(x)$), there exists a linear mapping $g: E \to \mathbb{R}$ which extends f and such that $g \leq p$.

Here, a mapping $p: E \to \mathbb{R}$ is said to be *sublinear* if for every $x, y \in E$ and every $\lambda \in \mathbb{R}_+$, $p(x+y) \le p(x) + p(y)$ and $p(\lambda x) = \lambda p(x)$.

Recall that **HB** is a consequence of the Axiom of Choice, but that **HB** is not provable in set theory **ZF** (see [7]). However, several classes of Banach spaces satisfy in **ZF** some classical geometric forms of the Hahn-Banach property: for example, see [6] for separable Banach spaces which are both uniformly convex and Gâteaux differentiable (in a constructive setting); see [4] for Hilbert spaces, normed spaces which have a dense well-orderable subset, and spaces $\ell^0(I)$ (see Notation 2) where I is any set; see [3] for uniformly convex Gâteaux differentiable Banach spaces, and in particular for spaces $L^p(\mathcal{B}, \nu)$ where $1 , <math>\mathcal{B}$ is a boolean algebra, and $\nu : \mathcal{B} \to \mathbb{R}_+ \cup \{+\infty\}$ is a finitely additive measure... Denoting by ω the first infinite ordinal, consider the following axiom of Dependent Choices:

(DC, Dependent Choices). For every binary relation R on a nonempty set E satisfying $\forall x \in E \ \exists y \in E \ xRy$, there exists a sequence $(x_n)_{n \in \omega}$ satisfying $\forall n \in \omega \ x_nRx_{n+1}$.

In [3], it is also shown in (**ZF**+**DC**) that several geometric Hahn-Banach properties hold in Gâteaux differentiable spaces. Note that, obviously **DC** is a consequence of the Axiom of Choice, but **DC** does not imply **HB**, and **HB** does not imply **DC** (see [7]). For a recent account on links between numerous consequences of the Axiom of Choice, see [5].

¹⁹⁹¹ Mathematics Subject Classification. **Primary 03E25**; Secondary 46. Key words and phrases. Axiom of Choice, Banach space, Hahn-Banach, uniformly smooth.

We adopt the following conventions about normed spaces: all vector spaces that we consider are vector spaces over the field \mathbb{R} of real numbers. Given a normed space $(E, \|.\|)$, a real number $R \geq 0$ and a point $a \in E$, we denote by B(a,R) the open ball $\{x \in E : x \in E : x \in E \}$ ||x-a|| < R, and we denote by $\Gamma(a,R)$ the closed ball $\{x \in E : ||x-a|| \le R\}$. Let $\Gamma_E := \{x \in E : ||x|| \le 1\}$ and let $S_E := \{x \in E : ||x|| = 1\}$ respectively denote the closed unit ball and the unit sphere of E. We denote by E' continuous dual of E, i.e. the vector space of all continuous linear mappings from E to \mathbb{R} ; it is endowed with the dual norm: for every $f \in E'$, $||f|| = \sup_{x \in \Gamma_E} f(x)$.

Definition 1 (Tangent form to a nonempty convex set). Let (E, ||.||) be a normed space, let C be a closed nonempty convex subset of E such that $0 \notin C$, and let $\rho := \inf_{z \in C} ||z||$ be the distance between 0 and C. An element $f \in E'$ is called a tangent form to C seen from 0 if and only if $f[\Gamma(0,\rho)] \leq \rho \leq f[C]$.

Remark 1. In the conditions of Definition 1, $\sup_{\Gamma(0,\rho)} f = \inf_C f = \rho$ hence ||f|| = 1.

Remark 2. In the conditions of Definition 1, one can prove in (**ZF+HB**) that there exists at least one tangent form to C seen from 0.

Remark 3. In the conditions of Definition 1, if E is finite-dimensional, one can prove in **ZF** (see Lemma 6) that there exists at least one tangent form to C seen from 0.

Remark 4. More generally, given a nonempty closed convex subset C of a normed space E, a point $a \in E \setminus C$, an affine mapping $f: E \to \mathbb{R}$, say that f is a tangent form to C seen from a if f(a) = 0 and $f[\Gamma(a, \rho)] \le \rho \le f[C]$, where ρ is the distance between a and C. (Recall that a mapping $f: E \to \mathbb{R}$ is said to be affine if there exists a (unique) linear mapping $q: E \to \mathbb{R}$ and a (unique) real number C such that f = q + C).

In this paper, our aim is to prove in **ZF** (see Theorem 1), that given a uniformly smooth normed space $(E, \|.\|)$, for every nonempty closed convex subset C of E, and for every $a \in E \setminus C$, there exists a unique tangent form to C seen from a; moreover, this tangent form is definable from $(E, \|.\|)$, C and a. Our proof relies on the following geometric fact (see Lemma 3): given a convex set C which is contained in a thin crown of a uniformly smooth normed space, for every $x, y \in C$, the two Gâteaux differentials at point x and y are close to one another. As a consequence, it will follow that every uniformly smooth normed space E satisfies the two following equivalent (see [3]) properties:

Effective Mazur property: There is a mapping Φ which, to every ordered pair (C, a) where C is a nonempty closed convex subset of E and $a \in E \setminus C$, associates a tangent form to C seen from a.

Effective continuous Hahn-Banach property: There is a function Ψ such that, for every continuous sublinear mapping $p: E \to \mathbb{R}$, for every vector subspace F of E, and for every linear mapping $f: F \to \mathbb{R}$ satisfying $f \leq p_{\uparrow F}$, the triple (p, F, f) belongs to $dom(\Psi)$ and $\Psi(p, F, f)$ is a linear mapping from E to \mathbb{R} extending f and satisfying $\Psi(p, F, f) \leq p$.

