
Transport Congestion Events Detection (TCED): Towards
Decorrelating Congestion Detection from TCP

Pascal Anelli
Université de la Réunion; LIM;

France
pascal.anelli@univ-

reunion.fr

Emmanuel Lochin
CNRS; LAAS;

Université de Toulouse; ISAE;
France

emmanuel.lochin@isae.fr

Fanilo Harivelo
Université de la Réunion; LIM;

France
fanilo.harivelo@univ-

reunion.fr

Dino Martin Lopez
Pacheco

I3S; Université de Nice;
France

dino.lopez@unice.fr

ABSTRACT
TCP(Transmission Control Protocol) uses a loss-based algo-
rithm to estimate whether the network is congested or not.
The main difficulty for this algorithm is to distinguish spu-
rious from real network congestion events. Other research
studies have proposed to enhance the reliability of this con-
gestion estimation by modifying the internal TCP algorithm.
In this paper, we propose an original congestion event algo-
rithm implemented independently of the TCP source code.
Basically, we propose a modular architecture to implement
a congestion event detection algorithm to cope with the in-
creasing complexity of the TCP code and we use it to un-
derstand why some spurious congestion events might not be
detected in some complex cases. We show that our proposal
is able to increase the reliability of TCP NewReno conges-
tion detection algorithm that might help to the design of
detection criterion independent of the TCP code. We find
out that solutions based only on RTT (Round-Trip Time) es-
timation are not accurate enough to cover all existing cases.
Furthermore, we evaluate our algorithm with and without
network reordering where other inaccuracies, not previously
identified, occur.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Transport Mechanisms

General Terms
Transport Protocol

Keywords
TCP, Congestion Event, Measurements

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

1. INTRODUCTION
TCP has the capability to adapt its sending throughput

to the changing bandwidth available following the princi-
ple described in [11]. TCP considers a loss of a segment as
a congestion in the network. A congestion event (or loss
event) corresponds to one or several losses (or, in the con-
text of ECN (Explicit Congestion Notification) [19]: at least
one ACK (acknowledgment) packet with an ECN-echo) oc-
curring in one TCP window during one current RTT period
[6].

TCP congestion events play a role in terms of throughput
performance as the congestion event involves a multiplica-
tive decrease from the source. It is also important to clearly
distinguish the loss ratio from the congestion ratio. Indeed,
the number of losses during one RTT is not taken into ac-
count to characterize a congestion event as this number only
impacts on the recovery time period.

TCP is strongly sensitive to spurious timeout [21] which
trigger spurious retransmissions and result in a throughput
decrease. Spurious timeout occurs when a non lost packet
is retransmitted due to a sudden RTT increase (handover,
route fluttering, network reordering, ...) which implies an
expiration of the retransmission timer [18] set with a pre-
vious, and thus outdated, RTT value. This effect is known
to be the root cause of spurious retransmission [20]. Several
research work have raised this problem [15, 21, 3, 22].

In this paper, we propose a novel transport layer archi-
tecture where the congestion event detection algorithm is
realised independently of the TCP code and detail the es-
sential brick of this proposal: the congestion events detec-
tion mechanism. We aim to illustrate the feasibility of this
concept by demonstrating that we can either obtain similar
performances or also improve the accuracy of this detection
outside the TCP stack. The main idea is to determine CE
(i.e. the congestion detection) which impact on the TCP
flow performance by monitoring the TCP flow itself. The
principle is to obtain a detection system, at the edge of a
network or at the sender-side which analyses the TCP be-
haviour through the observation of both data packets and
acknowledgments paths.

We implement this Implicit Congestion Notification (ICN)
algorithm inside a framework that we call TCED (Transport

Congestion Events Detection). Thus, TCED can be used
either at the border of an autonomous system or conjointly
within a TCP stack as a sublayer. ICN allows also to bet-
ter understand and investigate the problem of congestion
events estimation as well as proposing possible solutions to
suppress inaccuracies of the current TCP loss-based algo-
rithm. Following more exhaustive measurements, we show
that an external congestion event detection is thus possible
and present in section 2 the rationale of this design. Further-
more, we have identified that solution only based on RTT
estimation are not accurate enough to cover all existing cases
(e.g in particular retransmissions triggered at the begin of
a connection). These results are provided in Section 4, just
after the details of the algorithm (Section 3).

