
Formal verification of logic programs:
foundations and implementation

Robert F. Stärk

Institute of Informatics, University of Fribourg
Rue Faucigny 2, CH–1700 Fribourg, Switzerland

Email: 〈robert.staerk@unifr.ch〉

Abstract. We present the theoretical foundations of LPTP, a logic pro-
gram theorem prover implemented in Prolog by the author. LPTP is an
interactive theorem prover in which one can prove termination and cor-
rectness properties of pure Prolog programs that contain negation and
built-in predicates like is/2 and call/n. The largest program that has
been verified using LPTP is 635 lines long including its specification.
The full formal correctness proof is 13128 lines long (133 pages). The
formal theory underlying LPTP is the inductive extension of pure Prolog
programs. This is a first-order theory that contains induction principles
corresponding to the definition of the predicates in the program plus
appropriate axioms for built-in predicates.

1 Introduction

There are several reasons that we have implemented an interactive theorem
prover for the verification of pure Prolog programs. First of all, we wanted to
show that results of [8,10,11] about the foundations of logic programming are
not only of theoretical interest. In the spirit of Apt [1] we wanted to show that
the results can be extended to a rather large subset of Prolog. Secondly, we
believe that if computer programs become bigger and more complex, it will be
inevitable that parts of it have to be formally verified. This is one possible way
to ensure that they work as they are supposed to do.

Why Prolog programs and not imperative programs? When we start to reason
about imperative programs, then soon we are on the low level where the state
of the system is given by the contents of the variables together with a pointer to
the program code that shows where the execution is at the moment. Formulas
describing relations between such states can be very complex.

The advantage of Prolog programs is their high level of abstraction. For
Prolog programs the state of a computation is given by the atom that is called,
i.e. it is of the form R(t1, . . . , tn). The predicate R corresponds to a pointer into
the code of the program and the terms t1, . . . , tn corresponds to the contents

Appeared in: S. Adian and A. Nerode, editors, Logical Foundations of Computer
Science LFCS ’97 — Logic at Yaroslavl, Russia. Springer Lecture Notes in Computer
Science 1234, pages 354–368, 1997.

1

Fred Mesnard

Fred Mesnard

Fred Mesnard

Fred Mesnard

of the registers. If we ask, for example, what can be reached from the state
R(t1, . . . , tn), then we just have to match this atom against the clauses of the
program. This shows, that for Prolog programs, formulas describing relations
between states of the computation are very close to the syntax of the program.

There are other reasons in favor of Prolog. For example, Prolog is both, a
specification language and a programming language. This means that one can
write specifications in Prolog as well as efficient algorithms. As a consequence,
correctness of Prolog programs can be reduced to equivalence of programs. One
just has to show that the specification program computes the same relation as
the implementation program.

Finally, there is a pragmatic reason to use Prolog. It is desirable that a theo-
rem prover for a certain programming language is implemented in the program-
ming language itself. For example, a theorem prover for Java programs should
be implemented in Java. Since proof-checking and proof-search of our theorem
prover is based on backtracking, it is natural to use a programming language
that provides backtracking for free. And Prolog is such a language.

The plan of this paper is as follows. In Section 2 we define a subset of Prolog
and describe a simple operational model for it. In Section 3 we introduce a first-
order theory that is computationally adequate with respect to the operational
model of Section 2. In Section 4 we give a short overview of LPTP. This is the
logic program theorem prover based on the theoretical results of Sections 2 and 3.
Section 5 finally illustrates how LPTP can be used to prove the correctness of
an algorithm for inserting elements in AVL trees.

There are essential differences between this article and the first-order theory
introduced in [12]. We are now working with general goals and not only with
sequences of literals. This makes it possible to treat built-in predicates in a
uniform and simple way. Mode assignments are no longer needed. Instead of it
we have a unary predicate gr in the formal language and are now able to treat
higher-order programs that use the call/n predicate.

2 Pure Prolog with negation and built-in predicates

Pure Prolog is a subset of Prolog. Which subset, however, is not always so clear.
Apt, for example, uses in [1] the term “pure Prolog” for Horn clause programs
when they are viewed as sequences of clauses. We use the term “pure Prolog”
for a larger subset which we define below. We include negation and built-in
predicates like integer/1, is/2, </2, and call/n. Even the term decomposition
predicates functor/3 and arg/3 are allowed. Predicates like var/1 which tests
during run-time whether a variable is bound are not included in pure Prolog.
Also the predicates assert/1 and rectract/1 which modify a program during
run-time are forbidden in pure Prolog. The cut operator (!) does not belong to
pure Prolog, since it destroys the lifting lemma. We assume that pure Prolog
performs the occurs check during unification.

