
Sequent Calculus:
An Important Connection

Between Proofs and Programs

Karim Nour

Université Savoie Mont Blanc - LAMA - LIMD

Séminaires de LIM - Université de la Réunion - Décembre 2024

Outline
Introduction

Introduction
Propositionnal logic

Deduction systems
Hilbert system
Natural deduction
Sequent calculus

Typed programming system
Combinatory logic
The λµ-calculus
The λλµµ̃-calculus

Linear logic
Syntax of system
Semantic of system
Proof nets
System L

Outline
Introduction

Introduction
Propositionnal logic

Deduction systems
Hilbert system
Natural deduction
Sequent calculus

Typed programming system
Combinatory logic
The λµ-calculus
The λλµµ̃-calculus

Linear logic
Syntax of system
Semantic of system
Proof nets
System L

Introduction

I Paradoxes emerged at the beginning of the last century :
Russell, Tarski, ...

I Several efforts were made to formalize theories :
arithmetic (Peano),
set theory (Zermelo-Fraenkel),
geometry (Hilbert), ...

I Development of logical systems :
Hilbert system (Hilbert),
natural deduction (Gentzen),
sequent calculus (Gentzen), ...

I We will explore two of these logical systems.

Particular case

I To simplify the presentation, we focus on propositional
logic.

I This framework is both less complex and less powerful due
to the decidability of propositional logic.

I It cannot express significant mathematical properties or
generate complex programs.

I Extending to second-order logic enables more expressive
properties and supports richer program generation.

Outline
Introduction

Introduction
Propositionnal logic

Deduction systems
Hilbert system
Natural deduction
Sequent calculus

Typed programming system
Combinatory logic
The λµ-calculus
The λλµµ̃-calculus

Linear logic
Syntax of system
Semantic of system
Proof nets
System L

Propositionnal logic

I Propositional logic is a formal system that focuses on
propositions, which are statements that can be evaluated
as either true or false.

I We consider a set of atomic propositions V = {a,b, c, . . .}
and a constant ⊥ for contradiction or false statement.

I A propositional formula is built from atomic propositions
and ⊥ combined with logical connectives : ¬,→, ∧ and ∨.

Tautology
I A tautology is a propositional formula that is always true,

regardless of the truth values of its components.

A B A ∧ B A ∨ B A→ B
1 1 1 1 1
1 0 0 1 0
0 1 0 1 1
0 0 0 0 1

A ¬A
1 0
0 1

⊥
0

Examples : ¬(a ∧ b)→ (¬a ∨ ¬b)

((a→ b)→ a)→ a

a b ¬(a ∧ b) ¬a ∨ ¬b ¬(a ∧ b)→ (¬a ∨ ¬b)

1 1 0 0 1
1 0 1 1 1
0 1 1 1 1
0 0 1 1 1

a b a→ b (a→ b)→ a ((a→ b)→ a)→ a
1 1 1 1 1
1 0 0 1 1
0 1 1 0 1
0 0 1 0 1

Questions

I Checking if a formula is a tautology requires exponential
time to check all truth assignments to its propositional
variables.

I We do not perform real mathematical proofs using truth
tables.

I Can tautologies be generated through reasoning using
formal systems?

I Are the systems that allow this truly different from one
another?

I How can they be compared, and why would one be
preferred over another?

The choice of systems

I We choose two logical systems introduced by Gentzen :
natural deduction and sequent calculus.

I The rules of natural deduction are intuitive and resemble
what we do to produce mathematical proofs.

I However, the dynamics of the calculus for simplifying
proofs in natural deduction are quite technical.

I The rules of sequent calculus are less intuitive, but they
allow for a more symmetric system.

I However, the dynamics of the calculus for simplifying
proofs in sequent calculus are more natural.

Outline
Introduction

Introduction
Propositionnal logic

Deduction systems
Hilbert system
Natural deduction
Sequent calculus

Typed programming system
Combinatory logic
The λµ-calculus
The λλµµ̃-calculus

Linear logic
Syntax of system
Semantic of system
Proof nets
System L

Hilbert system (axioms)
ax1 A→ (B → A)

ax2 (A→ (B → C))→ ((A→ B)→ (A→ C))

ax3 ¬A→ (A→⊥)

ax4 (A→⊥)→ ¬A
ax5 ¬¬A→ A
ax6 A ∧ B → A
ax7 A ∧ B → B
ax8 A→ (B → A ∧ B)

ax9 A→ A ∨ B
ax10 A→ B ∨ A
ax11 A ∨ B → ((A→ C)→ ((B → C)→ C))

A→ B A
B

modus ponens

Example : A→ A

ax1 (A→ (A→ A))→ A (1)

ax1 A→ (A→ A) (2)

ax2 (A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A)) (3)

MP (A→ (A→ A))→ (A→ A) (3)+(1) (4)

MP A→ A (4)+(2)

Property

Theorem (Completeness Theorem)
We have `HS A if and only if A is a tautology.

The system is not practical for producing mathematical proofs.

Outline
Introduction

Introduction
Propositionnal logic

Deduction systems
Hilbert system
Natural deduction
Sequent calculus

Typed programming system
Combinatory logic
The λµ-calculus
The λλµµ̃-calculus

Linear logic
Syntax of system
Semantic of system
Proof nets
System L

Naturel deduction

I We have two types of inference rules :
– introduction rules (how to prove a formula)
– elimination rules (how to use a hypothesis).

I We derive sequents of the form Γ ` A, meaning that A is
provable using the hypotheses from the set of formulas Γ.

I We start with the axioms A ` A and alternate between
introduction and elimination rules to reach the desired
conclusion

I This system is very interesting from a pedagogical
standpoint, as it helps teach our students how to search for
and construct a proof.

