
Introduction
Proofs as Programs

Classical logic

Proofs and programs

Karim Nour

Université Savoie Mont Blanc
LAMA - LIMD

Seminaires de LIM - Université de la Réunion
26 october 2023

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Outline

1 Introduction

2 Proofs as Programs
Proofs
Programs
Programming theorem
A few developments

3 Classical logic
The calculus
The reduction µ′

General system

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Introduction

Aims of my recherch domain :

Writing programs that are provably correct.

Finding the algorithmic content of mathematical
proofs.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Introduction

This relationship between proofs and programs is called :

Curry-Howard correspondence

Curry (1958) observes that a fragment of Hilbert-style
deductions coincides to a fragment of combinatory logic.

Howard (1969) observes that the natural deduction proof
system can be interpreted as λ-calculus.

Griffin (1990) uses classical logic in order to give types to
escape instructions.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Introduction

How to realise this correspondence?

Choose a fairly expressive logic :
set theory, second order logic, higher order logic, . . .

Code the proofs by objects that will be our
programs.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Introduction

We find in the literature several systems to illustrate
this relation : proofs/programs.

We will present a very simple and very effective
version developed in France since the 90s.

It allows

to correctly program functions on data types,

to find the algorithmic content of any proof.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Outline

1 Introduction

2 Proofs as Programs
Proofs
Programs
Programming theorem
A few developments

3 Classical logic
The calculus
The reduction µ′

General system

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

AF2 (Krivine 1988)

We choose as logic : the second-order intuitionistic logic.

We can quantify on objects and predicates.

We only need two connectors→ and ∀.

This logic is very expressive : it makes it possible to

code the data types,

code a very large class of mathematical proofs.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Formulas

We need :
Constants and functions (with arities)
First order variables : x , y , z, . . .
Predicate variables (with arities) : X ,Y ,Z , . . .

Definition (Terms)
A conctant and a first order variable is a term.
If f is an n-ary function and t1, . . . , tn are terms,
then f (t1, . . . , tn) is a term.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Formulas

Definition (Formulas)
If t1, t2 are terms, then t1 = t2 is a formula.

If X is an n-ary predicate and t1, . . . , tn are terms,
then X (t1, . . . , tn) is a formula.

If F1,F2 are formulas, then F1 → F2 is a formula.

If F is a formula and x a first order variable,
then ∀x ,F is a formula.

If F is a formula and X a predicate variable,
then ∀X ,F is a formula.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Coding of connectors

We write F ,G→ H instead of F → (G→ H).

Definition (Coding of connectors)
⊥ = ∀X ,X.

¬F = F → ⊥.

F1 ∧ F2 = ∀X , {[F1,F2 → X]→ X}.

F1 ∨ F2 = ∀X , {([F1 → X), (F2 → X)→ X]→ X}.

∃x ,F = ∀Y , {[∀x , (F → Y)]→ Y}.

∃X ,F = ∀Y , {[∀X , (F → Y)]→ Y}.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Formulas (example)

x is an integer ⇐⇒ x is in the smallest set containing 0
and stable under the sucessor function s.

∀X ,
{ X stable by s︷ ︸︸ ︷
∀y ,

(
X (y)→ X (s(y)

)
,

X contains 0︷ ︸︸ ︷
X (0) → X (x)

}︸ ︷︷ ︸
IN[x] means x is an integer

0 is a constant,
s is a unary function,
x , y are variables,
X is a unary predicate variable.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Sequents

A1, . . . ,An︸ ︷︷ ︸
Γ

` A

Γ is a finite set of formulas.
A is a formula.

We write : “A is provable from the formulas in Γ”.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Proof rules

Γ,A ` A
ax

Γ,A ` B
Γ ` A→ B

→i
Γ ` A→ B Γ ` A

Γ ` B
→e

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Proof rules

Γ ` A[x]

Γ ` ∀x , A[x]
∀1

i
Γ ` A[X]

Γ ` ∀X , A[X]
∀2

i

x is free in Γ X is free in Γ

Γ ` ∀x , A[x]

Γ ` A[t]
∀1

e
Γ ` ∀X , A[X]

Γ ` A[F]
∀2

e

t is a term F is a formula

Γ ` A[u] u = v
Γ ` A[v]

=

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Proofs

ax ax

ax

ax

ax ax

Γ ` A

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Simplifications

We have a notion of reduction on proofs.