Let L be a first-order language. The terms r, s, t of L are built up as usual
from variables x, y, z and constants c, d using function symbols f , g. The pred-

2

Fred Mesnard

Fred Mesnard

Fred Mesnard

Fred Mesnard

Fred Mesnard

icate symbols of L are divided into user-defined and built-in predicates. If R is
an n-ary predicate symbol of L then the expression R(t1, . . . , tn) is an atomic
goal of L. The atomic goal is called user-defined or built-in according to whether
the predicates symbol R is user-defined or built-in. Atomic goals are denoted by
A, B. The goals of L are

E,F,G ::= true | fail | s = t | A | F & G | F or G | notG | somexG.

The goal true is the goal that always succeeds; fail is the goal that always
fails. Equations s = t are solved by unification. Conjunction (&), disjunction
(or), and negation (not) are written in Prolog as (F,G), (F ;G), and \+ G. The
meaning of these connectives will be explained below in terms of an operational
semantics and later by a transformation of goals into formulas that contain the
logical connectives ∧, ∨ and ¬. Conjunction and disjunction are both associated
to the right. The goal E & F & G, for example, stands for E & (F & G). The
empty conjunction is identified with true; the empty disjunction corresponds to
the goal fail. A goal of the form G1 & . . . & Gn & true is called a query. It can
be considered as a finite list of goals. We use [G1, . . . , Gn] as an abbreviation
for the query G1 & . . . & Gn & true. The existential quantifier somexG binds
the variable x in the goal G. Existential quantification is implicit in Prolog. It
is explicit in extensions of Prolog like Gödel [7] and Mercury [9].

Free and bound variables in goals are defined as usual. We use the vector
notation x for a finite list x1, . . . , xn. We write G[x] to express that all free
variables of G are among the list x; G(x) may contain other free variables
than x. A goal or a term is called ground, if it does not contain free variables.

If A is a user-defined atomic goal and G is a goal then the expression A :-G
is called a clause with head A and body G. Let C be the clause

R(t1[y], . . . , tn[y]) :-G[y].

Then the definition form of C is defined to be the goal

DC [x1, . . . , xn] :≡ somey (x1 = t1[y] & . . . & xn = tn[y] & G[y]),

where y are fresh variables. The normal form of C is the clause

R(x1, . . . , xn) :-DC [x1, . . . , xn].

A program is a finite sequence of clauses. Let P be a program and R be a user-
defined predicate symbol such that the clauses for R in P are C1, . . . , Cm (in
this order). Then the definition form of R with respect to P is defined to be the
goal

DP
R [x] :≡ DC1 [x] or . . . or DCm [x].

The normalized definition of R in P is the clause R(x) :-DP
R [x].

Both, the definition form of a clause and the definition form of a user-defined
predicate are goals. Thus, from a theoretical point of view, one could as well de-
fine a logic program to be a function that assigns to every user-defined predicate
symbol R a goal DP

R [x] for some distinguished variables x.

3

Without general goals, a theory of built-in predicates would be rather ad-hoc,
since then every built-in predicate has to be treated in a different way. Using the
concept of goals, built-in predicates can be treated in a uniform way. Built-in
predicates can be modeled by a set D of built-in atomic goals and a function B
from D into the set of goals such that the following two conditions are satisfied:

(D) If A ∈ D then Aσ ∈ D for each substitution σ.
(B) B(Aσ) = B(A)σ for each A ∈ D and each substitution σ.

The idea is that D contains exactly those built-in atomic goals that can be
evaluated and do not report an error message because of type violations or
insufficient instantiation of arguments. The goal B(A) is then the result of the
evaluation of A. In most cases the goal B(A) is either the goal true or the goal
fail. In other cases B(A) can be an equation or a conjunction of equations.
D and B can also be understood as a foreign language interface. Given an

atom A from the set D some code in a foreign language, like for example C, is
called. B(A) is the result of the call. In order that Prolog can use the result, it
must be converted into a goal.