Notice that **HB** is equivalent to its "multiple form":

Given a family $(E_i)_{i\in I}$ of real vector spaces, and a family $(p_i)_{i\in I}$ of sublinear mappings $p_i: E_i \to \mathbb{R}$, for every family $(F_i)_{i \in I}$ of subspaces $F_i \subseteq E_i$ and every family $(f_i)_{i\in I}$ of linear mappings $f_i: F_i \to \mathbb{R}$ satisfying $\forall x \in F_i$ $f_i(x) \leq p_i(x)$, there exists a family $(g_i)_{i\in I}$ of linear mappings $g_i: E_i \to \mathbb{R}$ such that for every $i \in I$, g_i extends f_i and $g_i \leq p_i$.

It follows that in (**ZF**+**HB**), every normed space satisfies the effective continuous Hahn-Banach property, hence it also satisfies the Effective Mazur property.

Remark 5. Although in **ZFC** every uniformly smooth normed space is superreflexive (see [1]), hence it has an equivalent norm which is both uniformly convex and uniformly smooth (see [2], Proposition 5.2, page 159), we cannot use these results because the classical proofs depend on the Axiom of Choice: for example, the proof of the non-existence of bounded infinite trees in a uniformly smooth Banach space E in [1] (Proposition 4 p.232-235) relies on the weak compactness of the closed unit ball of E, and this weak compactness cannot be proved in **ZF**, even in the case of Hilbert spaces (see [4]).

In Section 5, we will also compare two classical notions of differentiability for a norm: in $(\mathbf{ZF} + \mathbf{HB})$, it is well known (see [1], Proposition 2 p.179) that given a normed space E, smoothness of the norm at a point $a \in E \setminus \{0\}$ is equivalent to Gâteaux differentiability of the norm at this point, but this equivalence is not provable in \mathbf{ZF} (see Sections 5.1 and 5.2): this leads us to a new equivalent of the Hahn-Banach axiom (see Proposition 2).

Our paper is organized as follows: in Section 2 we present various notions of differentiability for a norm; in Section 3 we prove our main result Theorem 1, namely a choiceless Hahn-Banach theorem in uniformly smooth spaces; in Section 4 we give several examples which show how Functional Analysis looks like without the Hahn-Banach axiom; then finally, in Section 5 we compare the two notions of smoothness and Gâteaux differentiability for a norm.

2. Various notions of differentiability of the norm

In this Section, we recall the following notions of differentiability for a norm $\|.\|$ on a vector space E: smoothness, Gâteaux differentiability, Fréchet differentiability and uniform smoothness (these notions are stated from the weakest to the strongest).

2.1. **Smoothness of the norm.** A continuous linear mapping $f \in S_{E'}$ is said to be norming at a point $a \in E \setminus \{0\}$ if and only if f(a) = ||a||. The normed space (E, ||.||) is said to be smooth at point $a \in E \setminus \{0\}$ if and only if there exists a unique norming mapping at this point a. The space (E, ||.||) is said to be smooth (see [1] page 177) if and only if it is smooth at every point $a \in E \setminus \{0\}$.

Note, for every $a \in E \setminus \{0\}$, the existence of a norming linear mapping at point a is provable in $(\mathbf{ZF} + \mathbf{HB})$; so in $(\mathbf{ZF} + \mathbf{HB})$, smoothness at a point is equivalent to *uniqueness* of a norming linear mapping at this point.

2.2. Gâteaux differentiability of the norm. Here are some classic facts about Gâteaux differentiability for a norm (see [1] pages 178-179). For every $a \in E \setminus \{0\}$ and every $h \in E$,

the convexity of the norm implies that the function $\tau_a^h: t \mapsto \frac{\|a+th\|-\|a\|}{t}$ is non-decreasing, thus it has a limit when $t \to 0^-$ (resp. when $t \to 0^+$) and the following inequality holds:

(1)
$$\lim_{t \to 0^{-}} \frac{\|a + th\| - \|a\|}{t} \le \lim_{t \to 0^{+}} \frac{\|a + th\| - \|a\|}{t}$$

Let $G^-(a,h) := \lim_{t\to 0^-} \frac{\|a+th\|-\|a\|}{t}$ and $G^+(a,h) := \lim_{t\to 0^+} \frac{\|a+th\|-\|a\|}{t}$. The sublinearity of the norm implies that the mapping $G^+(a,.)$ is sublinear and satisfies

$$(2) \forall h \in E, \ G^+(a,h) \le ||h||$$

Moreover, since ||x|| = ||-x|| holds for every $x \in E$,

(3)
$$\forall h \in E, \ G^+(a, -h) = -G^-(a, h)$$

Statement (3) implies that the mapping $G^{-}(a,.)$ is superlinear, i.e. the two following conditions are satisfied:

$$\forall h_1, h_2 \in E, \ G^-(a, h_1 + h_2) \ge G^-(a, h_1) + G^-(a, h_2)$$

$$\forall \lambda \in \mathbb{R}_+ \ \forall x \in E, \ G^-(a, \lambda x) = \lambda G^-(a, x)$$

Now, the norm $\|.\|$ is $G\hat{a}teaux$ differentiable at a point $a \in E \setminus \{0\}$ if and only if, for every $h \in E$, $\lim_{t \to 0, t \neq 0} \frac{\|a+th\|-\|a\|}{t}$ exists in \mathbb{R} , i.e. $G^+(a,h) = G^-(a,h)$; in this case, for every $h \in E$, we denote by G(a,h) the real number $\lim_{t \to 0, t \neq 0} \frac{\|a+th\|-\|a\|}{t}$; then the mapping G(a,.) is linear (because $G^+(a,.)$ is sublinear and $G^-(a,.)$ is superlinear), it is continuous with norm ≤ 1 (because of (2)), and in fact $\|G(a,.)\| = 1$ (because $G(a,a) = \|a\|$). The normed space $(E,\|.\|)$ is $G\hat{a}teaux$ differentiable if and only if its norm is $G\hat{a}teaux$ differentiable at every point $a \in E \setminus \{0\}$.