2. MOTIVATION TO BUILD A STAND-ALONE
TCP CONGESTION EVENTS ALGORITHM

These last years, the number of TCP variants and mi-
nor extensions have greatly increase (see [tcpm], [iccrg]

and [tsvwg] IETF mailing lists). Some of them are deeply
specialized to specific networks such as wireless LAN [16]
or satellites links [5] while others focus on high speed net-
works [6, 23]. To date, except the historical and generic
TCP Newreno/SACK (Selective ACKnowledgment) variant,
there exists no universal TCP protocol able to perform in-
differently over any kind of networks. The direct observable
consequence of these many proposals is that TCP source

code is gaining in complexity and that minor exten-
sions proposed, such as for instance F-RTO (Forward Re-
transmission TimeOut-recovery) [21], do not help in terms
of clarification of the source code. Furthermore, some im-
provements might be linked to a specific TCP version and
cannot be deployed in the common TCP source code. Thus,
the relevance of the OSI model is under question and in a
recent paper [9], the authors argue that the transport layer
should be now sliced in three sub-layers to cope with new
network characteristics and the inherent complexity of the
source code. All these reasons motivate the present study
which aims at decorrelating the congestion events detection
from the transport layer as presented in figure 1. In a sake
of clear software engineering development, the main goal of
this architecture is to simplify the task of kernel developers
as well as improving TCP performances. Indeed, such ar-
chitecture greatly facilitates protocol evolution and permits
incremental rollout of congestion detection improvements.
Finally, this scheme opens the door to another way to react
to congestion by enabling ECN emulation at end-host. In
this case, ICN emulates ECN marking to imply a congestion
window reduction (see figure 1) with the same philosophy
than in [4] where the authors enable AQM (Active Queue
Management) emulation at end-host.

The target is to switch between the classical transport
layer with the TCED layer architecture as illustrated figure
2.

3. IMPLICIT CONGESTION NOTIFICATION
(ICN) ALGORITHM

This section presents the design of our proposal and de-
tails the algorithm.

3.1 Design hypothesis

use ACK to signal
congestion

CWR :cong. window
reduction

TCED: Transport Congestion
Event Estimation framework

ICN: Implicit Congestion
Notification algorithm

ACK/ECN ACK TCP

TCP packets

TCP packets

mark ECN to signal CE

TCP Window

React to ECN signalling

Figure 1: Decorrelating Congestion Detection from

the Transport Layer.

APPLICATION APPLICATION

IP IP

TCED
TRANSPORT

ICN

Figure 2: Re-architecture of the transport layer.

The design hypothesis is related to the localization of the
Congestion Event (CE) estimator (i.e. from the source or
from a node immediately connected to the source before
the edge router). In this case, the estimator must be on a
symmetrical path (ACK and data segments are received by
the node) and the resulting RTT estimated is thus similar
to the TCP connection. As our estimator operates to a live
analysis (and not over past captured traces), only traffic at
the sender side must be analyzed.

As TCP is a reliable transport protocol, lost data are ob-
viously retransmitted. Thus, a CE can be identified from
the TCP retransmitted packets. However, neither all of the
retransmissions do not always indicate a loss, nor all losses
do not always signal a CE:

• When the TCP retransmission timer expires, TCP trig-
gers a Go Back N recovery procedure which could lead
to retransmissions of packets effectively received (i.e.
spurious retransmissions). Furthermore, TCP can con-
sider losses following network packets reordering or fol-
lowing a significant increase of the RTT (e.g. in case
of vertical handoff1). In this particular case, known as
spurious timeout, the ACK get back too late to reset
the retransmission time. These false losses identifica-
tions strongly impact on the TCP overall performances
in terms of achieved throughput;

1In a mobile context, a vertical handoff occurs when a mobile
node is moving from a low delay network such as wireless
LAN to a high delay network such as UMTS/GPRS. Due
to the sudden RTT increase, spurious retransmissions might
occur.

• Each loss does not have to be taken into account when
identifying a CE. Indeed, when multiple losses occur in
a single window, only the first loss is needed to identify
a CE and other losses inside the same window must be
ignored. To realize this, we need to be able to detect
the first loss and the size of the sending window.

The ICN algorithm allows to determine which loss affects
the TCP flow from the capture of TCP segments.