Natural deduction rules

A ` A
ax

Γ ` A
Γ,B ` A

weak

Γ,A ` B
Γ ` A→ B

→i

Γ ` A→ B 4 ` A
Γ,4 ` B

→e

Natural deduction rules

Γ ` A1 4 ` A2

Γ,4 ` A1 ∧ A2
∧i

Γ ` A1 ∧ A2

Γ ` Aj
∧e

Γ ` Aj

Γ ` A1 ∨ A2
∨i

Γ ` A1 ∨ A2 41,A1 ` C 42,A2 ` C
Γ,41,42 ` C

∨e

Natural deduction rules

Γ,A ` ⊥
Γ ` ¬A

¬i

Γ ` ¬A 4 ` A
Γ,4 ` ⊥

¬e

Γ,¬A ` ⊥
Γ ` A

PC

Example : ¬(A ∧ B)→ (¬A ∨ ¬B)

A ` A B ` B

A, B ` A ∧ B ¬(A ∧ B) ` ¬(A ∧ B)

A, B,¬(A ∧ B) `⊥

A,¬(A ∧ B) ` ¬B

A,¬(A ∧ B) ` ¬A ∨ ¬B ¬(¬A ∨ ¬B) ` ¬(¬A ∨ ¬B)

A,¬(A ∧ B),¬(¬A ∨ ¬B) `⊥

¬(A ∧ B),¬(¬A ∨ ¬B) ` ¬A

¬(A ∧ B),¬(¬A ∨ ¬B) ` ¬A ∨ ¬B ¬(¬A ∨ ¬B) ` ¬(¬A ∨ ¬B)

¬(A ∧ B),¬(¬A ∨ ¬B) `⊥
PC

¬(A ∧ B) ` ¬A ∨ ¬B

`ND ¬(A ∧ B) → (¬A ∨ ¬B)

Example : ((A→ B)→ A)→ A

A ` A ¬A ` ¬A

A,¬A `⊥

A,¬A,¬B `⊥
PC

A,¬A ` B

¬A ` A→ B (A→ B)→ A ` (A→ B)→ A

(A→ B)→ A,¬A ` A ¬A ` ¬A

(A→ B)→ A,¬A `⊥
PC

(A→ B)→ A ` A

`ND ((A→ B)→ A)→ A

Example : ¬(P ∧Q) ⇐⇒ (P → ¬Q)
We prove two implications (∧i).

I ¬(P ∧Q) → (P → ¬Q) :

Assume ¬(P ∧Q), P, and Q, and seek a contradiction (→i ,
→i , ¬i). From P and Q, we obtain P ∧Q (∧i). Since we
have ¬(P ∧Q), we reach a contradiction (¬e).

I (P → ¬Q) → ¬(P ∧Q) :

Assume P → ¬Q and P ∧Q, and seek a contradiction (→i ,
¬i). From P ∧Q, we obtain P (∧e), and using P → ¬Q, we
find ¬Q (→e). Since we have Q and ¬Q, we reach a
contradiction (¬e).

We believe that this type of formalization is more interesting
than truth tables and can help students search for and write
proofs for other properties.

Properties

Theorem (Completeness Theorem)
We have `ND A if and only if A is a tautology.

I How to search for a derivation of a tautology?

I To search for a derivation of the formula A, can we restrict
ourselves solely to the subformulas of A (and their
negations)?

Theorem (Subformula Property)
Natural deduction admits the subformula property.

Subformula Property

I We proceed by eliminating undesirable phenomena known
as cuts.

I We have several kinds of cuts :

I An introduction rule followed by an elimination rule of
the same connective.

I The rule ∨e followed by an elimination rule.

I The rule PC followed by an elimination rule.

Subformula Property

I The presentation of the proof rules also needs to be
changed to make the proof more comprehensible.

I The proof of this property is very technical, and an
improved and stronger version has been discovered
recently.

I It is the theorem of cut elimination that establishes a
dynamic aspect of the calculus, which can subsequently
be used to define a programming language.

New presentation

We represent the proof of the sequent “A1, . . . ,An ` A” by :

A1 . . . An [B1] . . . [Bm]
...
...
...

A

where [B1] . . . [Bm] are auxiliary hypotheses.

New deduction rules

A
ax

A

...
A B

weak
A

[A]
...
B

→iA→ B

... ...
A→ B A

→eB

New deduction rules

... ...
A B

∧iA ∧ B

...
A ∧ B

∧eA

...
A ∧ B

∧eB

...
A

∨iA ∨ B

...
B

∨iA ∨ B

[A] [B]
...

A ∨ B C C
∨eC

New deduction rules

[A]
...
⊥
¬i¬A

... ...
¬A A

¬e⊥

[¬A]
...
⊥

PC
A

Example : ((A→ B)→ A)→ A

[A] 2 [¬A] 3

⊥ [¬B] 1

⊥
1B

2A→ B [(A→ B)→ A] 4

A [¬A] 3

⊥
3A

4
((A→ B)→ A)→ A

Example : A ∨ ¬A

[A] 1

A ∨ ¬A [¬(A ∨ ¬A)] 2

⊥
1¬A

A ∨ ¬A [¬(A ∨ ¬A)] 2

⊥
2A ∨ ¬A

Example of Cuts

[A]
···

B →iA→ B

···
A →eB

...
A
...
B

Example of Cuts

[A] [B]
...

...
...

A ∨ B C ∧ D C ∧ D
∨e

C ∧ D
∧e

C

 ···
A ∨ B

[A]
···

C ∧ D
∧e

C

[B]
···

C ∧ D
∧e

C
∨e

C

Example of Cuts

[¬(A→ B)]
···
⊥

PC
A→ B

···
A
→e

B

[¬B]

[A→ B]

···
A
→e

B
¬e

⊥
¬i

¬(A→ B)
···
⊥

PC
B

Properties

I We can eliminate all cuts.

I We obtaine a weak cut elimination result.

I We deduce the subformula property.

I The proof is technical and a strong version was discovered
recently : de Groote (2001), David & Nour (2003), ...

I The new proofs involve encoding demonstrations as
objects that will be considered as programs and translating
cut eliminations as rewrite rules.

Outline
Introduction

Introduction
Propositionnal logic

Deduction systems
Hilbert system
Natural deduction
Sequent calculus

Typed programming system
Combinatory logic
The λµ-calculus
The λλµµ̃-calculus

Linear logic
Syntax of system
Semantic of system
Proof nets
System L

Sequent calculus
I We have two types of inference rules :

– left introduction rules,
– right introduction rules.

I We derive sequents of the form Γ ` 4, meaning that the
disjunction of the formulas in the set 4 is provable using
the conjunction of the formulas in the set Γ.

I We start with the axioms A ` A and alternate between left
introduction and right introduction rules to reach the
desired conclusion

I This system has only introduction rules, but it also
possesses an explicit cut rule (which is very useful, but we
can eliminate it).

I The system is symmetric, but it is not intuitive to use for
making proofs.