In Subsection 5.1 we will show that in **ZF**, Gâteaux differentiability at a given point implies smoothness of the norm at this point; the converse is provable in (**ZF**+**HB**), but it is not provable in **ZF** (see Proposition 2).

2.3. Fréchet differentiability. Given a normed space (E, ||.||), the norm ||.|| is said to be Fréchet differentiable at a point $a \in E \setminus \{0\}$ if it is Gâteaux differentiable and

(4)
$$\lim_{t \to 0, t \neq 0} \frac{\|a + th\| - \|a\|}{t} \text{ is uniform in } h \in S_E$$

Since the function τ_a^h is non-decreasing on \mathbb{R}_+^* , the norm $\|.\|$ is Fréchet differentiable at point a if and only if

(5)
$$\lim_{t \to 0^+, t \neq 0} \left(\frac{\|a + th\| - \|a\|}{t} - \frac{\|a - th\| - \|a\|}{-t} \right) = 0 \text{ , uniformly in } h \in S_E$$

The normed space $(E, \|.\|)$ is said to be *Fréchet differentiable* if its norm is Fréchet differentiable at every point $a \in E \setminus \{0\}$.

2.4. Uniform smoothness. Let (E, ||.||) be a normed space such that $E \neq \{0\}$. The normed space (E, ||.||) is said to be *uniformly Fréchet differentiable* (see [2] Definition 1.9 p.8) if

(6)
$$\lim_{t\to 0, t\neq 0} \frac{\|a+th\|-\|a\|}{t} \text{ exists for each } a\in S_E \text{ and each } h\in S_E,$$

and is uniform in $(a, h) \in S_E \times S_E$.

Notice that $(E, \|.\|)$ is uniformly Fréchet differentiable if and only if

(7)
$$\lim_{t \to 0^+, t \neq 0} \left(\frac{\|a + th\| - \|a\|}{t} - \frac{\|a - th\| - \|a\|}{-t} \right) = 0 \text{ , uniformly in } a, h \in S_E$$

Now, consider the following function ρ_E , which is called the *modulus of smoothness of* the normed space E (see [1] page 204):

$$\rho_E : t \to \sup_{\|a\| = \|b\| = 1} \left\{ \frac{\|a + tb\| + \|a - tb\|}{2} - 1 \right\}$$

The space E is said to be uniformly smooth if

(8)
$$\lim_{t \to 0^+} \frac{\rho_E(t)}{t} = 0$$

This is equivalent to the following condition:

(9)
$$\lim_{h \to 0, h \neq 0} \frac{\|a+h\| + \|a-h\| - 2\|a\|}{\|h\|} = 0 \text{, uniformly in } a \in S_E$$

Since (7) and (9) are equivalent, uniform Fréchet differentiability and uniform smoothness are equivalent.

It is easy to prove that every finite-dimensional normed space E which is Gâteaux differentiable is uniformly smooth (because Γ_E is compact), but in general, Gâteaux differentiability, Fréchet differentiability and uniform smoothness are three distinct notions.

2.5. **Šmulian tests.** We recall some necessary conditions for uniform smoothness of the norm.

Definition 2 (Šmulian test of uniform smoothness). A mapping η from \mathbb{R}_+^* to \mathbb{R}_+^* is said to be a *Šmulian test* of uniform smoothness for a normed space $(E, \|.\|)$ if and only if, for every $\varepsilon > 0$, and for every $f, g \in S_{E'}$:

$$[\exists a \in S_E, \ (f(a) > 1 - \eta(\varepsilon) \text{ and } g(a) > 1 - \eta(\varepsilon))] \Rightarrow ||f - g|| < \varepsilon$$

Proposition 1. Let $(E, \|.\|)$ be a uniformly smooth normed space with modulus of smoothness ρ , and let $\delta : \mathbb{R}_+^* \to \mathbb{R}_+^*$ be the mapping $\varepsilon \mapsto \sup\{t \in]0,1] : \frac{\rho(t)}{t} \leq \frac{\varepsilon}{4}\}$. Then the mapping $\eta : \varepsilon \mapsto \frac{\varepsilon \delta(\varepsilon)}{4}$ is a Šmulian test of uniform smoothness for E.

Proof. We follow the idea in the proof of Theorem 1.4 page 3 in [2], but, in order to work in **ZF**, we avoid the use of sequences.

Let $\varepsilon > 0$. Clearly the function $t \mapsto \rho(t)$ is convex on \mathbb{R}_+^* hence the function $t \mapsto \frac{\rho(t)}{t}$ is non-decreasing on \mathbb{R}_+^* , thus for every real number t, $0 < t < \delta(\varepsilon) \Rightarrow \frac{\rho(t)}{t} \leq \frac{\varepsilon}{4}$. It follows that, for every $h \in E$, for every $a \in S_E$,

$$||h|| \le \delta(\varepsilon) \Rightarrow ||a+h|| + ||a-h|| - 2 \le \frac{\varepsilon}{2} ||h||$$

We deduce that for every $f, g \in \Gamma_{E'}$, for every $a \in S_E$ and for every $h \in E$:

$$||h|| \le \delta(\varepsilon) \Rightarrow f(a+h) + g(a-h) \le ||a+h|| + ||a-h|| \le 2 + \frac{\varepsilon}{2} ||h||$$

whence

$$||h|| \le \delta(\varepsilon) \Rightarrow (f - g)(h) \le 2 - f(a) - g(a) + \frac{\varepsilon}{2} ||h||$$

So, for every $f, g \in \Gamma_{E'}$, for every $a \in S_E$ such that $f(a) > 1 - \eta(\varepsilon)$ and $g(a) > 1 - \eta(\varepsilon)$:

$$\forall h \in E, \ \left(\|h\| \le \delta(\varepsilon) \Rightarrow (f - g)(h) \le 2\eta(\varepsilon) + \frac{\varepsilon}{2} \|h\| \le \varepsilon \delta(\varepsilon) \right)$$

Thus
$$||f - g|| \le \varepsilon$$
.