3.2 Interpreting CE
As previously explained in the introduction, a congestion

event is defined as a set of losses occurring on a TCP win-
dow which involves a TCP congestion adaptation during an
RTT. As a data window is emitted during an RTT, the esti-
mation of the window size allows to identify data transmit-
ted during one RTT given. When there is a retransmission,
the bottom of the window is set on the retransmitted seg-
ment of data while the top of the window corresponds to
the highest sequence number data sent. Then, all retrans-
mitted packets between these two bounds are considered as
belonging to the same CE. Indeed, a CE starts when a loss
occurs and stops when the top of the data window during
this congestion notification is acknowledged.

Detecting only retransmitted packets is not enough to
identify a loss. Indeed, we have to be sure that a retrans-
mission is not due to a TCP error. This case must be taken
into account to avoid an overestimation of the CE over path
where high RTT variations and reordering occur.

In [20] and [2], the authors classify as unnecessary (spu-
rious) retransmission, those acknowledged in a delay lower
than α ∗ RTTmin (where RTTmin is the lowest RTT mea-
surement and α = 3

4
). If the next new ACK arrives in de-

lay lower than α ∗ RTTmin after the retransmission, then it
means the ACK was already in transit when the retransmis-
sion occurred, and the timeout was spurious. This delay is
a key value in the detection process. Indeed, when the delay
is very small, this can lead to interpret unnecessary retrans-
missions as losses. On the contrary, when the delay is close
to the current RTT, a new ACK could be received and the
retransmission would be considered as unnecessary. In this
configuration, the number of CE can be underestimated. As
above, the principle to identify retransmission is based on a
waiting delay T before validation. Obviously, this method
introduces an additional delay which can be considered as
a trade-off between the reliability and swiftness of TCP in
terms of losses detection. In this context, it exists a delay
between the network congestion and its detection by ICN.
The CE detection is twofold. First, the identification and
then, the classification of a retransmission as a lost.

In brief, to obtain an accurate CE estimation we need:

• to accurately estimate the RTT to size the delay to
validate a loss;

• to take into account the TCP window size to distin-
guish the loss triggering a CE from the loss occurring
during a CE;

• to identify spurious retransmissions that should not be
identified as lost packets;

• to manage multiple data retransmissions. This might
append during severe congestions. In this case, multi-
ple CE occur; we denote such situation of re-congestion.

3.3 ICN algorithm
Starting from the observation of the data segments and

the ACK, we identify each CE from each TCP connection
with a state machine. This state machine (given in Fig-
ure 3) identifies the control congestion phase and classifies
retransmissions as spurious or not. TCP congestion con-
trol reacts following binary notification feedbacks allowing
to assess whether the network is congested or not. The state
machine used enters in two states as a function of these no-
tification feedbacks:

1. the normal state which characterizes a TCP connec-
tion without losses. Following Karn [12] algorithm,
we can estimate the RTT in this state, knowing that
for each emitted segment, the delay is computed until
the corresponding ACK is received. As soon as this
estimation is done, the process restarts for the next
transmitted segment. This RTT estimation is used to
size the validation delay (T); In the context where con-
nections start over a severely congested network, the
losses of segments prevent to realize an RTT estima-
tion. Then, the initial value is set arbitrarily and is
set to the same value than the retransmission timer: 3
seconds [18];

2. the congestion state which starts from the loss of the
first window data segment. Each time ICN enters in
this state, a CE is counted for the TCP connection.

Two others temporary states are added between these both
states. These states aim at identifying spurious retransmis-
sions with the help of the validation delay as previously
explained. Finally, when the top of the window (denoted
recover2 in Figure 3) is acknowledged, ICN enters in the
normal state.

In the case where it is supposed that a retransmission of
a packet has been lost, and such a packet is retransmitted
again, ICN enters into a re-congestion state. Once in the
re-congestion state, if the validation delay T expires before
recover is acknowledged, ICN comes to the congestion state
and the CE counter is increased in one unit.

In the context of using ECN flag, congestion are not de-
duced only from losses. However, for this kind of connection
we need to extend our algorithm to analyze this ECN sig-
nalization. Otherwise, ICN will under estimate the CE ratio
which affects each TCP connection. A recent study proposes
to help congestion events detection using ECN marking [22].
However and to the best of our knowledge, the deployment
of ECN inside the Internet remains marginal. Indeed, the
authors in [17] show that ECN flag is used only by 2.1%
hosts in 2004 and all current systems do not enable ECN by
default3. As a result, we choose to study this particular case
in a future work.