Sequent calculus rules

A ` A
ax

Γ ` 4
Γ,A ` 4

weakg
Γ ` 4

Γ ` A,4
weakd

Γ1 ` A,41 Γ2,B ` 42

Γ1, Γ2,A→ B ` 41,42
→g

Γ,A ` B,4
Γ ` A→ B,4

→d

Sequent calculus rules

Γ,A1,A2 ` 4
Γ,A1 ∧ A2 ` 4

∧g

Γ1 ` A1,41 Γ2 ` A2,42

Γ1, Γ2 ` A1 ∧ A2,41,42
∧d

Γ1,A1 ` 41 Γ2,A2 ` 42

Γ1, Γ2,A1 ∨ A2 ` 41,42
∨g

Γ ` A1,A2,4
Γ ` A1 ∨ A2,4

∨d

Sequent calculus rules

Γ ` A,4
Γ,¬A ` 4

¬g

Γ,A ` 4
Γ ` ¬A,4

¬d

Γ1,A ` 41 Γ2 ` A,42

Γ1, Γ2 ` 41,42
cut

Other rules

In case we are working with ordered multisets :

Γ,A,A ` 4
Γ,A ` 4

contrg
Γ ` A,A,4

Γ ` A,4
contrd

Γ,A,B ` 4
Γ,B,A ` 4

exchg
Γ ` A,B,4
Γ ` B,A,4

exchd

Example : ¬(A ∧ B)→ (¬A ∨ ¬B)

ax
A ` A

ax
B ` B ∧dA,B ` A ∧ B ¬gA,B,¬(A ∧ B) ` ¬dA,¬(A ∧ B) ` ¬B ¬d¬(A ∧ B) ` ¬A,¬B ∨d¬(A ∧ B) ` ¬A ∨ ¬B →d`LK ¬(A ∧ B)→ (¬A ∨ ¬B)

Example : ((A→ B)→ A)→ A

ax
A ` A

aff
A ` B,A →d` A→ B,A

ax
A ` A →g

(A→ B)→ A ` A →d`LK ((A→ B)→ A)→ A

Example : A ∨ ¬A

ax
A ` A ¬d` A,¬A ∨d`LK A ∨ ¬A

Properties

Theorem (Completeness Theorem)
We have `LK A if and only if A is a tautology.

Theorem (Cut Elimination Property)
We can eliminate the cut rules from any derivation.

Theorem (Subformula Property)
Sequent calculus admits the subformula property.

Properties

I For the first theorem, we prove that :
`LK A if and only if `ND A.

I The proof of the second theorem is achieved through case
analysis, identifying the appropriate strategy for eliminating
cuts.

I The proof of the third theorem is straightforward.

Cut elimination

I The proof is due to Gentzen and motivates the introduction
of the system.

I We begin by generalizing the cut rule to one that allows for
the elimination of multiple formulas (possibly zero).

I ΓA denotes a multiset obtained by removing
certain occurrences of A from Γ.

I The following rule is called "mix" :

Γ ` 4 Γ′ ` 4′
mix

ΓA, Γ
′ ` 4,4′A

I The cut elimination theorem transforms into a mix
elimination theorem.

Mix elimination

I The rank of the mix is the pair (d ,h), where :
– d is the size of the formula,
– h is its height.

I We prove the following result :

Lemma
If a derivation contains only a single mix as its last rule, then
there exists a derivation without any mix that has the same
conclusion.

I We proceed by induction on the rank of the mix.

Cut Elimination

I We distinguish several kinds of mixes :

I The two premises come from a logical rule, and both
introduced formulas are active.

I The two premises come from a logical rule, but one of
introduced formulas is inactive.

I One of the premises comes from a structural rule.
I One of the premises comes from the axiom rule.

I It is the theorem of cut elimination that establishes a
dynamic aspect of the calculus, which can subsequently
be used to define a programming language.

Example of mix

A = B ∨ C

Π1···
Γ,B ` 4

Π2···
Γ,C ` 4

∨g
Γ,B ∨ C ` 4

Π3···
Γ′ ` B,C,4′

∨d
Γ′ ` B ∨ C,4′

mix
ΓA, Γ

′ ` 4,4′A

Example of mix

Π1···
Γ,B ` 4

Π2···
Γ,C ` 4

∨g
Γ,B ∨ C ` 4

Π3···
Γ′ ` B,C,4′

mix(1)
ΓA, Γ

′ ` B,C,4,4′A···········

Π1···
Γ,B ` 4

Π3···
Γ′ ` B,C,4′

∨d
Γ′ ` B ∨ C,4′

mix(2)
ΓA, Γ

′,B ` 4,4′A
mix(3)

ΓA, Γ
′, ΓA, Γ

′ ` C,4,4′A,4,4′A

Π2···
Γ,C ` 4

Π3···
Γ′ ` B,C,4′

∨d
Γ′ ` B ∨ C,4′

mix(4)
ΓA, Γ

′,C ` 4,4′A
mix(5)

ΓA, Γ
′, ΓA, Γ

′, ΓA, Γ
′ ` 4,4′A,4,4′A,4,4′A

contrg , contrd
ΓA, Γ

′ ` 4,4′A

Example of mix

The new mixes (1), (2), (3), (4), (5) have respective ranks :

(d ,h1), (d ,h2), (d3,h3), (d ,h4), (d5,h5),

where

h1 < h, h2 < h, d3 < d , h4 < h, d5 < d .

Therefore, we can apply the induction hypothesis and
successively eliminate the mixes (1), (2), (4), (3), (5).

Outline
Introduction

Introduction
Propositionnal logic

Deduction systems
Hilbert system
Natural deduction
Sequent calculus

Typed programming system
Combinatory logic
The λµ-calculus
The λλµµ̃-calculus

Linear logic
Syntax of system
Semantic of system
Proof nets
System L

Combinatory logic

I We consider the implicative part of Hilbert system.

I K : A→ (B → A)

I S : (A→ (B → C))→ ((A→ B)→ (A→ C))

U : A→ B V : A
(U)V : B

Terms and reduction rules

I Terms :

V ::= K | S | (V)V

I Reduction rules :

((K)U)V →k U

(((S)U)V)W →s ((U)W)(V)W

Examples

E = A→ A

F = (A→ B)→ ((C → A)→ (C → B))

G = (A→ (B → C))→ (B → (A→ C))

I = ((S)K)K

P = ((S)(K)S))K

Q = ((S)((P)P)S)(K)K

I : E P : F Q : G

Remarks

I The calculus is confluent and strongly normalizing.

I The calculus is based on intuitionistic logic.

I The calculus is variable-free but equivalent to λ-calculus.

I The problem for classical logic was resolved in 2006 : the
CCL system (Nour).

Outline
Introduction

Introduction
Propositionnal logic

Deduction systems
Hilbert system
Natural deduction
Sequent calculus

Typed programming system
Combinatory logic
The λµ-calculus
The λλµµ̃-calculus

Linear logic
Syntax of system
Semantic of system
Proof nets
System L

Typed system (M. Parigot : 1993)

I We consider the implicative natural deduction.

I Sequent : Γ ` A (Γ is a set of formulas).