Remark 6. The following statement is provable in \mathbf{ZF} :

Let E be a normed space which has a Šmulian test of uniform smoothness. If for every $a \in S_E$, for every real number $\delta \in]0,1[$, there exists $f \in S_{E'}$ satisfying $f(a) \geq \delta$, then E is uniformly smooth.

Proof. We adapt the proof of Theorem 1.4 p.3-4 in [2], avoiding the use of sequences. Suppose that E is not uniformly smooth; consider some $\alpha > 0$ such that $\inf_{t>0} \frac{\rho(t)}{t} > \alpha$; then

(10)
$$\forall t > 0 \ \exists (a,b) \in S_E \times S_E \ \frac{\|a+tb\| + \|a-tb\|}{2} \ge 1 + \alpha t$$

Let $\eta > 0$. Let $\varepsilon \in \mathbb{R}$ such that $0 < \varepsilon < \frac{\eta}{2+\frac{\alpha}{2}}$. Using (10), let $a, b \in S_E$ satisfying $\|a+\varepsilon b\| + \|a-\varepsilon b\| \ge 2 + 2\alpha\varepsilon$. Let $f, g \in S_{E'}$ satisfying $f(a+\varepsilon b) \ge \|a+\varepsilon b\| - \frac{\alpha\varepsilon}{2}$ and $g(a-\varepsilon b) \ge \|a-\varepsilon b\| - \frac{\alpha\varepsilon}{2}$. Then

$$f(a) = f(a + \varepsilon b) - \varepsilon f(b) \ge ||a + \varepsilon b|| - \frac{\alpha \varepsilon}{2} - \varepsilon \ge 1 - \varepsilon - \frac{\alpha \varepsilon}{2} - \varepsilon = 1 - \varepsilon (2 + \frac{\alpha}{2}) \ge 1 - \eta$$

and likewise, $g(a) \ge 1 - \eta$. Besides

$$f(a+\varepsilon b) + g(a-\varepsilon b) \ge ||a+\varepsilon b|| + ||a-\varepsilon b|| - \alpha \varepsilon \ge 2 + \alpha \varepsilon$$

hence

$$(f-g)(\varepsilon b) = f(a+\varepsilon b) + g(a-\varepsilon b) - f(a) - g(a) \ge 2 + \alpha \varepsilon - 2 = \alpha \varepsilon$$

thus $||f - g|| \ge \alpha$. So E cannot have any Šmulian test.

Remark 7. It follows from Remark 6 that in \mathbf{ZF} , every Gâteaux differentiable normed space which has a Šmulian test is uniformly smooth. Since every uniformly smooth normed space has a Šmulian test (see Proposition 1) and since uniform smoothness implies Gâteaux differentiability, the two following properties are equivalent: "E is uniformly smooth.", "E is Gâteaux differentiable and E admits a Šmulyan test."

Using Remark 6, the following statement is provable in (**ZF**+**HB**):

Every normed space which has a Šmulian test of uniform smoothness is uniformly smooth.

Notice that this last converse statement is not provable in **ZF** (see Remark 13).

3. Uniform smoothness entails the effective Mazur property

This Section leads to our main result (see Theorem 1 and Corollary 2).

Lemma 1 (Uniqueness of the tangent form). Let $(E, \|.\|)$ be a Gâteaux differentiable normed space which admits a Šmulyan test. Let C be a nonempty closed convex subset of E such that $0 \notin C$. If g is a tangent form to C seen from 0 then $g \in \cap_{\lambda > \rho} \{\overline{G(a, .)} : a \in C, \|a\| \le \lambda\}$.

Proof. Let η be a Šmulian test for E. Let $\rho := d(0,C)$. Let $\varepsilon > 0$ and let $\lambda > \rho$; by definition of ρ , let $a \in C$ such that $||a|| < \rho(1+\eta(\varepsilon))$ and $||a|| \le \lambda$; then $g(a) \ge \rho$ hence $g(\frac{a}{||a||}) \ge \frac{\rho}{\rho(1+\eta(\varepsilon))} > 1-\eta(\varepsilon)$, while $G(a,a) = 1 \ge 1-\eta(\varepsilon)$, hence $||g-G(a,.)|| < \varepsilon$. It follows that $g \in \cap_{\lambda > \rho} \overline{\{G(a,.) : a \in C, ||a|| \le \lambda\}}$.

Definition 3. Given a nonempty subset C of a normed space E, and a point $a \in E$, a point $m \in C$ is said to be a *best approximation* of a in C when $||m - a|| = \inf_{z \in C} ||z - a||$.

Remark 8. A point may have several best approximations in a given closed convex set: for example, consider the space $E = \mathbb{R}^2$ endowed with the "sup norm", then the set of best approximations of (2,0) in Γ_E is the segment [(1,-1),(1,1)].

Remark 9. Given a nonempty closed convex subset C of a finite dimensional normed space E, it is provable in **ZF** that every point of E has a best approximation in C. More generally, the same conclusion holds in **ZFC** for every reflexive space E, but this statement is not provable in **ZF** (see Subsection 4.4).

