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Abstract—The drop of initial TCP control packets can dramat-
ically penalize flow performance. More the flow is small, more
the penalty is important. This paper studies an Active Queue
Management (AQM) aiming to protect TCP SYN and SYN-
ACK from losses, and evaluates the improvements for short TCP
flows and the impacts on long-lived TCP flows. This AQM is an
extension based on Random Early Detection (RED). Evaluations
are performed in the ns-2 simulator. Results demonstrate the
effectiveness of the idea supported in a decrease in the transfer
delay of short flows and indiscernible effects on large flows.

Index Terms—TCP; Short-lived flow; AQM; RED; Connection
establishment.

I. I NTRODUCTION

Each of us has already noticed that sometimes a web page
takes a significant time to display. Asking for refresh permits
the page to be loaded. One possible reason for this behavior
could be the loss of SYN or SYN-ACK TCP segments as
explained in [1]. These TCP segments are exchanged in
the three-way handshake procedure used in the connection
establishment phase [2]. Congestion is the main cause of these
losses. Network reacts by dropping packets in a router’s queue.
TCP relies on Round Trip Time (RTT) values to tackle packet
losses. As no RTT estimate is available at connection opening,
the retransmission timeout (RTO) is set by default to 3 seconds
[3]. Recently, the IETF working group tcpm (TCP Mainte-
nance and Minor Extensions) has proposed decreasing the
default RTO value to 1 second [4]. The rationale behind this
change is that the RTT of more than 97.5% of the connections
observed in a large scale analysis were less than 1 second [5].
However, retransmission rates within the three-way handshake
are measured roughly at 2%. This shows that a solution to
avoid packet loss in the connection establishment phase will
benefit a non-negligible set of connections. While setting the
initial RTO value to 1 second provides interesting results,
its deployment requires end host modification. Furthermore,
one second is inappropriate for brief exchanges. We offer
here another option. Rather than dealing with retransmission
concerns, i.e., after the loss, we act upstream. Our idea consists
in preventing initial packet losses, avoiding in this way, the
RTO triggering.

Loss issues at the connection establishment phase are not
limited to TCP flow. All connection-oriented services and
protocols, such as DCCP and SCTP, are affected. However,

short-lived TCP flows are the most impacted. Those are flows
made up of few packets. The applications generate short flows
in order to ensure an interactive feature. As presented in [6]
and [7], Internet traffic is mostly populated by short-lived
TCP flows, mainly generated by Web applications. Theses
flows suffer more from the initial drops than long-lived flows.
Indeed, the connection establishment phase is a process that
takes a significant time compared to the duration of the
connection. The RTO expiration and corresponding backoff
time, due to SYN or SYN-ACK packet loss, add a delay
that is significant for short-lived flows. The RTO penalty is
perceptible at the service level as the main performance metric
is the latency. On the other hand, when a long-lived flow
experiences an initial drop, it is equivalent to a shift in the
starting of data transfer. The performance metric for this kind
of flow is the goodput.

In this paper, we aim to evaluate the benefits of protecting
the packets used in connection establishment. The evaluation
is made in the context of TCP. The idea is to protect the TCP
segments with the SYN flag set (referred to as SYN segment or
SYN packet in the following) from losses. The term protection
means keeping the SYN segment even if the queue is full. This
action is performed on the router’s queue. SYN packets are
never dropped whenever data packets are present in the queue.
Queue management is done in a push-out fashion. If the queue
is full on a SYN packet arrival, the last enqueued data packetis
pushed out of the queue and dropped. The motivation to act at
the router level is that the congestion and the choice of, which
packet must be lost, are made at the router level. Furthermore,
as the problem affects all connection-oriented services, the
solution at this network level deals with this problem globally.
With the proposed solution, only data packets are intended to
be lost. These packets will be recovered in a better fashion
than TCP SYN segment, i.e., either by fast retransmit [8] or by
RTO adjusted relatively to the RTT estimations. No additional
change other than SYN packet protection is done on routers.
Provided service offered by network remains best effort.

The main contribution of this work is the demonstration
that the proposed scheme is able to significantly improve the
performance of flows by the protection of the segments ex-
changed in the initial phase. The proposition does not involve
a complex identification scheme or per-flow state management.
Improvements should be obtained without penalizing long



flows. We propose an implementation of the idea to prove its
effectiveness. We then study the integration of the proposed
scheme with an existing Active Queue Management (AQM)
mechanism, namely, Random Early Detection (RED). This
extension of RED is developed and analyzed.