Γ,A ` A

Γ,A ` B
Γ ` A→ B

Γ ` A→ B Γ ` A
Γ ` B

Γ,¬A ` A
Γ,¬A `⊥

Γ,¬A `⊥
Γ ` A

The typed λµ-calculus
I Curry-Howard correspondence

Γ = x1 : A1, . . . , xn : An, α1 : ¬B1, . . . , αm : ¬Bm

Γ ` t : A

I Typed rules

Γ, x : A ` x : A

Γ, x : A ` u : B
Γ ` λx .u : A→ B

Γ ` u : A→ B Γ ` v : A
Γ ` (u)v : B

Γ, α : ¬A ` u : A
Γα : ¬A ` [α]u :⊥

Γ, α : ¬A ` u :⊥
Γ ` µα.u : A

Terms and reduction rules
I Terms :

v ::= x | λx .t | µα.t | (t)t | [α]t

I Reduction rules :

(λx .u)v →β u[x := v]

(µα.u)v →µ µα.u[[α]w := [α](w)v]

(v)µα.u →µ′ µα.u[[α]w := [α](u)w]

[α]µβ.t →ρ t [β := α]

µα.µβ.t →ε µα.tβ

µα.[α]t →θ t α 6∈ FV (t)

The β-reduction

[x : A]
···

u : B
→i

λx .u : A→ B

···
v : A

→e
(λx .u)v : B

 β

...
v : A

...
u[x := v] : B

The µ-reduction

[α : ¬(A→ B)]

·
·
·

w : A→ B
¬e

[α]w :⊥
·
·
·

u[...[α]w ...] :⊥
PC

µα.u[...[α]w ...] : A→ B

·
·
·

v : A
→e

(µα.u[...[α]w ...])v : B

 µ

[α : ¬B]

·
·
·

w : A→ B

·
·
·

v : A
→e

(w)v : B
¬e

[α](w)v :⊥
·
·
·

u[...[α](w)v ...] :⊥
PC

µα.u[...[α](w)v ...] : B

Properties

Theorem
The reduction is not confluent (due solely to the µ′-rule).

Theorem
The type is preserved during a reduction.

Theorem
1. The reduction is weakly normalizing (it may lead to a

non-reduced form).
2. Without the µ′ rule, the reduction is strongly normalizing

(every reduction leads to a non-reduced form).

Programming Theorem

I N = (a→ (a→ a))→ a.

I ∀n ∈ IN, n = λx .λf . (f) . . . (f)︸ ︷︷ ︸
n times

x .

Lemma
1. ∀n ∈ IN, ` n : N.

2. If ` t : N, then ∃n ∈ N, ∀x , f 6∈ Fv(t), ((t)x)f � (f) . . . (f)︸ ︷︷ ︸
n times

x.

Theorem
If ` t : N → N, then ∀n ∈ IN, ∃m ∈ N, ∀x , f 6∈ Fv(t),

(((t)n)x)f � (f) . . . (f)︸ ︷︷ ︸
m times

x .

What can be programmed?

I Without the classical part (i.e., without the µ and [.]), that
is, in λ-calculus, we can program all computable functions.

I In a typed system, we have many fewer programmable
functions (it depends on the type system).

I The classical part (i.e., with µ and [.]) only provides
additional ways of programming.

I In classical logic, we can prove more formulas.

Example

x : (A→ B)→ A ` x : (A→ B)→ A

y : A, α : ¬A, β : ¬B ` y : A

y : A, α : ¬A, β : ¬B ` [α]y :⊥

α : ¬A ` λy .µβ.[α]y : A→ B

x : (A→ B)→ A, α : ¬A ` (x)λy .µβ.[α]y : A

x : (A→ B)→ A, α : ¬A ` [α](x)λy .µβ.[α]y :⊥

x : (A→ B)→ A ` µα.[α](x)λy .µβ.[α]y : A

` λx .µα.[α](x)λy .µβ.[α]y : ((A→ B)→ A)→ A

call/CC : "call with current continuation" of Scheme

CC = λx .µα.[α](x)λy .µβ.[α]y

Let’s look at the reduction of ((CC)λk .u)v depending on :

(1) u does not use k

(2) u uses it by giving (k)ww ′

We obtain :

(1) ((CC)λk .u)v � (u)v

(2) ((CC)λk .u)v � (w)v

Conclusion

I Natural deduction is a very practical logical system for
writing mathematical proofs.

I Natural deduction is not practical enough for establishing
metatheorems.

I Natural deduction is very practical for extracting programs
in intuitionistic and classical logics.

I Some difficulties in understanding the algorithmic behavior
of proofs in classical logic.

I Difficulties in defining “call-by-name” and “call-by-value”
strategies.

Outline
Introduction

Introduction
Propositionnal logic

Deduction systems
Hilbert system
Natural deduction
Sequent calculus

Typed programming system
Combinatory logic
The λµ-calculus
The λλµµ̃-calculus

Linear logic
Syntax of system
Semantic of system
Proof nets
System L

Typed system (P.-L. Curien and H. Herbelin : 2000)
I We consider the implicative sequent calculus.

I Sequent : Γ ` 4 (Γ & 4 are sets of formulas).

Γ,A ` A,4
Γ ` A,4 Γ,A ` 4

Γ ` 4

Γ,A ` B,4
Γ ` A→ B,4

Γ ` A,4 Γ,B ` 4
Γ,A→ B ` 4

I Curry-Howard correspondence

Γ = x1 : A1, . . . , xn : An 4 = α1 : B1, . . . , αm : Bm

Γ ` v : A ,4 Γ, e : A ` 4 c : (Γ ` 4)

The typed λµµ̃-calculus

Γ, x : A ` x : A ,4 Γ, α : A ` α : A,4

Γ, x : A ` v : B ,4
Γ ` λx .v : A→ B ,4

Γ ` v : A ,4 Γ, e : B ` 4
Γ, v ? e : A→ B ` 4

Γ ` v : A ,4 Γ , e : A ` 4
〈v ,e〉 : (Γ ` 4)

c : (Γ ` α : A,4)

Γ ` µα.c : A ,4
c : (Γ, x : A ` 4)

Γ, µ̃x .c : A ` 4

Other rules

I A complet symetric system.