The goal is to simplify the proofs and avoid the use of
lemmas.

This kind of reduction on proofs allow us to prove that the
notion of provability is semi-decidable.

These reductions will allow us to execute programs based
on proofs.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Outline

1 Introduction

2 Proofs as Programs
Proofs
Programs
Programming theorem
A few developments

3 Classical logic
The calculus
The reduction µ′

General system

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Sequent

Definition
A context Γ is a set of typing assumptions

Γ = x1 : A1, . . . , xn : An

where x1, . . . , xn are λ-variables and A1, . . . ,An are formulas.

Definition
The typing relation

Γ ` M : T
indicates that M is a program of type T in context Γ.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Coding

Γ, x : A ` x : A
ax

Γ, x : A ` M : B
Γ ` λx .M : A→ B

→i
Γ ` M : A→ B Γ ` N : A

Γ ` (M)N : B
→e

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Coding

Γ ` M : A[x]

Γ ` M : ∀x , A[x]
∀1

i
Γ ` M : A[X]

Γ ` M : ∀X , A[X]
∀2

i

x is free in Γ X is free in Γ

Γ ` M : ∀x , A[x]

Γ ` M : A[t]
∀1

e
Γ ` M : ∀X , A[X]

Γ ` M : A[F]
∀2

e

t is a term F is a formula

Γ ` M : A[u] u = v
Γ ` M : A[v]

=

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Programs and reduction

The λ-calculus is based on a set of λ-variables

V = {x , y , z, . . .}

Definition (λ-terms)
The definition of the programs is given by the grammar :

T ::= V | λV .T | (T) T

Definition (β-reduction)

(λx .M)N .β M[x := N]

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Reduction rules

Definition
We write M .β M ′ if M reduces to M ′ in one step of
β-reduction.
We write M .∗β M ′ if M .β M1 .β M2 .β · · · .β Mk = M ′.

Theorem (Confluence)

If M .∗β M1 and M .∗β M2, then ∃M ′ such that
M1 .

∗
β M ′ and M2 .

∗
β M ′.

Theorem (Subject reduction)
If Γ ` M : T and M .∗β N , then Γ ` N : T .

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Normalization

Definition
A λ-term that does not reduce is called normal form.
A λ-term M is strongly normalizable, if there exists no
infinite reduction path out of M. That is, any possible
sequence of reductions eventually leads to a normal form.

Theorem (Strong Normalization)

If Γ ` M : T , then M is strongly normalizable.

Proofs : Girard (1972) and Krivine (1988).

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Outline

1 Introduction

2 Proofs as Programs
Proofs
Programs
Programming theorem
A few developments

3 Classical logic
The calculus
The reduction µ′

General system

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Church’s numerals

Example

n = λf .λx .

n times︷ ︸︸ ︷
(f) . . . (f) x

s = λn.λf .λx .(f)((n)f)x

+ = λm.λn.λf .λx .((m)f)((n)f)x

× = λm.λn.λf .λx .((m)(n)f)x

Lemma

(s)n .∗β n + 1

((+)m)n .∗β m + n

((×)m)n .∗β m × n

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Properties

Example

For all n ∈ IN, ` n : IN[sn(0)].

Theorem

For all n ∈ IN, if ` M : IN[sn(0)], then M .∗β n.

Example

` s : ∀x , {IN[x]→ IN[s(x)]}.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

+ and ×

{
0 + y = y ,

s(x) + y = s(x + y).

{
0× y = 0,

s(x)× y = (x × y) + y .

We can prove :
` + : ∀x , ∀y , {IN[x], IN[y]→ IN[x + y]}.