Lemma 2 (Ishihara, see [6]). Let $(E, \|.\|)$ be a normed space. Let C be a nonempty convex subset of E such that $0 \notin C$. If 0 has a best approximation $a \in C$ and if the norm $\|.\|$ is Gâteaux differentiable at point a, then G(a, .) is a tangent form to C seen from 0.

Proof. Since *a* is a best approximation of 0 in *C*, d(0,C) = ||a||. For every $z \in C$, G(a,z) = G(a,a) + G(a,z-a) = ||a|| + G(a,z-a); moreover, for every $t \in [0,1]$, $a + t(z-a) = (1-t)a + tz \in C$, hence $||a + t(z-a)|| \ge ||a||$. It follows that for every $z \in C$, $G(a,z-a) = \lim_{t \to 0^+} \frac{||a+t(z-a)|| - ||a||}{t} \ge 0$ whence $G(a,z) \ge ||a||$. □

Lemma 3. Let $(E, \|.\|)$ be a Gâteaux differentiable normed space which admits a Šmulyan test η . Let ε , μ be positive real numbers, let D be the crown $\{x \in E : \mu \leq \|x\| \leq \mu(1+\eta(\varepsilon))\}$, and let C be a nonempty closed convex subset of this crown. Then the diameter of the subset $\{G(x, \cdot) : x \in C\}$ of the dual E' is less than 2ε .

Proof. We are to prove that

$$\forall a, b \in C \ \|G(a, .) - G(b, .)\| \le 2\varepsilon$$

hence it is sufficient to prove the Lemma in the case E is finite-dimensional (and even three-dimensional): let ρ be the distance between 0 and C (notice that $\rho \geq \mu$). Since E is

finite-dimensional, let $u \in C$ be a best approximation of 0 in C; let f = G(u, .); then $f \in S_{E'}$ and, using Lemma 2, $\rho \leq f[C]$. Given $a \in C$, $f(a) \geq \rho$ so $f(\frac{a}{\|a\|}) \geq \frac{\rho}{\|a\|} \geq \frac{\rho}{\mu(1+\eta(\varepsilon))} \geq \frac{1}{1+\eta(\varepsilon)} \geq 1 - \eta(\varepsilon)$, while $G(a, \frac{a}{\|a\|}) = 1 \geq 1 - \eta(\varepsilon)$, hence $\|G(a, .) - f\| \leq \varepsilon$. Thus, for every $a, b \in C$, $\|G(a, .) - G(b, .)\| \leq 2\varepsilon$.

Definition 4 (complete metric space). We say that a metric space is *complete* if and only if every Cauchy filter has a limit point.

Remark 10. Note that the above notion of completeness implies the notion of sequential completeness: "Every Cauchy sequence is convergent.", but the converse does not hold in **ZF**, see Subsection 4.5.

It is easy to prove that \mathbb{R} endowed with the standard metric is complete, and more generally, for every set I, the normed space $\ell^{\infty}(I)$ endowed with the uniform norm (see Notation 2) is complete. It follows that the continuous dual E' of every normed space E is complete, since it is a closed subset of $\ell^{\infty}(\Gamma_E)$.

Lemma 4 (Geometric interpretation of uniform smoothness). Let (E, ||.||) be a Gâteaux differentiable normed space which admits a Šmulyan test and let C be a nonempty closed convex subset of E such that $0 \notin C$. Let ρ be the distance between 0 and C, and for every integer $n \geq 1$, denote by C_n the closure in E' of $\{G(x, .) : x \in C \text{ and } ||x|| \leq \rho + \frac{1}{n+1}\}$. The set $\bigcap_{n \in \omega} C_n$ is a singleton.

Proof. The sequence of nonempty sets $(C_n)_{n\in\omega}$ is decreasing and, using Lemma 3, the sequence of the diameters of the sets C_n tends to 0. Since E' is complete, it follows that $\bigcap_{n\in\omega} C_n$ is a singleton.

Notation 1. In the conditions of Lemma 4, the element of the singleton $\bigcap_{n\in\omega} C_n$ is denoted by f_C .

Lemma 5. Let $(E, \|.\|)$ be a Gâteaux differentiable normed space which admits a Šmulyan test and let C be a nonempty closed convex subset of E such that $0 \notin C$. If 0 has a best approximation $a \in C$, then $f_C = G(a, .)$ and f_C is the unique tangent form to C seen from 0.

Proof. Let $\rho := d(0, C)$. Since

$$G(a,.) \in \bigcap_{n \in \omega} \{G(x,.) : x \in C \text{ and } ||x|| \le \rho + \frac{1}{n+1} \}$$

it follows that $G(a,.) = f_C$; moreover, using Lemma 2, G(a,.) is a tangent form to C seen from 0. The uniqueness of the tangent form follows from Lemma 1.

Remark 11 (**ZFC**). If E is uniformly smooth space, if C is a nonempty closed convex subset of E such that $0 \notin C$, one can prove in **ZFC** that f_C is the unique tangent form to C seen from 0: in fact, since E is a uniformly smooth Banach space, every bounded closed convex subset of E is weakly compact because E is reflexive (here, we use the Axiom of Choice), so E has a best approximation in E, hence, using Lemma E, E is the unique tangent form to E seen from E.

In fact, Remark 11 holds in **ZF**:

Theorem 1. Let (E, ||.||) be a Gâteaux differentiable normed space which admits a Šmulyan test. Let C be a nonempty closed convex subset of E such that $0 \notin C$. Then f_C is the unique tangent form to C seen from 0.