I A new connector “−”

A− B means A ∧ ¬B and is equivalent to ¬(¬B → ¬A)

I Two logical rules

Γ ` v : A ,4 Γ, e : B ` 4
Γ ` e • v : A− B ,4

Γ, e : A ` α : B,4

Γ, λα.e : A− B ` 4

Terms and reduction rules
I Terms :

c ::= 〈v ,e〉
v ::= x | λx .v | µα.c | e • v

e ::= α | λα.e | µ̃x .c | v ? e

I Reduction rules :

〈λx .v , v ′ ? e〉 →λ 〈v ′, µ̃x .〈v ,e〉〉
〈e′ • v , λα.e〉 →λ 〈µα.〈v ,e〉,e′〉
〈µα.c,e〉 →µ c[α := e]

〈v , µ̃x .c〉 →µ̃ c[x := v]

µα.〈v , α〉 →sv v α 6∈ Fv(v)

µ̃x .〈x ,e〉 →se e x 6∈ Fv(e)

The λ-reduction

···
Γ1 ` v ′ : A,41

···
Γ2,e : B ` 42

Γ1, Γ2, v ′ ? e : A→ B ` 41,42

···
Γ3, x : A ` v : B,43

Γ3 ` λx .v : A→ B,43

〈λx .v , v ′ ? e〉 : (Γ1, Γ2, Γ3 ` 41,42,43)

 λ

···
Γ3, x : A ` v : B,43

···
Γ2,e : B ` 42

〈v ,e〉 : (Γ2, Γ3, x : A ` 42,43)

Γ2, Γ3, µ̃x .〈v ,e〉 : A ` 42,43

···
Γ1 ` v ′ : A,41

〈v ′, µ̃x .〈v ,e〉〉 : (Γ1, Γ2, Γ3 ` 41,42,43)

Properties

Theorem
The reduction is not confluent (critical pair 〈µα.c1, µ̃x .c2〉).

Theorem
The type is preserved during a reduction.

Theorem
The reduction is strongly normalizing (every reduction leads to
a non-reduced form).

Theorem
We have a coding of the λµ-calculus into the λµµ̃-calculus and
a coding of the λµµ̃-calculus into the λµ-calculus.

Example

x : (A → B) → A ` x : (A → B) → A

y : A ` y : A α : A ` α : A, β : B

〈y, α〉 : (y : A ` α : A, β : B)

y : A ` µβ.〈y, α〉 : B, α : A

` λy.µβ.〈y, α〉 : A → B, α : A α : A ` α : A

(λy.µβ.〈y, α〉) ? α : (A → B) → A ` α : A

〈x, (λy.µβ.〈y, α〉) ? α〉 : (x : (A → B) → A ` α : A)

x : (A → B) → A ` µα.〈x, (λy.µβ.〈y, α〉) ? α〉 : A

` λx.µα.〈x, (λy.µβ.〈y, α〉) ? α〉 : ((A → B) → A) → A

call/CC : "call with current continuation" of Scheme

CC = λx .µα.〈x , (λy .µβ.〈y , α〉) ? α〉

Let’s look at the reduction of 〈CC,e ? v〉.

We have :

(1) 〈CC, v ? e〉� 〈v , ke ? e〉

(2) 〈ke, v ′ ? e′〉� 〈v ′,e〉

New presentation
If F is the set of implicative propositional formulas, we denote
F⊥ = {A⊥ /A ∈ F}. We consider the set of formulas :

F ∪ F⊥ ∪ {⊥}

(xi ; Ai)1≤i≤n . . . ([x ′j : A′j])1≤j≤n′ . . . (αk : B⊥k)1≤k≤m . . . ([α′` : B′⊥`])1≤`≤m′

...

...

...

t : A

Γ ` v : A Γ ` e : A⊥ Γ ` c :⊥

New deduction rules

x : A
x : A

α : A⊥

α : A⊥

...
t : A y : B

t : A

...
t : A α : B⊥

t : A

[x : A]
...

v : B
λx .v : A→ B

... ...
v : A e : B⊥

v ? e : (A→ B)⊥

New deduction rules

... ...
v : A e : A⊥

〈v ,e〉 : ⊥

[α : A⊥]
...

c : ⊥
µα.c : A

[x : A]
...

c : ⊥
µ̃x .c : A⊥

Programming in λµµ̃-calculus

I Not well studied in the literature.

I We encode µα.〈u, v ? α〉 as [u]v .

I N = (a→ (a→ a))→ a.

I ∀n ∈ IN, n̂ = λx .λf . [f] . . . [f]︸ ︷︷ ︸
n times

x .

I ŝ = λn.λx .λf .µα.〈f , µβ.〈n, f ? x ? β〉 ? α〉.

Lemma
I ∀n ∈ IN, ` n̂ : N.

I ` ŝ : N → N.

I ∀n ∈ IN, [ŝ]n̂� n̂ + 1.

Programming in λµµ̃-calculus

I The values
µα.〈λx .µβ.〈0̂, α〉, α〉

λx .λf .µα.〈f , (µβ.〈x , α〉) ? α〉

λx .λf .µα.〈f , x ? (µ̃y .〈x , α〉)〉

λx .λf .µα.〈f , x ? (µ̃y .〈f , y ? α〉)〉

have the type N.

I Can we characterize the values of type N ?

I How can we find the integer hidden in a value of type N ?

I Do we have the equivalent of the rule µ′ to do this?

I Do we therefore have a good programming theorem?

Conclusion

I The sequent calculus is not practical enough for making
mathematical proofs.

I The sequent calculus is very practical for establishing
metatheorems.

I The sequent calculus is not practical for extracting
programs.

I Programs extracted from mathematical proofs are very
practical to execute.

I Simple definitions of “call-by-name” and “call-by-value”
strategies :
I call-by-value : priority to the µ-reduction
I call-by-name : priority to the µ̃-reduction

Other systems

I A completely symmetric system due to F. Barbanera and
S. Berardi (1996) : the λSym

Prop-calculus.

I Many systems based on linear logic, in particular, the
system L due to G.Munch-Maccagnoni (2009).

Outline
Introduction

Introduction
Propositionnal logic

Deduction systems
Hilbert system
Natural deduction
Sequent calculus

Typed programming system
Combinatory logic
The λµ-calculus
The λλµµ̃-calculus

Linear logic
Syntax of system
Semantic of system
Proof nets
System L

Motivation

I Linear logic was introduced by J.-Y. Girard in 1987 by
examining a semantics (coherence spaces) for typed
lambda calculus : A→ B = !A(B.

I Linear logic allows for a more precise modeling of
resources compared to classical logic.

I It offers an approach to handle situations where the
multiple use of a resource is prohibited.

Motivation
I The structural rules of classical logic allow for free

manipulation of propositions, which can lead to undesirable
uses of resources.

I The contraction rule allows resources to be merged, which
is not always desirable.

Γ,A,A ` 4

Γ,A ` 4

Γ ` A,A,4

Γ ` A,4

I The weakening rule allows resources to be introduced
without restriction, which can distort resource
management.