The next section presents the related work that deal with
connection establishment and packet losses due to congestion.
The proposed idea is described in Section III. In Section IV,
we evaluate the performance experienced by short and long
TCP flows with the implementation of the proposed AQM.
We conclude by our findings.

II. RELATED WORK

In the literature, there are overall three types of approaches
that address the problem of losses:

1) Preventive actions to reduce the loss rate. Indeed, Be-
sides wasted bandwidth, the retransmission of lost pack-
ets introduces extra delay. AQM aims to deal with this
congestion issue.

2) Marking packets rather than dropping them; and
3) Responsive actions to improve the retransmission pro-

cedure. Solutions based on this approach consider mod-
ification of TCP settings.

As mentioned previously, our motivation to act at the router
level is that the congestion occurs at this level. For more than a
decade, the research community has developed Active Queue
Management (AQM) in order to prevent packets being dropped
and to maintain high throughput and low delay. In [9], it is
recommended to deploy RED [10]. RED monitors the queue
length and adopts a packet drop policy based on probabilities,
which increase with the level of congestion. However, RED
fails to improve the performance of short flows and to pro-
vide fairness with unresponsive flows. Choke [11] has been
proposed as a solution for this problem. It approximates max-
min fairness for the flows that pass through a congested route.
It draws a packet at random from the FIFO buffer when a
packet arrives and compares it with the arriving packet. If they
both belong to the same flow, they are both dropped. Choke
can also be considered as a solution for the short-lived flows
by considering that it corrects unfairness problems between
short and long-lived flows. However, Choke doesn?t prevent
the SYN lost when the queue is full. Another way in the
router context is the use of DiffServ architecture [12]. In [6],
a proposition relies on DiffServ to protect retransmissions and
the first packets against loss. After loss detection, the segments
are sent with higher priority. This solution is inappropriate for
best effort network.

These previous works handle the problem of packet losses,
but they do not specifically focus on connection packets.
In [13], the authors recognize this problem of lost packets
belonging to the connection establishment phase and their
simulations show how the response time can be significantly
increased by just avoiding the loss of the SYN packet. They
show that setting Explicit Congestion Notification (ECN) bits
[14] in IP header of TCP control packets while leaving the
treatment of the initial TCP SYN packet unchanged, can

significantly improve system performance. But, as authors
mentioned, this method has a limited scope due to poor usage
of ECN on servers and in routers.

Another way to improve the performance in case of lost
SYN packets is based on the modification of TCP settings in
the operating system, such as defining a smaller value [4] to
the initial retransmission value. In [1], the authors investigate
the possibility of setting the initial retransmission timeto a
value smaller than 3 seconds. However, this will then apply
to every TCP connection and possibly introduce unnecessary
retransmissions and could even cause TCP to fail in certain
cases of extreme delay. So they implement an application layer
tool to keep a copy of sent packets belonging to the connection
opening phase. In case the corresponding acknowledgement
does not arrive within a given and a configurable time, the
packet is retransmitted. The designed application can be used
only for specific ports, such as 80 and not for all TCP
connections as opposed to the approach of RTO decrease.

III. D ESCRIPTION

Our solution to initial drops in the connection establishment
phase is to protect SYN packets within the network. As those
losses appear in congestion situations, the proposition takes
place on routers. Indeed, a congested router drops packets
when its queue fills up (or is about to be filled).

Two types of approaches are possible: scheduling and
active queue management. In scheduling, router’s buffer is
partitioned into separate queues. Each queue holds the packets
of one flow or a category of flow. A scheduling mechanism
determines which packet to serve next; it is used primarily to
manage the allocation of bandwidth (and provide fair sharing)
among flows but it can also apply to traffic protection or
isolation. This is an interesting option for the isolation of SYN
packets from the other traffic. However, algorithmic complex-
ity and scaling issues of scheduling make its deployment on
Internet routers difficult.

On the other hand, active queue management, which is con-
cerned with managing the length of packet queues by dropping
packets when necessary or appropriate, has a simpler design.
A single queue contains all the packets. The deployment of
RED, that falls within this class, on Internet routers is highly
recommended. RED possesses interesting and useful features;
such as its ability to avoid global synchronization, its ability to
keep buffer occupancies small and ensure low delays, and its
lack of bias against bursty traffic. Our proposition is, then,
compared to AQM mechanisms. As the comparison holds
on the effectiveness of the SYN packet protection, RED is
extended with this additional feature. This new variant of RED
will be referred to as REDFavor hereinafter.