Proof. The uniqueness of the tangent form follows from Lemma 1. We now show that the mapping f_C is a tangent form to C seen from 0. Let $\rho := d(0,C) > 0$. Since $f_C \in S_{E'}$, it is sufficient to prove that $\forall x \in C$ $f_C(x) \geq \rho$. Denote by \mathcal{F} the set of finite-dimensional subspaces F of E meeting C; the partial ordered set (\mathcal{F}, \subseteq) is directed. For every $F \in \mathcal{F}$, let C_F be the closed convex subset $C \cap F$ of F, let ρ_F be the distance between 0 and C_F , and let $f_{C_F} \in F'$ be the (unique) tangent form to C_F , seen from 0. Let $x \in E$. By definition of f_C :

(11)
$$f_C(x) = \lim_{a \in C, ||a|| \to \rho} G(a, x) = \lim_{F \in \mathcal{F}, a \in C_F, ||a|| = \rho_F} G(a, x)$$

For each $F \in \mathcal{F}$ such that $F \ni x$, for each $a \in C_F$ such that $||a|| = \rho_F$, it follows from Lemma 5 that $G(a,x) = f_{C_F}(x)$, while $f_{C_F}(x) \ge \rho_F \ge \rho$, hence using equality (11), $f_C(x) \ge \rho$.

Note that given a Gâteaux differentiable normed space $(E, \|.\|)$ which admits a Šmulian test, a nonempty closed convex subset C of E, and a point $a \in E \setminus C$, then the closed convex set $C_a := C - a$ does not contain 0, and the affine mapping $f_{C_a} - f_{C_a}(a)$ is the unique tangent form to C seen from a (see Remark 4).

Corollary 1. Every Gâteaux differentiable normed space which admits a Šmulian test satisfies the effective Mazur property.

Proof. Let E be Gâteaux differentiable normed space which admits a Šmulian test. Consider the mapping Φ which, to every ordered pair (C, a) where C is a nonempty closed convex subset of E and $a \in E \setminus C$, associates the (unique) tangent form to C seen from a. Then Φ witnesses the effective Mazur property on E.

Using Remark 7, Corollary 1 can be reformulated as follows:

Corollary 2. Every uniformly smooth normed space satisfies the effective Mazur property.

Remark 12. Using Lemma 6 below, every finite-dimensional normed space E satisfies the two following properties:

Hahn-Banach property: For every sublinear mapping $p: E \to \mathbb{R}$, for every vector subspace $F \subseteq E$, and for every linear mapping $f: F \to \mathbb{R}$ such that $f \leq p_{|F}$, there exists a linear mapping $g: E \to \mathbb{R}$ such that $g \leq p$ and g extends f.

Mazur property : For every ordered pair (C, a) such that C is a nonempty closed convex subset of E and $a \in E \setminus C$, there exists a tangent form to C seen from a.

Lemma 6. (Hahn-Banach's "finite extension lemma") Let V be a vector space, let K be a subspace of V, let $p:V\to\mathbb{R}$ be a sublinear mapping, and let $f:K\to\mathbb{R}$ be a linear mapping satisfying $f\leq p$. If there exists a finite subset F of V such that $K\cup F$ spans the whole vector space V, then there exists a linear mapping $g:V\to\mathbb{R}$ that extends f and such that $g\leq p$.

Proof. Let F be a minimal finite subset F such that $K \cup F$ spans V.

First case: F is a singleton $\{e\}$. Let $m = \sup_{y \in V} \{f(y) - p(y - e)\}$ and $M = \inf_{y \in V} \{p(y + e) - f(y)\}$. Since p is sublinear, $m \leq M$. For every real number $\lambda \in [m, M]$, the linear mapping g which extends f and such that $g(e) = \lambda$ satisfies $g \leq p$.

General case. By induction on the cardinal of F, using the previous case.

4. Horrors of functional analysis without choice

In this Section, we give some examples of classical theorems of Functional Analysis which hold in **ZFC** but which are not provable in **ZF**. Given a normed space E, we denote by $j_E: E \to E''$ the canonical mapping which is defined as follows: for all $x \in E$, for all $f \in E'$, $j_E(x)(f) = f(x)$. Clearly, j_E is linear, continuous and $||j_E|| \le 1$. Using **HB**, one can prove that j_E is isometric, i.e. for every $x \in E$, $||j_E(x)|| = ||x||$, but this result does not hold in **ZF** (see Subsection 4.2 below). In **ZFC**, there are many equivalent definitions of reflexivity for a normed space; since we work in **ZF**, we now provide a definition for reflexivity:

Definition 5. A normed space E is said to be reflexive when j_E is isometric and onto.

Notation 2. For every set I, denote by $\ell^{\infty}(I)$ the space of bounded mappings $f: I \to \mathbb{R}$ endowed with the uniform norm $\|.\|_{\infty}$ which is defined as follows: for every $f \in \ell^{\infty}(I)$, $\|f\|_{\infty} := \sup_{i \in I} |f(i)|$. Denote by $\ell^{0}(I)$ the subspace of $\ell^{\infty}(I)$ which is defined as follows:

$$\ell^0(I) := \{ f \in \ell^\infty(I) : \forall \varepsilon > 0 \ \exists F_0 \in \mathcal{P}_f(I) \ \forall i \in I \backslash F_0 \ |f(i)| \le \varepsilon \}$$

Denote by $\ell^1(I)$ the space of elements $f \in \mathbb{R}^I$ such that $\sum_{i \in I} |f(i)| < +\infty$, endowed with the norm $\|.\|_1$ which is defined as follows: for every $f \in \ell^1(I)$, $\|f\|_1 := \sum_{i \in I} |f(i)|$.

It is well known that the continuous dual of $\ell^0(I)$ is $\ell^1(I)$, and that the continuous dual of $\ell^1(I)$ is $\ell^{\infty}(I)$. If I is finite, then $\ell^{\infty}(I) = \ell^0(I)$, so the continuous dual of $\ell^{\infty}(I)$ is $\ell^1(I)$, and the following question is natural:

If I is infinite, what is the continuous dual of $\ell^{\infty}(I)$?