Γ ` 4

Γ,A ` 4

Γ ` 4

Γ ` A,4

Motivation
I This freedom to remove and add formulas allows for

different ways of presenting logical rules, particularly with
regard to the management of sets of hypotheses.

Γ ` A,4 Γ ` B,4

Γ ` A ∧ B,4

Γ1 ` A,41 Γ2 ` B,42

Γ1, Γ2 ` A ∧ B,41,42

Γ ` A,4

Γ ` A ∨ B,4

Γ ` A,B,4

Γ ` A ∨ B,4

I Linear logic eliminates duplication and forgetting of
resources by imposing strict constraints on their use.

I Linear logic guarantees that each resource is used exactly
once.

Introduction

I This focus on structural rules leads to the duplication of the
logical connectors ∧ and ∨.

I The connector→ also changes its meaning and enforces
the use of the left-hand side exactly once to prove the
right-hand side.

I The management of structural rules also imposes
modalities to properly analyze the phenomena of
duplication and contraction.

I Neutral elements are also introduced for the connectives.
We will therefore have two notions of true and two notions
of false !

Connectors : and/or

I The ⊗ connector represents a strong conjunction. If we
have A⊗ B, you also have a copy of both A and B.

I The & connector represents a weak conjunction. If we
have A & B, you can choose either A or B, but not both.

I The

&

connector expresses an additive disjunction. The
formula A

&

B means that one of the two formulas is true,
but we do not know which one in advance.

I The ⊕ connector represents a rigid form of disjunction. The
formula A⊕ B means that one of the two formulas is true,
but it will always be the same one.

Other connectors

I The(connector represents an implication where the
resource on the left side of the implication is consumed
exactly once to produce the resource on the right side, also
exactly once.

I The formula !A indicates that we have an arbitrary number
of copies of A.

I By duality, the formula ?A means that we know A is true a
certain number of times, but we do not know how many
times.

I Each connector "and/or" admits a constant as a neutral
element.

Example (Lafont’s meal)

20$((tomatoes⊕lettuce)⊗hamburger⊗(cheese & ice cream)⊗ !water.

This means, for exactly 20$, the customer can have :

I An appetizer of either tomatoes or lettuce, with the choice
made by the restaurant.

I A main course of hamburger.

I A dessert of either cheese or ice cream, with the customer
choosing. Both are available.

I Unlimited water, meaning the customer can have as many
servings as they like.

Formulas

I The set of formulas is constructed from :

I A set of propositional variables V = {a,b, c, . . .}
I the constants : 0 1 ⊥ >
I the connectives : .⊥ ⊕ ⊗ &

&

(

I the modalities : ! ?

I Contextes : Γ, 4, . . . (multisets)

I Sequent : Γ ` 4

Axioms

Γ ` 4
Γ,1 ` 4 ` 1 ⊥`

Γ ` 4
Γ `⊥,4

Γ,0 ` 4 Γ ` >,4

A ` A

Structural rules

Γ ` 4
Γ, !A ` 4

Γ ` 4
Γ `?A,4

Γ, !A, !A ` 4
Γ, !A ` 4

Γ `?A, ?A,4
Γ `?A,4

!Γ,A `?4
!Γ, ?A `?4

!Γ ` A, ?4
!Γ `!A, ?4

Γ,A ` 4
Γ, !A ` 4

Γ ` A,4
Γ `?A,4

Connective rules

Γ,A,B ` 4
Γ,A⊗ B ` 4

Γ1 ` A,41 Γ2 ` B,42

Γ1, Γ2 ` A⊗ B,41,42

Γ1,A ` 41 Γ2,B ` 42

Γ1, Γ2,A

&

B ` 41,42

Γ ` A,B,4
Γ ` A

&

B,4

Γ,A ` 4
Γ,A & B ` 4

Γ,B ` 4
Γ,A & B ` 4

Γ ` A,4 Γ ` B,4
Γ ` A & B,4

Γ,A ` 4 Γ,B ` 4
Γ,A⊕ B ` 4

Γ ` A,4
Γ ` A⊕ B,4

Γ ` B,4
Γ ` A⊕ B,4

Connective rules

Γ1 ` A,41 Γ2,B ` 42

Γ1, Γ2,A(B ` 41,42

Γ,A ` B,4
Γ ` A(B,4

Γ ` A,4
Γ,A⊥ ` 4

Γ,A ` 4
Γ ` A⊥,4

Γ1 ` A,41 Γ2,A ` 42

Γ1, Γ2 ` 41,42

De Morgan lows

We define an equivalence on formulas by :

A ≡ B iff `LL A(B and `LL B (A.

Theorem
I A⊥⊥ ≡ A,

I ⊥⊥≡ 1, 1⊥ ≡⊥, >⊥ ≡ 0, 0⊥ ≡ >,

I (A⊕ B)⊥ ≡ A⊥ & B⊥, (A & B)⊥ ≡ A⊥ ⊕ B⊥,

I (A⊗ B)⊥ ≡ A⊥

&

B⊥, (A

&

B)⊥ ≡ A⊥ ⊗ B⊥,

I (!A)⊥ ≡?A⊥, (?A)⊥ ≡!A⊥,

I A(B ≡ A⊥

&

B.

New system

I Two sets of propositional variables V = {a,b, c, . . .} and
V⊥ = {a⊥,b⊥, c⊥, . . .}.

I The set of formulas is constructed from the sets V, V⊥, the
constants 0, 1, ⊥, >, the connectives ⊕, ⊗, & ,

&

, and the
modalities !, ?.

I The linear negation .⊥ is defined for propositional variables
and extends to all formulas through the following relations :
I a⊥⊥ = a, ⊥⊥= 1, 1⊥ =⊥, >⊥ = 0, 0⊥ = >,

I (A⊕ B)⊥ = A⊥ & B⊥, (A & B)⊥ = A⊥ ⊕ B⊥,

I (A⊗ B)⊥ = A⊥

&

B⊥, (A

&

B)⊥ = A⊥ ⊗ B⊥,

I (!A)⊥ =?A⊥ and (?A)⊥ =!A⊥.

I We define A(B by A⊥

&

B.

Derivation rules

1
` 1

` Γ
⊥

`⊥, Γ
>

` >, Γ

ax
` A,A⊥

` Γ
weak

`?A, Γ

`?A, ?A, Γ
contraction

`?A, Γ

` A, ?Γ
promotion

`!A, ?Γ

` A, Γ
dereliction

`?A, Γ

Derivation rules

` A, Γ ` B,4
⊗

` A⊗ B, Γ,4
` A,B, Γ &

` A

&

B, Γ

` A, Γ ` B, Γ
&

` A & B, Γ

` A, Γ
⊕1` A⊕ B, Γ

` B, Γ
⊕2` A⊕ B, Γ

` A, Γ ` A⊥,4
cut

` Γ,4

Examples

Theorem
I A &> ≡ A, A & A ≡ A, A & B ≡ B & A,

A & (B & C) ≡ (A & B) & C.