With REDFavor, the router serves as a shield for SYN
packets against losses. A congestion episode manifests itself
by the filling up of the queue. Any new arriving packet
is discarded. In normal operation, the router performs this
dropping with no regard to the packet type. REDFavor reacts
in a different manner if the new packet is a SYN packet. The
router makes sure that no SYN packet is rejected if at least



Algorithm 1 REDFavor algorithm
1: function enqueue(p)
2: # A new packet p arrives
3: if the SYN flag is set on pthen
4: # p must be protected
5: if the queue is full or p is an early drop packetthen
6: if only protected packets in the queuethen
7: p is drop
8: return
9: else

10: # Push out
11: the last standard packet is dropped
12: end if
13: end if
14: p is enqueued in front of all standard packets
15: else
16: # p is a standard packet
17: Fall back to RED
18: end if

one standard packet is present in the queue. A standard packet
is dequeued and dropped in a push-out fashion, as presented
in Algorithm 1, to release space for the SYN packet. This
latter is, then, enqueued. However, if all packets in the queue
are SYN packets, the arriving SYN packet will be dropped as
there is no possibility of making room for it.

Thus, although SYN packets are protected during conges-
tion periods at the expense of standard packets, they can
still encounter losses. That happens when the queue contains
only SYN packets. To lower this potential risk, SYN packets
accumulation must be avoided. One response to this point
consists in limiting their waiting time in the queue as much
as possible. Then, a new enqueued SYN packet is positioned
in front of all standard packets and at the tail of already
enqueued SYN packets. Thus, it is prioritized in transmission
over standard packets.

The exposed protection mechanism can be considered as
an isolation or separation of SYN packets from standard ones.
This separation relies on SYN flag identification. This flag acts
as a priority bit that triggers special and privileged treatment
for corresponding packets. A transport layer signalisation is
handed over to network-level entities to solve a transport layer
issue. Such cooperation can be seen as a cross-layer approach.
This operation does not involve complex scheme or per-flow
state management. A simple check on the SYN flag suffices;
this ensures the scalability of deployment on real networks.

Nevertheless, some questions may arise with the use of
isolation and prioritization of SYN packets. Indeed, both types
of packets are competing for transmission. One possible issue
might be the starvation of standard packets in bandwidth
sharing. The problem is not relevant in non-congestion periods.
Intuitively, in case of congestion, starvation should not happen
as the number and size of SYN packets are relatively small
(40 bytes) compared to standard packets. Another potential
problem relates to the impact of protection on RED operations

and properties. In fact, SYN packets are not checked against
RED filters on their arrival. They can be seen as unresponsive
and may raise or reinforce congestion. However, the same
assertion about the number and size of SYN packets still holds.
We think that the effects on RED performance are negligible or
minor. These assumptions are validated by simulation results
in the evaluation section.

We do not claim that the combination of the proposition and
RED is the best one nor gives the best performance. However,
this choice highly facilitates analysis and evaluation of the
presented solution.

IV. EVALUATION

This section presents the performance simulation results of
REDFavor using ns-2 simulator. We look at 2 points:

• Latency of short-lived flows, that expresses the improve-
ments brought by SYN packets protection,

• The counterpart of the observed improvements on long-
lived flows.

We compare the performance of the SYN protection with RED
and Choke. The simulation is designed to demonstrate the
improvements in latency of the proposed SYN protection in a
single bottleneck scenario. We adopt the model of web traffic
developed in [15]. In this model, a pool of clients request web
objects from a pool of servers. Pools are interconnected by a
pair of routers and a bottleneck link. This link has a bandwidth
of 10 Mbits/s as shown by Figure 1.
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Fig. 1. Simulation model

In detail, we used TCP flows with RTT varying from 5 ms
to 100 ms. A client makes a web session. A web session is
composed by a sequence of web pages. A page is constituted
by several objects. Each object is downloaded through a TCP
connection. Then, each object will result in a new flow. The
parameters used to obtain the simulated web traffic are the
average of the number of pages per session, the average of
the number of objects per page, the inter-session time, the
inter-page time and the inter-object time, as seen in Table
I. Exp(x) means the exponential distribution with mean x.
Settings for the object size and the number of objects per page
in Table I, are similar to those used by [16]. Consequently, we
consider a Pareto object size denoted as P(1,1.2,12) where
1 is the minimum possible object size (in packets), 1.2 is
the shape parameter, and 12 is the mean object size (in
packets). The Pareto distribution shows high variability.It
represents an accurate model of flow size distributions as



TABLE I
SIMULATION PARAMETERS

Parameter Value
Number of pages per session Exp(240)
Number of objects per page Exp(3)

Intersession (s) Exp(0.5)
Interpage Exp(5)
Interobject Exp(0.1)
Object size P(1, 1.2, 12)

empirically observed on the Internet. The settings for the
remaining parameters applied to the web traffic model lead
to usage of around 70% of the bottleneck link capacity. The
web traffic load is generated by 135 web sessions taking place
on each of the 9 web servers. Besides, each web server sends
a long-lived TCP to one web client. A flow is generated in the
reverse direction to mitigate potential synchronization between
flows. REDFavor is applied only on the congested link. The
simulation model is illustrated in Figure 1. Data are collected
after a 100 second warm-up period. The simulation duration
is set to 500 seconds.