Note that in **ZF**, the canonical mapping $j_{\ell^1(I)}: \ell^1(I) \to (\ell^1(I))''$ is isometric, and in (**ZF+HB**), $j_{\ell^1(I)}$ is not onto, but this is not provable in **ZF**, see Subsection 4.1.

4.1. A model of ZF in which $\ell^1(\omega)$ and $\ell^\infty(\omega)$ are reflexive. Pincus and Solovay (see [8]) have built a model \mathcal{M} of set theory ZF in which, for every set I, every finitely additive measure m on I is discrete, i.e. there is an element $(\lambda_i)_{i\in I} \in \ell^1(I)$ such that for every subset A of I, $m(A) = \sum_{i\in A} \lambda_i$. In this model, the continuous dual of the normed space $\ell^\infty(I)$ is $\ell^1(I)$, hence for every set I, each of the normed spaces $\ell^1(I)$ and $\ell^\infty(I)$ is reflexive. Also observe that the reflexive space $\ell^\infty(\omega)$ has a closed subspace which is not reflexive: for example, consider the subspace $\ell^0(\omega)$: $(\ell^0(\omega))'' = (\ell^1(\omega))' = \ell^\infty(\omega)$ hence $\ell^0(\omega)$ is not reflexive. Also remark that, though $\ell^1(\omega)$ is a reflexive separable Banach space, its continuous dual $\ell^\infty(\omega)$ is not separable. Also note that, although $\ell^0(\omega)$ is not reflexive, its continuous dual $\ell^1(\omega)$ is reflexive.

- 4.2. **A Banach space** E for which j_E is not isometric. Given any model \mathcal{M} of $(\mathbf{ZF} + \neg \mathbf{HB})$, there exists in this model, (see [4], Lemma 5 p.12), an infinite dimensional normed space $(E, \|.\|)$ such that $E' = \{0\}$ (for example, in the above model of Pincus and Solovay, the normed space $\ell^{\infty}(\omega)/\ell^{0}(\omega)$ is infinite dimensional, but its continuous dual is $\{0\}$). It follows that the canonical mapping j_E is equal to 0 and j_E is not isometric. Moreover, the weak topology $\sigma(E, E')$ on E (i.e. the topology generated by the sets $\{x \in E : f(x) < \lambda\}$ where $f \in E'$ and $\lambda \in \mathbb{R}$) has only two open sets which are \emptyset and E. It follows that the closed unit ball of E is not weakly closed, and that singletons of E are not weakly closed either, hence the weak topology on E is not Hausdorff.
- 4.3. A Banach space which is smooth at a point but not Gâteaux differentiable at this point. Let \mathcal{M} be a model of $(\mathbf{ZF} + \neg \mathbf{HB})$: in this model, there exists an infinite dimensional Banach space $(E, \|.\|)$ such that $E' = \{0\}$. Let $F = E \oplus \mathbb{R}$ the vector space endowed with the norm $N : F \to \mathbb{R}$ which is defined as follows: for all $x \in E$, for all $\lambda \in \mathbb{R}$, let $N(x, \lambda) = \|x\| + \|\lambda\|$. Clearly, every $f \in F'$ is of the following type: $(x, \lambda) \mapsto m\lambda$ where $m \in \mathbb{R}$. Let $a = (0_E, 1)$. Since $(x, \lambda) \mapsto \lambda$ is the only norming mapping at point a, the normed space (F, N) is smooth at point a; however, (F, N) is not Gâteaux differentiable at point a because, given any point $u \in S_E$, observe that for $h := (u, 0) \in S_F$, $G^+(a, h) = 1$ and $G^-(a, h) = -1$.

Remark 13. Given a model (**ZF** + \neg **HB**), and an infinite dimensional normed space E of this model such that $E' = \{0\}$, observe that E is not Gâteaux differentiable though any mapping $\eta : \mathbb{R}_+^* \to \mathbb{R}_+^*$ is a Šmulian test of uniform smoothness for E.

- 4.4. A separable reflexive space which does not satisfy the projection property. We say that a normed space E has the projection property if and only if for every nonempty closed convex subset of E, every point of E has a best approximation in C. In **ZFC**, it is well known (see [9] Theorem 28.41. p.177) that, for a Banach space E, the three following properties are equivalent:
 - i) The space E is reflexive;
 - ii) The closed unit ball of E is Hausdorff compact in the weak topology;
 - iii) The space E satisfies the projection property.

It is easy to show that statement "ii) \Rightarrow iii)" holds in **ZF**, but statement "i) \Rightarrow iii)" is not provable in **ZF**: in fact, the space $\ell^1(\omega)$ does not satisfy the projection property, because if we consider the continuous linear mapping $f:\ell^1(\omega)\to\mathbb{R}$ such that for every $x=(x_i)_{i\in\omega}\in\ell^1(\omega)$, $f(x)=\sum_{i\in\omega}\frac{i}{i+1}x_i$, then f does not attain its norm on the closed unit ball hence 0 does not have a best approximation on the closed hyperplane $H:=\{x\in \ell^1(\omega); f(x)=1\}$; however, in some models of **ZF**, the space $\ell^1(\omega)$ is reflexive (see Subsection 4.1).

4.5. A metric space which is sequentially complete but not complete. In Cohen's first model (see [7]), there are dense subsets of \mathbb{R} without any infinite countable subset: such a subset A of \mathbb{R} is not complete (because it is not closed), but it is sequential complete because every Cauchy sequence of A converges (such a sequence is eventually constant).

GÂTEAUX DIFFERENTIABILITY AND SMOOTHNESS

In this Section, we compare in **ZF** the two notions of Gâteaux differentiability and smoothness for a norm.