I A⊕ 0 ≡ A, A⊕ A ≡ A, A⊕ B ≡ B ⊕ A
A⊕ (B ⊕ C) ≡ (A⊕ B)⊕ C.

I A⊗ 1 ≡ A, A⊗ 0 ≡ 0, A⊗ B ≡ B ⊗ A
A⊗ (B ⊗ C) ≡ (A⊗ B)⊗ C.

I A

&

⊥≡ A, A

&

> ≡ >, A

&

B ≡ B

&

A
A

&

(B

&

C) ≡ (A

&

B)

&

C.

I A⊗ (B ⊕ C) ≡ (A⊗ B)⊕ (A⊗ C),
A

&

(B & C) ≡ (A

&

B) & (A

&

C).

Examples

Theorem
I A⊥ ≡ A(⊥, 1(A ≡ A,

A((B (C) ≡ (A⊗ B)(C,
A((B & C) ≡ (A(B) & (A(C),
(A⊕ B)(C ≡ (A(C) & (B (C).

I !!A ≡!A, !A ≡ (!A)⊗ (!A), !A ≡ 1 & (!A),
!A ≡ A & (!A).

I ??A ≡?A, ?A ≡ (?A)

&

(?A), ?A ≡ >⊕ (?A),
?A ≡ A⊕ (?A).

I ?0 ≡⊥, !> ≡ 1, !(A & B) ≡ (!A)⊗ (!B),
?(A⊕ B) ≡ (?A)

&

(?B).

Example : ((A⊗ (B ⊕ C))(((A⊗ B)⊕ (A⊗ C))

ax
` A,A⊥

ax
` B,B⊥

⊗
` A⊗ B,A⊥,B⊥

⊕1
` (A⊗ B)⊕ (A⊗ C),A⊥,B⊥

ax
` A,A⊥

ax
` C,C⊥

⊗
` A⊗ C,A⊥,C⊥

⊕2
` (A⊗ B)⊕ (A⊗ C),A⊥,C⊥

&
` (A⊗ B)⊕ (A⊗ C),A⊥,B⊥ & C⊥ &

` (A⊗ B)⊕ (A⊗ C),A⊥

&

(B⊥ & C⊥) &

`LL ((A⊗ (B ⊕ C))(((A⊗ B)⊕ (A⊗ C))

Example : (?A

&

?B)(?(A⊕ B)

ax
` A,A⊥

⊕1` A⊕ B,A⊥
der

`?(A⊕ B),A⊥
pro

`?(A⊕ B), !A⊥

ax
` B,B⊥

⊕2` A⊕ B,B⊥
der

`?(A⊕ B),B⊥
pro

`?(A⊕ B), !B⊥
⊗

`?(A⊕ B), ?(A⊕ B), !A⊥⊗!B⊥
con

`?(A⊕ B), !A⊥⊗!B⊥ &

`LL (?A

&

?B)(?(A⊕ B)

Two translations

I k : LL→ LK
k(a) = a, k(a⊥) = ¬a,
k(⊥) = k(0) =⊥, k(>) = k(1) = ¬ ⊥,
k(A⊗ B) = k(A & B) = k(A) ∧ k(B),
k(A⊕ B) = k(A

&

B) = k(A) ∨ k(B)
k(!A) = k(?A) = k(A).

I ` : LK→ LL
`(a) = a, `(⊥) =⊥, `(¬A) =?!`(A)⊥,
`(A→ B) =?!`(A)⊥

&

?`(B) =!?`(A)(?`(B),
`(A ∧ B) =?`(A)&?`(B), `(A ∨ B) =?`(A)

&

?`(B).

If Γ = A1, . . . ,An, we write :
k(Γ) = k(A1), . . . , k(An), `(Γ) = `(A1), . . . , `(An),
?Γ =?A1, . . . , ?An, !Γ =!A1, . . . , !An,
Γ⊥ = A⊥1 , . . . ,A

⊥
n , ¬Γ = ¬A1, . . . ,¬An.

The encoding of LK in LL

Lemma
1. For any formula A of LL, we have `LK k(A⊥) ≡ ¬k(A).
2. For any formula A of LK, we have `LK k(`(A)) ≡ A.

Theorem
1. If `LL Γ, then `LK k(Γ).
2. Γ `LK 4 iff `LL?!`(Γ)⊥, ?`(4).

Properties of LL

Theorem
The system LL has the cut-elimination property.

Theorem
The system LL has the subformula property.

Theorem
The system LL is not decidable.

Theorem
The system MALL is decidable.

Outline
Introduction

Introduction
Propositionnal logic

Deduction systems
Hilbert system
Natural deduction
Sequent calculus

Typed programming system
Combinatory logic
The λµ-calculus
The λλµµ̃-calculus

Linear logic
Syntax of system
Semantic of system
Proof nets
System L

Questions
I How can the notion of truth be defined for formulas in

linear logic?

I How can the different connectives (the two ∧ and the two
∨) be distinguished?

I One idea is to use a simple algebraic structure and apply
set-theoretic operations (∩ and ∪) as well as algebraic
operations (⊗ and ⊕).

I We interpret each formula as a subset of a monoid, and
the notion of truth is linked to the existence of the neutral
element in this subset.

I The basic operation on subsets will be linear implication,
as well as a particular subset to interpret ⊥ and thus
negation.

Phase space

1. A phase space is defined as a non-empty set M equipped
with a commutative, associative multiplication x .y and a
neutral element 1 ((M, .,1) is a commutative monoid) and
also of a subset ⊥⊥ of M.

2. For any X ,Y ⊆ M, we define the subsets

I X .Y = {x .y / x ∈ X , y ∈ Y},
I X (Y = {a ∈ M / ∀x ∈ X , a.x ∈ Y},
I X⊥⊥ = X (⊥⊥.

3. We call a subset X of M a fact if it satisfies X = X⊥⊥⊥⊥ i.e.
∃Z ⊆ M,X = Z⊥⊥

Phase model

A phase model is a phase space (M, .,1,⊥⊥) equipped with :
I a map b 7→ b∗ that associates to each variable b a fact b∗.
I of a submonoid K of the submonoid

I(M) = {x ∈ ⊥⊥⊥⊥ / x ∈ {x2}⊥⊥⊥⊥}.