It is important to note that ICN does not manage error
control which remains under the responsibility of TCP. If
some improvements concerning the retransmission decision
are introduced inside TCP, as ICN does not depend on the
error control, our proposal remains valid. As a result, ICN
is a generic algorithm which does not depend on the TCP
version used.

2Equivalent to the recover variable of TCP NewReno
3See Sally Floyd’s ECN page for further details http://www.
icir.org/floyd/ecn.html

NORMAL

CONGESTION

RE−CONGESTION

Retransmission
of a
retransmission

ACK Retransmission

Recover

Recover

Time−Out

Time−Out

ATTEMPT

Figure 3: ICN state machine.

4. VALIDATION
We use the ns-2 simulator to estimate the notification er-

ror ratio as a function of the real CE. Our simulation model
is able to apply different packet drop rates, different levels
of statistical multiplexing and to introduce a level of packet
reordering. The proposed scenario is motivated by the need
to estimate ICN accuracy in the presence of spurious re-
transmissions and complex pattern packet drops. We aim
at understanding the behaviour of ICN qualitatively rather
than quantitatively. It means that we are not interested in
determining the exact inaccuracy value through a statistical
analysis but to determine a global accuracy trend.

The experiments are done over a simple dumbbell topol-
ogy. A recent paper [13] provides a guideline to make a simu-
lation model to evaluate TCP congestion control extensions.
The model used afterwards follows these recommendations.
We model the network traffic in terms of flows or sessions.
Each flow corresponds to a HTTP request supported by a
TCP connection. The link load is defined as follows:

ρ =
λE[σ]

C
, (1)

with C the bottleneck capacity. The traffic demand, ex-
pressed in bit rate, is the product of the flow rate arrival
λ with the average flow size E[σ]. A reasonable fit to the
heavy-tail distribution of the flow size observed in practice is
provided by the Pareto distribution. The shape parameter
is set to 1.3 for all simulations in the paper. As all flows
are independent, the flow arrivals are modeled by a Poisson
process. The load is changed by varying the arrival flow
rate. Thus, the congestion level increases as a function of
the load.

The load introduced in the network experiences different
RTT (ranging from 59 to 250ms). To remove synchroniza-
tion in TCP feedback and the phase effect, a traffic load of
10% is generated in the opposite direction. Measurements
are saved after a“warm-up time”(i.e in the steady state) and
the simulation duration corresponds to the reference flow du-
ration. The bottleneck link capacity is set to 10Mbps. All
others links have a capacity of 100Mbps. When the transient
phase is finished, a long live flow of 400 packets is started,
which represents the reference flow on which the ICN algo-
rithm is applied. The minimum RTT experienced by the
reference flow is around 100ms.

A packet reordering is applied on the reference flow such
that randomly selected packets are randomly delayed. The

network reordering is done after the bottleneck to maintain
a same reorder rate for each network load. We adopt the
delay distribution given in [24]. Delays are chosen from a
normal distribution. The mean value is set to 50ms with a
standard deviation of 16ms. Thus, the most chosen pack-
ets are delayed with values ranging from 0 to 100ms. The
reorder rate used is 3.5%.

We make no claim about how realistic our background
traffic is. We only want to reduce any simulation anomaly.
The main objective of this model is to apply various and
exhaustive congestion patterns to the analyzed flow. Figure
4 shows the conditions applied to the reference flow. The
drop ratio results from packet drops of the background traffic
without the reference flow. The reorder ratio is given from
the measurements done on the reference flow.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

D
ro

p
ra

tio

R
eo

rd
er

 r
at

io

Load ρ

Drop

Reorder

Figure 4: Scenario applied to the reference flow.

The accuracy of the CE detection is given by the inaccu-
racy parameter denoted ǫ and defined as follows:

ǫ =
Nspu + Nund

Nreal + Nspu

with ǫ ∈ [0, 1]. (2)

With Nspu: the number of spurious CE identified either
by ICN or TCP, Nund: the number of undetected real CE
not identified by ICN or TCP and Nreal: the number of
effective (real) CE in the network. A real CE is deduced
from the packets lost analysis (done a posteriori) occurring
in the network with the TCP window value when the lost
is detected. When ǫ = 1, it means that all detections are
spurious and the more ǫ tends to 0, the more real congestions
are detected.

We are not interested in determining the exact number
of TCP losses as the LEAST algorithm presented in [1].
We aim at detecting when TCP congestion events occur in
the network. In this work, we choose to compute a Loss
Event Ratio (LER) (also called the congestion event rate
[7]) defined as the ratio between the number of congestion
event and the number of sent packets.

