
●
●
●
●
●

LPTP - A Logic Program Theorem Prover

LPTP is an interactive theorem prover for the formal verification of
pure Prolog programs. Programs may contain negation, if-then-else
and built-in predicates like is/2, integer/1, call/n+1, arg/3, etc.
Non-logical predicates and control operators like cut (!), assert /1,
retract/1, var/1 are forbidden, since they destroy either the lifting
property or modify the program during run-time. It is assumed that
the occurs check is done during unification.

The specification language of LPTP is first-order predicate logic.
The types and basic relations in specifications are Prolog predicates.
(Prolog is both a programming language and a specification
language.)

Properties of programs which can be proved in LPTP are:
 left-termination (universal termination),
 equivalence of predicates,
 existence of solutions,
 uniqueness of solutions,
 equivalence of programs and specifications.

LPTP's notion of termination includes non-floundering, i.e. negative
goals are ground and built-in predicates are instantiated the right
way, when they are called.

The underlying logic of LPTP is the inductive extension of logic
programs (IND). Unlike the Clark completion of logic programs the
first-order theory IND contains induction principles and is always
consistent. The code of a Prolog predicate is translated into three
positive inductive definitions of relations expressing success,
finite failure and universal termination of the predicate. IND has the
same proof-theoretic strength as Peano Arithmetic.

IND is hard-wired into LPTP. Given the code of a Prolog predicate,
LPTP generates the induction scheme automatically. The number of
induction steps in an induction scheme depends on the number of
clauses and nested if-then-elses in the definition of the predicate.
Even for small programs (100 lines) the number of induction steps
can be big (40 steps).

●
●
●
●

●

●

In order to apply the theorems proved in IND to Prolog's depth-first,
left-to-right query evalutaion procedure, it is necessary to prove
termination of the predicates. Termination implies that the Prolog
evaluation does not depend on the order of the clauses in the
program.
This is not a restriction, since for most programs the order of clauses
is not important. (Some people consider it as good Prolog style to
write programs in such a way that the evaluation does not depend on
the order of the clauses listed in the file.)

The proof format of LPTP is a version of natural deduction. Proofs
are written in a text editor and submitted to a LPTP process in the
background. LPTP checks the correctness of the proof and tries to
close the gaps in the proof according to one of 10 tactics the user
can choose from. It is not necessary to remember the names of
previously proved theorems and lemmas. LPTP knows them. LPTP is
able to find a matching lemma in the internal database automatically.

LPTP is implemented in Prolog and runs under SICStus Prolog, GNU
Prolog, SWI-Prolog. Quintus Prolog, ECLiPSe and C-Prolog. The
Emacs editor is used as a graphical user interface (GNU Emacs or
XEmacs). The Emacs mode for LPTP includes automatic indentation
of proofs and syntax coloring. Other features are: double clicking on a
quantifier highlights the scope of the quantifier, etc. LPTP creates
TeX and HTML-output.

The distribution of LPTP includes the source code, a user manual
(130 pages) and 47000 lines of example proofs such as:

 the verification of various sorting algorithms,
 the correctness of a tautology checker,
 the verification of algorithms for AVL trees,
 the correctness of alpha-beta pruning with respect to min-
max,
 the correctness of a deterministic parser for ISO standard
Prolog with respect to a DCG.
 the correctness of a fast union-find based unification
algorithm.

The fully formalized correctness proof of the ISO standard parser is

●

●

●

1.

2.

3.

4.

13000 lines long. The parser together with its specification has 635
lines. Its correctness proof has been created in three weeks. The
proof contains theorems like the following:

 A token list is a correct expression according to the ISO
Prolog grammar if and only if the token list is accepted by the
parser.
 If the prefix, infix and postfix operators satisfy the conditions
stated in the ISO Prolog standard, then a token list can be
parsed into a parse tree in at most one way.
 if a parse tree T1 is transformed into a token list using write
and the token list is parsed back into a tree T2 using read,
then T1= T2.

LPTP is able to find short derivations automatically. Larger proofs
have to be created interactively.

References

R. F. Stärk, The theoretical foundations of LPTP (a logic
program theorem prover). Journal of Logic Programming,
36(3):241-269, 1998.
[Theoretical foundations of LPTP. Soundness and
completeness.]
R. F. Stärk, Formal verification of logic programs:
foundations and implementation. In S. Adian and A. Nerode,
editors, Logical Foundations of Computer Science LFCS '97 -
Logic at Yaroslavl, Russia. Springer-Verlag, Lecture Notes in
Computer Science 1234, pages 354--368, 1997.
[A short survey on LPTP.]
R. F. Stärk, The finite stages of inductive definitions. In P.
Hájek, editor, GÖDEL'96, Logical Foundations of Mathematics,
Computer Science and Physics - Kurt Gödel's Legacy, Bro,
Czech Republic.
Springer-Verlag, Lecture Notes in Logic 6, pages 267-290,
1996.
[The proof-theoretic strength of LPTP.]
R. F. Stärk, Total correctness of pure Prolog programs: A
formal approach. In R. Dyckhoff, et. al. editors, Proceedings
of the 5th International Workshop on Extensions of Logic

4.

Programming, ELP
'96, Leipzig, Germany, Springer-Verlag, Lecture Notes in
Artificial Intelligence 1050, pages 237--254, 1996.
[A case study in LPTP: a tautology checker.]