We extend this function .∗ to all formulas as follows :
(a⊥)∗ = (a∗)⊥⊥, ⊥∗= ⊥⊥, 1∗ = ⊥⊥⊥⊥ = {1}⊥⊥⊥⊥,
>∗ = M, 0∗ = (>∗)⊥⊥ = ∅⊥⊥⊥⊥,
(A

&

B)∗ = ((A∗)⊥⊥.(B∗)⊥⊥)⊥⊥ = (A∗)⊥⊥(B∗,
(A⊗ B)∗ = (A∗.B∗)⊥⊥⊥⊥,
(A & B)∗ = A∗ ∩ B∗, (A⊕ B)∗ = (A∗ ∪ B∗)⊥⊥⊥⊥.
(?A)∗ =?A∗ = ((A∗)⊥⊥ ∩ K)⊥⊥, (!A)∗ =!A∗ = (A∗ ∩ K)⊥⊥⊥⊥.

It is easy to verify that for every formula A, the set A∗ is a fact.

Correctness of LL

LetM = (M, .,1,⊥⊥,K , .∗) be phase model.

I If Γ = A1, . . . ,An, we write Γ∗⊥⊥ = (A∗1)⊥⊥ . . . (A∗n)⊥⊥.

I We say thatM satisfies Γ si Γ∗⊥⊥ ⊆ ⊥⊥.

I In particular,M satisfies a formula A if 1 ∈ A∗.

Theorem
If `LL Γ, then every phase model satisfies Γ.

Corollary
If `LL A, then, for every phase model (M, .,1,⊥⊥,K , .∗), 1 ∈ A∗.

A particular phase model

We define a particular phase model denoted LL∗ as follows :

I M = {Γ / Γ is a multiset of formulas },

I . is the concatenation of multisets,

I 1 = ∅,

I ⊥⊥ = {Γ / `LL Γ without the cut rule },

I For all a ∈ V, a∗ = {Γ / `LL Γ,a without the cut rule},

I K = {?Γ / Γ is a multiset of formulas}.

Completeness theorem

Lemma
In the model LL∗, for all formula A, A∗ ⊆ {A}⊥⊥.

Theorem
We have the equivalence between the following properties :

1. `LL A.

2. Any phase model satisfies A.

3. The model LL∗ satisfies A.

4. `LL A without the cut rule.

Example : 6`LL?(a

&

b)(?a⊕?b

I Consider a cut-free derivation of ?(a

&

b)(?a⊕?b.

I Then `LL !(a⊥ ⊗ b⊥), ?a⊕?b, thus
`LL !(a⊥ ⊗ b⊥), ?a or `LL !(a⊥ ⊗ b⊥), ?b.

I Suppose that `LL !(a⊥ ⊗ b⊥), ?a, then `LL ?(a

&

b)(?a.

I Consider the phase model defined by M = {xn / n ∈ ZZ },
⊥⊥ = {xn / n ∈ IN} and K = {1}.

I We take a∗ = {xn / n ≥ 1} et b∗ = {xn / n ≥ −2}.

I It is easy to verify that (?(a

&

b))∗ = M and (?a)∗ = ⊥⊥.

Hence a contradiction.

Finite models property
Theorem
The system LL does not have the property finite models
property .

Consider the formula F(
!α ⊗ !(a⊗ b) ⊗ !(a⊗ b(1)

)
(b

=

?a⊥

&

?(?a⊥

&

?b⊥)

&

?(α⊗ b ⊗⊥)

&

b

We verify that :

I 6`LL F .

I Every finite phase model satisfies F .

Outline
Introduction

Introduction
Propositionnal logic

Deduction systems
Hilbert system
Natural deduction
Sequent calculus

Typed programming system
Combinatory logic
The λµ-calculus
The λλµµ̃-calculus

Linear logic
Syntax of system
Semantic of system
Proof nets
System L

Proof nets

I Proof Nets are graphical representations of proofs in linear
logic.

I They simplify the analysis of proofs and respect the unique
use of resources.

I They provide a clear and intuitive view of the connections
within the proofs.

I They also allow for the algorithmic verification of the
validity of proofs.

Proof nets for MLL

Here is the graphical presentation of the rules of MLL :

Proof nets for MLL

Example

Here are an example of a proof net of MLL :

Problem
Here are a few examples of proof structures which do not
correspond to any proof of MLL :

Correctness criterion

I A correctness criterion is a criterion used to characterize
proof nets corresponding to proofs in MLL.

I A switch on a proof net is a choice of orientation for each

&

-link, meaning that each

&

-link is connected to only one
of its two premises.

Theorem (Danos-Regnier)
A proof net is correct if and only if it is connected and acyclic for
every choice of switch, that is, if and only if for every choice of
switch, the resulting graph is a tree.

Cut Elimination

We consider two reductions steps :

Properties

Theorem (Confuence)
The reduction of multiplicative proof nets is confuent.

Theorem (Strong Normalization)
The reduction of multiplicative proof nets is strongly
normalizing.

Outline
Introduction

Introduction
Propositionnal logic

Deduction systems
Hilbert system
Natural deduction
Sequent calculus

Typed programming system
Combinatory logic
The λµ-calculus
The λλµµ̃-calculus

Linear logic
Syntax of system
Semantic of system
Proof nets
System L

Introduction

I How can the algorithmic content of proofs in linear logic be
extracted?

I Should we restrict ourselves to a logical subsystem?

I Should we keep the presentation with sequents (everything
on the right, right and left, multiple formulas on the right) ?

I What additional results can we obtain from doing this
work?

I We provide an example of work on this topic without going
into details (system L).

Terms and reduction rules

Typing system

Derived syntatx and typing rules

Conclusion

I Linear logic is a rich enough system to express properties
that are not necessarily mathematical.

I It has very good properties and allows for encoding both
intuitionistic and classical logic.

I It is also possible to extract the algorithmic content from
proofs and thus produce a programming language.

I Several works have been carried out to improve the
program extraction process using the concept of polarity.

General conclusion

I The presentation of proof systems is important both for
writing comprehensible mathematical proofs and for
extracting programs that behave effectively.

I It is interesting to seek a programming theorem for the
calculus encoding sequent calculus, which begins with a
characterization of integers.

I The study of linear logic to achieve this objective is very
interesting. One must find a balance between a system
that is practical for making mathematical proofs and
programs derived from these proofs that behave well.

	Introduction
	Introduction
	Propositionnal logic

	Deduction systems
	Hilbert system
	Natural deduction
	Sequent calculus

	Typed programming system
	Combinatory logic
	The -calculus
	The -calculus

	Linear logic
	Syntax of system
	Semantic of system
	Proof nets
	System L