` × : ∀x , ∀y , {IN[x], IN[y]→ IN[x × y]}.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Predessor

{
p(0) = 0,

p(s(x)) = x .

We can :

prove ` ∀x , {IN[x]→ IN[p(x)]},
find a program P such that ` P : ∀x , {IN[x]→ IN[p(x)]},
(P)0 .∗β 0 and ∀n ∈ IN∗, (P)n .∗β n − 1.

P = λn.(((n)λa.λb.((b)((a)λx .λy .y))

(λn.λf .λx .(f)((n)f)x)(a)λx .λy .y)λc.((c)λx .λf .x)λx .λf .(f)x)λx .λy .x

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Programming theorem

Theorem (J.-L. Krivine (1988))

If ` F : ∀x1, . . .∀xn, {IN[x1], . . . , IN[xn]→ IN[f (x1, . . . , xn)]},
then F is a correct program for the function f .

PROPRE : PROgrammation avec des PREuves
Manoury, Parigot and Simonot (1992)

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

inf


inf (0, y) = 0,
inf (x ,0) = 0,

inf (s(x), s(y)) = s(inf (x , y)).

Maurey has given a λ-term

λn.λm.((n)λf .λg.(g)f)λx .n)((m)λf .λg.(g)f)λx .m

that computes the inf function in time O(inf).

Krivine has shown that this λ-term cannot be typed of type
IN, IN → IN.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

inf

The λ-term
λn.λm.((n)A)λp.0)m

A = λu.λv(((v)H)λc.((c)0)0)λa.λb.b
H = λw .λc.((c)(s)(w)λa.λb.a)))(s)(u)(w)λa.λb.a

computes the inf function in time O(inf 2) and has the type
∀x ,∀y , {IN[x], IN[y]→ IN[inf (x , y)].

David (2009) has given a λ-term that computes the inf
function in time O(inf . ln(inf)) and has the type
∀x ,∀y , {IN[x], IN[y]→ IN[inf (x , y)].

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

GCD



gcd(0, y) = y ,
gcd(s(x),0) = s(x),

gcd(s(x), s(y)) = gcd(s(min(x , y)),dif (x , y)),
min(0, y) = 0,

min(s(x),0) = 0,
min(s(x), s(y)) = s(min(x , y)),

dif (0, y) = y ,
dif (s(x),0) = s(x),

dif (s(x), s(y)) = dif (x , y).

We can :
prove ` ∀x , ∀y , {IN[x], IN[y]→ IN[gcd(x , y)]},
find a program GCD such that
` GCD : ∀x , ∀y , {IN[x], IN[y]→ IN[gcd(x , y)]}.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Outline

1 Introduction

2 Proofs as Programs
Proofs
Programs
Programming theorem
A few developments

3 Classical logic
The calculus
The reduction µ′

General system

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Questions

We are interested in :

Studying the syntactical properties of the (typed
and untyped) programs.

Understanding the connection between proofs
and their algorithmic content.

Finding good semantics for logical system :
"set theory, . . . "

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Storage operator

Definition
Let O be a predicat constant, and for any formula F , we
denote ¬′F = F → O.
N ′[x] = ∀X , {∀y , [¬′X (y)→ ¬′X (s(y))],¬′X (0)→ ¬′X (x)}.
Let SO = λν.((ν)F)δ where
F = λz.λy .(z)λx .(y)(s)x and δ = λf .(f)0.

Example

We have ` SO : ∀x , {N ′[x]→ ¬′¬′N[x]}.

We have ∀F, ∀n ∈ IN, ∀θn .
∗
β n, ((SO)F)θn .

∗
name (F)(s)n0.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Storage operator

The λ-term SO is called a storage operator ; it
enables simulating call by value using call by name
computation.

We can find other typed storage operators. These
operators play a significant role in different
circumstances.

What is the connection between the type of these
operators and their computational behavior?

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Storage operator

Theorem (Krivine 1989)

If Γ ` M : ∀x , {N ′[x]→ ¬′¬′N[x]}, then M is a storage operator.

This theorem generalizes to other data types.

Multiple possible proofs, even for other types.