4.1 Choice of the validation delay
An important value which impacts on the ICN accuracy

is the validation delay T . Three possible values are pro-
posed to size T : RTTmin, SRTT (the exponential mean of
the RTT estimations) and RTT (the last RTT estimation).
These values are adjusted according to a fraction called α

as previously explained in Section 3.2). The goal is to find
out the appropriate α that gives the best results in terms of
CE identification.

We test the following α: 0.25, 0.5, 0.75, 1. In the context
of re-congestion, the validation delay will be tested with and
without fraction. Fig. 5 gives the average inaccuracy over
all possible combinations for a ρ background traffic ranging

from 0.05 to 0.95 with a step of 0.1. All flows use TCP
NewReno and the queue management for both routers is
DropTail. When α is used, no validation delay is set. The
inaccuracy in this case is the same as TCP. The α values are
evaluated in growing order for each RTT base values. The
dashed line in Fig. 5, represents the case where α = 1 and
when a re-congestion is detected.

As expected in our scenario, we can see that the network
reorder introduces significantly errors in the congestion de-
tection. The strong RTT variations produce spurious re-
transmissions. In this scenario, RTTmin is a good candi-
date to detect false CE notification. Near 0.25, ICN fails
to detect spurious CE. Inversely when the validation delay
is near RTT or SRTT , ICN fails to detect true CE. The
distinction between congestion and re-congestion phases is
not consistent. When the delay applied in the re-congestion
state depends on SRTT or RTT , the number of undetected
CE increases. Congestion also decreases because ACK which
correspond to a segment retransmitted are faster than the
RTT measurement duration before the packet drop. The
best trade-off for this scenario seems to choose an RTTmin

validation delay. Indeed, this value leads to shorter detec-
tion delay while avoiding false retransmission identification
at a low rate. In this experiment, normal congestion and re-
congestion use the same validation delay. In the following,
the validation delay is set to RTTmin.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

13/41/21/413/41/21/413/41/21/40

ε

α
RTTmin SRTT RTT

TCP with reorder
TCP without reorder

ICN with reorder
ICN without reorder

Re−cong. α=1

Figure 5: Sizing the validation delay.

4.2 Impact on different loads
Figure 6 shows the inaccuracy parameter as a function of

load in the case where ICN uses RTTmin. To understand
figure 6, we need to firstly look at figure 7. We define SLER,
the TCP Spurious LER as the ratio between the number of
spurious CE and the total number of sent packets. The
SLER is almost constant in scenario with network reorder
(because reorder rate does not change in our scenario). The
LER increases with the load. Consequently and according to
equation (2), the TCP inaccuracy decreases. For example, in
case 0.05, no CE occurs and network reordering introduces
spurious CE. This leads to an inaccuracy equals to 1.

In absence of network re-order, TCP inaccuracy is mainly
due to spurious timeout in the Fast Recovery period. Indeed,
with the impatient variant of TCP NewReno, the retrans-
mission timer is only reset after the first partial ACK if a
large number of packets are dropped from a data window
[8]. The retransmission timer from the TCP sender will ul-
timately expire and the TCP sender will trigger a Slow-Start

whatever the last retransmit packet outcome. The observed
variations of inaccuracy in figure 6 come from unusual phe-
nomenons as:

1. Real CE overlapping in a spurious CE. This case trig-
gers a double error: one spurious CE and one unde-
tected CE for TCP. This occurs when the bottom of
the window is a re-ordered segment and inside this
window a segment is lost. The retransmission of lost
segment does not trigger a CE;

2. Packet reorder in the initial Slow-Start. This inserts
spurious CE and let a congestion window smaller for
TCP. For example, we can observe this for the 0.35
load, the accuracy seems better with reorder rather
than without. In fact, ICN does not get the same
number of errors but the number of CE in the scenario
without network reorder is greater as shown figure 7.
Surprisingly, reordering in Slow-Start avoids a burst of
drops and a long delay to correct packet drops;

3. Spurious timeout from an ACK loss of a retransmission
sent after a timer expiration. This case also triggers a
spurious CE.

In a general manner, ICN is more accurate than TCP. Most
of errors occur at the beginning of the flow when RTTmin are
not correctly set. When a loss occurs in the first segments,
there is a risk that a CE is not detected.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ε

Load ρ

ICN without reorder
TCP without reorder

ICN with reorder
TCP with reorder

Figure 6: Inaccuracy function of load for TCP

NewReno.