5.1. Gâteaux differentiability at a point implies smoothness at this point. Given a normed space E, given a point $a \in E \setminus \{0\}$, Gâteaux differentiability of the norm at point a provides a linear mapping $f \in S'_E$ which is norming at point a; the following easy Lemma shows that Gâteaux differentiability at point a also implies uniqueness of a norming linear mapping at point a:

Lemma 7. Let $(E, \|.\|)$ be a normed space, let $a \in E \setminus \{0\}$. For every linear mapping $f: E \to \mathbb{R}$, the three following conditions are equivalent:

- i) The mapping f is norming at point a;
- ii) For every $h \in E$, $G^-(a,h) \leq f(h) \leq G^+(a,h)$;
- iii) For every $h \in E$, $f(h) \leq G^+(a,h)$.

Proof. $i \rightarrow ii$). If f is norming at point a, then, given any $h \in E$:

$$\forall t > 0, \ f(h) = \frac{f(th)}{t} = \frac{f(a+th) - f(a)}{t} \le \frac{\|a+th\| - \|a\|}{t}$$

thus $f(h) \leq G^+(a,h)$. In particular, for every $h \in E$, $f(-h) \leq G^+(a,-h)$, hence $-f(h) \leq$ $-G^{-}(a,h)$ thus $G^{-}(a,h) \leq f(h)$.

- $ii) \Rightarrow iii)$ is trivial.
- $iii) \Rightarrow i$). Since $G^+(a,.) \leq \|.\|$, it follows that f is continuous and $\|f\| \leq 1$; moreover, $f(-a) \leq G^+(a,-a) = -\|a\|$, hence $f(a) \geq \|a\|$ so $f(a) = \|a\|$ and f is norming at point
- 5.2. From smoothness at a point to Gâteaux differentiability at this point. Consider the following statement:

S2G ("Smoothness to Gâteaux differentiability"): Every normed space which is smooth at a point $a \in E \setminus \{0\}$ is Gâteaux differentiable at this point a.

Proposition 2. Axiom HB is equivalent to S2G.

Proof. $HB \Rightarrow S2G$: classical, see [1] page 181. Suppose that some normed space $(E, \|.\|)$ is not Gâteaux differentiable at a given point $a \in S_E$; then there exists $h \in E$ such that $G^-(a,h) < G^+(a,h)$. Using **HB**, consider linear mappings $f,g \in E'$ such that $f \leq G^+(a,.)$, $g \leq G^+(a, .), f(h) = G^-(a, h)$ and $g(h) = G^+(a, h)$. Then, using Lemma 7, f and g are both norming at point a, while $f \neq g$. It follows that E is not smooth at point a.

 $S2G \Rightarrow HB$: it follows from Subsection 4.3 that $\neg HB$ implies $\neg S2G$.

We end with some questions.

Question 1. Is the Mazur property provable in ZF for Gâteaux differentiable Banach spaces? (it is provable in (**ZF+DC**), see [3]).

Recall that uniform smoothness means that $\lim_{t\to 0,\ t\neq 0} \frac{\|a+th\|-\|a\|}{t}$ exists for each $a,h\in S_E$, and is uniform in $(a, h) \in S_E \times S_E$.

In the published version of this paper,

I exchanged "Fréchet differentiability" and "uniform Gâteaux differentiability".

Since uniform smoothness yields the Mazur property, it is natural to ask whether the existence for every $a \in E \setminus \{0\}$ of $\lim_{t\to 0, t\neq 0} \frac{\|a+th\|-\|a\|}{t}$ uniformly in $h \in S_E$ (i.e. Fréchet differentiability), or the existence for every $h \in E \setminus \{0\}$ uniformly in $a \in S_E$ (i.e. uniform $G\hat{a}teaux$ differentiability, see [2], Definition 6.5 p.63) is sufficient to imply the Mazur property in \mathbf{ZF} :

Question 2. Is the Mazur property provable in **ZF** for Fréchet differentiable Banach spaces?

Question 3. Is the Mazur property provable in \mathbf{ZF} for uniformly Gâteaux differentiable Banach spaces?

References

- [1] B.Beauzamy, Geometry of Banach spaces, North-Holland, Amsterdam (1985).
- [2] R.Deville, G.Godefroy and V.Zisler. Smoothness and renormings in Banach spaces, Pitman monographs and surveys in pure and applied mathematics, Longman Scientific and technical, London (1993)
- [3] J.Dodu and M.Morillon, The Hahn-Banach property and the Axiom of Choice, Math. Logic Quart., 45 (3), 299–314 (1999).
- [4] J.Fossy and M.Morillon, The Baire Category Property and some Notions of Compactness, J. London Math. Soc. 57 (2), 1–19 (1998).
- [5] P.Howard and J.Rubin, Consequences of the Axiom of Choice, Mathematical Surveys and Monographs, Vol. 59, AMS, (1998).
- [6] Ishihara, On the constructive Hahn-Banach theorem, Bull. London Math. Soc., 21, 79–81 (1989)
- [7] T.Jech, **The Axiom of Choice**, Studies in Logic and the Foundations of Mathematics, vol.75, North-Holland, Amsterdam (1973).
- [8] D.Pincus and R.M.Solovay, Definability of measures and ultrafilters, J. Symbolic Logic 42, 179–190 (1977).
- [9] D.Schechter, Foundations of Analysis, Academic Press (1997)

DÉPARTEMENT DE MATHÉMATIQUES ET INFORMATIQUE, UNIVERSITÉ DE LA RÉUNION, 15 AVENUE RENÉ CASSIN - BP 7151 - 97715 SAINT-DENIS MESSAG. CEDEX 9 FRANCE

E-mail address, Marianne Morillon: mar@univ-reunion.fr