Mixed logic has allowed for a better understanding of
this result that remains unclear.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

Proofs
Programs
Programming theorem
A few developments

Other examples (Krivine 1996)

Completeness theorem of first-order classical logic :

A formula true in all models is provable.

Rigorous Formalization.

Intuitionistic proof.

Decompiler.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Outline

1 Introduction

2 Proofs as Programs
Proofs
Programs
Programming theorem
A few developments

3 Classical logic
The calculus
The reduction µ′

General system

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Proof and coding

Goal : Extending the previous system to classical logic.
(Parigot 1992)

Two rules :

Γ,¬B ` ⊥
Γ ` B

⊥i
Γ,¬A ` A
Γ,¬A ` ⊥

⊥e

Two codings :

Γ, α : ¬B ` M : ⊥
Γ ` µα.M : B

⊥i
Γ, α : ¬A ` M : A

Γ, α : ¬A ` [α]M : ⊥
⊥e

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Reduction rules

Definition

(λx .M)N .β M[x := N]

(µα.M)N .µ µα.M[[α]U := [α](U)N]

[α]µβ.M .ρ M[β := α]

µα.[α]M .θ M if α 6∈ FV (M)

µα.µβ.M .ε µα.Mβ

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Reduction rules

Definition
We write M .M ′ if M reduces to M ′ in one step of reduction.
We write M .∗ M ′ if M .M1 .M2 . · · · .Mk = M ′.

Theorem (Subject reduction)
If Γ ` M : T and M .∗ N , then Γ ` N : T .

Theorem (Confluence)

If M .∗ M1 and M .∗ M2, then ∃M ′ such that
M1 .

∗ M ′ and M2 .
∗ M ′.

Proof : Py (2001)
Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Normalization

Definition
A λµ-term that does not reduce is called normal form.
A λµ-term M is strongly normalizable, if there exists no
infinite reduction path out of M. That is, any possible
sequence of reductions eventually leads to a normal form.

Theorem (Strong Normalization)

If Γ ` M : T , then M is strongly normalizable.

Proof : Parigot (1997).

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Example 1 (Abort instruction)

x : ⊥, α : ¬X ` x : ⊥
x : ⊥ ` µα.x : X
` λx .µα.x : ⊥ → X

` λx .µα.x︸ ︷︷ ︸
A

: ∀X , {⊥ → X}

Lemma
We have ∀n ∈ IN, ∀M,M1, . . . ,Mn

(A)M M1 . . .Mn .∗ µα.M

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Example 2 (call/cc instruction)

x : ¬X → X , α : ¬X ` x : ¬X → X

x : ¬X → X , α : ¬X , y : X ` y : X
x : ¬X → X , α : ¬X , y : X ` [α]y : ⊥
x : ¬X → X , α : ¬X ` λy .[α]y : ¬X

x : ¬X → X , α : ¬X ` (x)λy .[α]y : X
x : ¬X → X , α : ¬X ` [α](x)λy .[α]y : ⊥

x : ¬X → X ` µα.[α](x)λy .[α]y : X
` λx .µα.[α](x)λy .[α]y : (¬X → X) → X

` λx .µα.[α](x)λy .[α]y︸ ︷︷ ︸
CC

: ∀X , {(¬X → X) → X}

Lemma
We have ∀n ∈ IN, ∀M,M1, . . . ,Mn

(CC)M M1 . . .Mn .∗ µα.[α](M)λy .[α](y)M1 . . .Mn

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Example 3 (Krivine 2005)

The smoker’s paradox : ∃x , ∀y , {F (x) → F (y)}.

There is a person such that if they smoke,
everyone else smokes too.

Classical proof.

Object-Oriented language instruction.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Example 3

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Example 4

Let Thm1 :

∀x1,∀x2, [U1(x1),U2(x2)→ R(x1) ∨ R(x2)] →

[∀y1, (U1(y1)→ R(y1))] ∨ [∀y2, (U2(y2)→ R(y2))]

Let P1 :

λf .µα.[α]λy .λz.(z)λx1.µα1.[α]λy ′.λz ′.(y ′)λx2.µα2.