We have done measurements with TCP/SACK and reached
similar conclusions. As SACK improves TCP retransmis-
sion decisions, there are less spurious retransmission which
results in a better ICN accuracy.

4.3 ICN with timestamp
In order to distinguish an ACK resulting from a data

packet to a retransmission packet, the Eifel algorithm [14]
uses the timestamp option described in [10]. This option al-
lows the sender to add timestamp to a packet later returned
by the receiver in the corresponding ACK. Thus, the sender
is able to compute an RTT by subtracting the current time
to this timestamp.

The Eifel algorithm aims to distinguish an ACK which
arrives after a retransmit has been sent in response to the
original transmit or the retransmit. Although this times-
tamp scheme is not enabled by default mainly due to the

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ε

Load ρ

LER without reorder
LER with reorder

TCP SLER without reorder
TCP SLER with reorder

Figure 7: Reference flow of LER and TCP SLER

function of the load.

overhead introduced by the option (i.e. 10 bytes in every
packets) we choose to verify whether it might help the CE
detection. As shown figure 8 and compare to 6, we can see
this option improves the ICN detection but some identifi-
cations are still missing. For example, when the network
reorder introduces a delay greater than twice the RTT (see
load 0.45 in Figure 8), ICN cannot detect the spurious re-
transmission. As a result and whatever the algorithms used,
a perfect detection is not realized today. The following sec-
tion proposes to globally discuss all remaining cases.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ε

Load ρ

ICN without reorder
TCP without reorder

ICN with reorder
TCP with reorder

Figure 8: Use of the timestamp option.

4.4 Discussion
The off-line traces analysis shows that all congestions can-

not be detected such as the case of spurious retransmis-
sion dropped (which corresponds to the following sequence:
transmit, retransmit, drop; denoted (t−r−d)). Indeed, the
drop of a retransmission is already corrected by the initial
transmission. From a transport protocol point of view, this
sequence is similar to a spurious retransmission (t−r). TCP
has nothing to do (the first transmission is well-received). In
the context of ICN, the (t−r−d) sequence is an issue as ICN
cannot detect a CE from this loss. This is an open problem
since the congestion does not appear at the transport level
but at the network level and thus, is out of the scope of the
present study.

One important result is that a solution only based on the
RTT is not really reliable at the beginning of the connection

compared to ICN. Indeed, the RTT estimated is not accurate
due to the weak number of possible measurements. This
limits the use of such solutions to long-lived flows.

Globally and following the scenarios proposed, ICN al-
gorithm gives good results. However, solutions based on a
validation delay need an RTT higher or in the same order
of magnitude than the reordering delay. If the difference
between the RTT and the reordering delay is too large, it
becomes difficult to detect spurious retransmissions. In this
context, ICN algorithm reaches its limit of use. To get an ac-
curate detection, the events’ duration which causes spurious
retransmissions must be less than an RTT.

5. CONCLUSION
This paper has proposed an algorithm (ICN) able to es-

timate congestion events occurring in the network and im-
plemented as a stand-alone component inside a framework
(TCED). The purpose of this scheme is to demonstrate that
congestion event detection can be realized independently of
the TCP code in a sake of better detecting congestion oc-
curing in the network. This algorithm is based on the com-
bined use of two realistics and feasible assumptions which
are 1) a delay or a timestamp to validate a loss following
retransmission and 2) the acknowledgments path. We have
evaluated this algorithm with and without network reorder-
ing cases and shown that an external and live congestion
events detection is possible. We also emphasized that previ-
ous solutions based only on RTT measurements are not able
to cover all cases. In particular and following measurements
done with the ICN algorithm, we show a lack of differenti-
ation between retransmissions due to reordering of loss and
accuracy of the measurements with short TCP flows when
using only RTT measurements.

Following, this work and the results obtained so far, we
are currently planning the developpement of a kernel im-
plementation of this framework and expect to drive a larger
range of measurements which aims at benchmarking our pro-
posal compared to embedded TCP spurious retransmission
detection algorithms such as F-RTO and Eifel.

6. ACKNOWLEDGMENTS
We would like to thank Marc Allman from the ICSI Cen-

ter for Internet Research for providing us the LEAST code.
Pierre Ugo Tournoux for the development of the first ICN
prototype and Tanguy Perennou for useful comments about
this work.