A. Web traffic

This subsection evaluates the efficiency of REDFavor to im-
prove the performance of short lived TCP flows. As mentioned
earlier, the short flows are the most affected by the loss of
initial TCP control packets, in terms of latency. The efficiency
of SYN packet protection can be appreciated by a decrease in
transfer delay.

Figure 2 shows the cumulative distribution of request com-
pletion time. The request completion time of a flow is the time
interval starting when the first packet leaves that server and
ending when the last packet is received by the corresponding
client. RED experiences fewer sessions that terminate their
requests within 3 seconds. A noticeable peak appears in 3
seconds with RED. This corresponds to the occurrence of
initial RTO. The same observations are reported by [17].
REDFavor eliminates these earlier timeouts. It behaves and
leads to the same results as Choke.
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Figure 3 presents the mean completion time as a function

of the flow size. REDFavor ensures a lower transfer delay for
both short flows and long flows. It performs like Choke with
short flows and falls back to RED behaviour on large flows.
These results prove that short flows benefit substantially from
SYN packets protection offered by REDFavor while long flows
are not penalized further than they would with RED.
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Drop protection is evaluated in Figure 4. This figure shows
the distribution of dropped packet numbers on the congested
link. We note that for flow sizes less than 10 packets,
REDFavor has nearly the same behaviour as RED, then, it
follows Choke. Quantitative results in Table II show that not a
single SYN packet is dropped with REDFavor. Lesser standard
packets are even lost compared to the two other schemes.
So, protection is obtained at the expense of the loss of some
standard packets, i.e., those with a higher packet number. This
criticism should be moderate as the drop rate decreases. The
obtained results show that REDFavor achieves the initial goal
of SYN packet protection.
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B. Long-lived TCP flow

This subsection studies the impact of the proposition on
long-lived flows. Let us remember that the throughput is the



TABLE II
DROPPED PACKETS COUNT

Choke RED REDFavor
Dropped packets count 55566 36758 33150

Drop rate 0.082 0.143 0.073
Dropped SYN packets count 196 3391 0

TABLE III
BANDWIDTH USAGE

Choke RED REDFavor
Bandwidth usage (%) 83.34 96.87 96.71

metric that matters for this type of traffic.
Figure 5 shows the normalized rate obtained by each of the

9 long-lived flows between a couple of web client and web
server. With REDFavor, all large flows get the same throughput
as in RED. This efficient use of bandwidth is confirmed by
the quantitative results presented in Table III. We can note
that Choke’s improvements for short flows are obtained by a
decrease in bandwidth share for long flows.

The impacts of SYN packets protection on long-lived flows
are negligible. As stated previously, the ”unresponsive” charac-
ter of SYN packets (and short flows), has no impact on overall
performance. Indeed, due to their small size, their participation
in congestion occurrence is largely limited.
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V. CONCLUSION

This paper proposed a scheme consisting in protecting SYN
packets and by the way, leverages the penalty of short flows.
The proposition is relatively simple as it is implemented as
an AQM scheme on a router’s queue. Evaluations validate the
idea while showing that noted improvements are not resulting
in substantial impact on long-lived flows. A non-permanent
(performed at the flow startup) and targeted action signifi-
cantly improves short flow performance without a significant
decrease in the throughput of large flows. Benefits are higher
than costs.

The simplicity of the proposition constitutes its main advan-
tage. Operations are solely based on the content of the packet’s

SYN flag. Deployment of the solution is transparent to end
hosts as it involves routers (specifically, queue management),
only. As REDFavor works independently, its deployment can
be done in incremental manner, i.e., only on routers with
heavily loaded links. When the congestion is not present, our
AQM has no effect.

In operational aspect, a special attention should be paid to
security concerns as the proposition relies on SYN packets
identification. For example, it is vulnerable to SYN flood
attacks. However, solutions to those security issues, suchas
firewalling, packet filtering or Intrusion Detection and Preven-
tion Systems, exist and are fully functional. These solutions
mitigate those security threats.
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