((((f)x1)x2)λu.[α1]u)λv .[α2]v

Lemma
We have ` P1 : Thm1.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Example 5

∀n : IN,P(n) = ∀n, IN[n]→ P(n)

∃n : IN,P(n) = ∃n, IN[n] ∧ P(n)

n ≤ m = ∃k : IN,n + k = m.

Let Thm2 :

[∃M : IN, ∀n : IN, f (n) ≤ M] →

[∃m : IN, ∀k : IN, ∃k ′ : IN, (k ≤ k ′) ∧ (f (k ′) = m)]

We can find a λµ-term P2 such that ` P2 : Thm2.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Example 5

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Problem

Let θ = λf .λx .µα.[α](f)(f)µβ.[α](f)(f)(f)µδ.[β](f)(f)µγ.[β](f)x .

We have ` θ : IN[s3(0)].

We lose the property of unique integer representation.

How do we recognize the value of an integer?

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Solutions (Parigot 1993)

We can recognize the value of an integer using external
algorithms by locating the redundant part.

We can use storage operators to determine the value of an
integer :

((SO)θ)λx .x .∗ 3.

Add a new reduction rule µ′, which is the symmetry of the
reduction rule µ :

θ .∗ 3.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Outline

1 Introduction

2 Proofs as Programs
Proofs
Programs
Programming theorem
A few developments

3 Classical logic
The calculus
The reduction µ′

General system

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

The reduction µ′

Definition

(µα.M)N .µ µα.M[[α]U := [α](U)N]

(N)µα.M .µ′ µα.M[[α]U := [α](N)U]

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Problems

We lose the confluence of the system.

(µα.x)µβ.y .µ µα.x

(µα.x)µβ.y .µ′ µβ.y

We lose the subject reduction property.
Raffalli (2001)

We lose the strong normalization property.
Battyanyi (2007)

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Simply typed calculus (Battyanyi & Nour 2021)

In simply typed λµ-calculus (without ∀), we have :

The uniqueness of integer representation.

The subject reduction property.

The weak normalization property.

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Outline

1 Introduction

2 Proofs as Programs
Proofs
Programs
Programming theorem
A few developments

3 Classical logic
The calculus
The reduction µ′

General system

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Coding

Γ, x : A ` x : A
ax

Γ, x : A ` M : B
Γ ` λx .M : A → B

→i
Γ ` M : A → B Γ ` N : A

Γ ` (M)N : B
→e

Γ, α : ¬B ` M : ⊥
Γ ` µα.M : B

⊥i
Γ, α : ¬A ` M : A

Γ, α : ¬A ` [α]M : ⊥ ⊥e

Γ ` M : A[x]

Γ ` ?M : ∀x , A[x]
∀1

i
Γ ` M : A[X]

Γ ` ?M : ∀X , A[X]
∀2

i

Γ ` M : ∀x , A[x]

Γ ` !M : A[t]
∀1

e
Γ ` M : ∀X , A[X]

Γ ` !M : A[F]
∀2

e

Γ ` M : A[u] u = v
Γ ` M : A[v]

=

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Reduction rules

(λx .M)N .β M[x := N]

(µα.M)N .µ µα.M[[α]U := [α](U)N]

(N)µα.M .µ′ µα.M[[α]U := [α](N)U]

!?M .∀ M

[α]µβ.M .ρ M[β := α]

µα.[α]M .θ M if α 6∈ FV (M)

µα.µβ.M .ε µα.Mβ

Karim Nour Proofs and programs

Introduction
Proofs as Programs

Classical logic

The calculus
The reduction µ′

General system

Questions

1 The uniqueness of integer representation.

2 The subject reduction property.

3 The weak normalization property.

4 The algorithmic content of some mathematical proofs.

Karim Nour Proofs and programs

	Introduction
	Proofs as Programs
	Proofs
	Programs
	Programming theorem
	A few developments

	Classical logic
	The calculus
	The reduction '
	General system