7. REFERENCES
[1] M. Allman, W. Eddy, and S. Ostermann. Estimating

loss rates with tcp. ACM SIGMETRICS Performance
Evaluation Review, 31(3):12–24, December 2003.

[2] Mark Allman and Vern Paxson. On estimating
end-to-end network path properties. Computer
Communication Review, 29(4), October 1999.

[3] S. Bhandarkar, A. L. N. Reddy, M. Allman, and
E. Blanton. Improving the Robustness of TCP to
Non-Congestion Events. RFC 4653 (Experimental),
August 2006.

[4] Sumitha Bhandarkar, Narasimha Reddy, Yueping
Zhang, and Dmitri Loguinov. Emulating aqm from
end hosts. In Proc. of ACM SIGCOMM, 2007.

[5] Carlo Caini and Rosario Firrincieli. TCP hybla: a
TCP enhancement for heterogeneous networks.
International Journal of Satellite Communications
and Networking, 22, 2004.

[6] S. Floyd. HighSpeed TCP for Large Congestion
Windows. RFC 3649 (Experimental), December 2003.

[7] S. Floyd. Metrics for the Evaluation of Congestion
Control Mechanisms. RFC 5166 (Informational),
March 2008.

[8] S. Floyd, T. Henderson, and A. Gurtov. The NewReno
Modification to TCP’s Fast Recovery Algorithm. RFC
3782 (Proposed Standard), April 2004.

[9] Bryan Ford and Janardhan Iyengar. Breaking up the
transport logjam. In in Seventh ACM Workshop on
Hot Topics in Networks (HotNets-VII), Calgary,
Alberta, Canada, October 2008.

[10] V. Jacobson, R. Braden, and D. Borman. TCP
Extensions for High Performance. RFC 1323
(Proposed Standard), May 1992.

[11] Van Jacobson. Congestion avoidance and control. In
Proc. of ACM SIGCOMM, pages 314–329, Stanford,
CA, August 1988.

[12] Phil Karn and Craig Partridge. Improving round-trip
time estimates in reliable transport protocols. ACM
Computer Communications Review, 17(5):2–7, 1987.

[13] Andrew Lachlan, Marcondes Cesar, and Floyd Sally.
Towards a common tcp evaluation suite. In PFLDnet,
2008.

[14] R. Ludwig and M. Meyer. The Eifel Detection
Algorithm for TCP. RFC 3522 (Experimental), April
2003.

[15] Reiner Ludwig and Randy H. Katz. The eifel
algorithm: making TCP robust against spurious
retransmissions. SIGCOMM Comput. Commun. Rev.,
30(1):30–36, 2000.

[16] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y.
Sanadidi, and Ren Wang. Tcp westwood: Bandwidth
estimation for enhanced transport over wireless links.
In Proc. of ACM MOBICOM, 2001.

[17] A. Medina, M. Allman, and S. Floyd. Measuring the
evolution of transport protocols in the internet.
Computer Communication Review, 35(2), April 2005.

[18] V. Paxson and M. Allman. Computing TCP’s
Retransmission Timer. RFC 2988 (Proposed
Standard), November 2000.

[19] K. Ramakrishnan, S. Floyd, and D. Black. The
Addition of Explicit Congestion Notification (ECN) to
IP. RFC 3168 (Proposed Standard), September 2001.

[20] S. Rewaskar, J. Kaur, and F.D. Smith. A passive
state-machine approach for accurate analysis of tcp
out-of-sequence segments. ACM Computer
Communications Review, 36(3):51–64, 2006.

[21] P. Sarolahti and M. Kojo. Forward RTO-Recovery
(F-RTO): An Algorithm for Detecting Spurious
Retransmission Timeouts with TCP and the Stream
Control Transmission Protocol (SCTP). RFC 4138
(Experimental), August 2005.

[22] Michael Welzl. Using the ecn nonce to detect spurious
loss events in TCP. In Proc. of IEEE GLOBECOM,
December 2008.

[23] Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary

increase congestion control (bic) for fast long-distance
networks. In Proc. of IEEE INFOCOM, 2004.

[24] M. Zhang, B. Karp, S. Floyd, and L. Peterson.
RR-TCP: A reordering-robust TCP with DSACK. In
Proc. of the IEEE International Conference on
Network Protocols - ICNP, 2003.