There is another possibility is to think of a built-in predicate R. It is given
by the (possibly infinite) collection of clauses R(t) :- B(R(t)) for R(t) ∈ D.

Example 1. The predicates integer/1, is/2, </2 and call/n satisfy conditions
(D) and (B):
integer(t) ∈ D :⇔ t is ground.

B(integer(t)) :=
{
true, if t is an integer constant;
fail, otherwise.

(t1 is t2) ∈ D :⇔ t2 is a ground arithmetic expression.

B(t1 is t2) := (t1 = n), where n is the value of t2 (as an integer).

(t1 < t2) ∈ D :⇔ t1 and t2 are ground arithmetic expressions.

B(t1 < t2) :=
{
true, if the value of t1 is less than the value of t2;
fail, otherwise.

call(s, t) ∈ D :⇔ s is a constant.

B(call(s, t)) := s(t).

Not all of the commonly used built-in predicates can be modeled this way. The
var/1 predicate, for example, violates condition (B).

Example 2. The var/1 predicate violates (B):
var(t) ∈ D :⇔ t is a term.

B(var(t)) :=
{
true, if t is a variable;
fail, otherwise.

Some multi-purpose, built-in predicates like functor/3 have to be decomposed
into their single components.

4

Fred Mesnard

Fred Mesnard

Fred Mesnard

Example 3. The components of functor/3 are decompose/3 and construct/3:
decompose(t1, t2, t3) ∈ D :⇔ t1 is not a variable.

B(decompose(f(r1, . . . , rn), s, t)) := (s = f & t = n̄).

construct(t1, t2, t3) ∈ D :⇔ t2 is a constant, 0 ≤ t3 ≤ 255.

B(construct(t, f, n̄)) := somex1, . . . , xn (t = f(x1, . . . , xn)).

arg(t1, t2, t3) ∈ D :⇔ t1 is an integer, t2 is not a variable.

B(arg(̄ı, f(s1, . . . , sn), t)) :=
{
t = si, if 1 ≤ i ≤ n;
fail, otherwise.

For example, we have

1. B(decompose(f(c, d), x, y)) = (x = f & y = 2),
2. B(construct(x, f, 2)) = some y, z (x = f(y, z)),
3. B(arg(f(c, d), 2, x)) = (x = d).

Given a program P , the set D and the function B, we can describe the evaluation
of goals as a transition relation between states of a computation. States are
defined in the following way:

An environment is a finite set of bindings {t1/x1, . . . , tn/xn} such that the
xi’s are pairwise different variables. It is not required that ti 6≡ xi (cf. [4]).

A frame consists of a query G and an idempotent environment η. Idempotent
means that if ti 6≡ xi then xi does not occur in t1, . . . , tn. Remember that a query
is a list of goals.

A frame stack consists of a (possibly empty) sequence 〈G1, η1; . . . ;Gn, ηn〉
of frames. The frames Gi, ηi are alternatives, also called choice points. The
query Gn together with the environment ηn is called the topmost frame of the
stack. Capital greek letters Φ, Ψ and Θ denote finite, possibly empty, sequences
of the form G1, η1; . . . ;Gn, ηn. Thus 〈Φ;G, η〉 denotes a stack with topmost frame
G, η.

A state of a computation is a finite sequence 〈Φ1〉 . . . 〈Φn〉 of frame stacks.
〈Φn〉 is called the topmost stack of the state. States are denoted by the capital
greek letter Σ. For a query G with free variables x1, . . . , xn let init(G) be the
state 〈G, {x1/x1, . . . , xn/xn}〉. There are three kinds of final states: yes(η), no
and error.

Definition 1. The transition rules of the query evaluation procedure are:

1. Σ 〈Φ; true & G, η〉 −→ Σ 〈Φ;G, η〉
2. Σ 〈Φ; fail & G, η〉 −→ Σ 〈Φ〉
3. Σ 〈Φ; s = t & G, η〉 −→ Σ 〈Φ;G, ητ〉 [if τ = mgu(sη, tη)]
4. Σ 〈Φ; s = t & G, η〉 −→ Σ 〈Φ〉 [if sη and tη are not unifiable]
5. Σ 〈Φ;R(t) & G, η〉 −→ Σ 〈Φ;DP

R [t] & G, η〉 [if R is user-defined]
6. Σ 〈Φ;A & G, η〉 −→ Σ 〈Φ;B(Aη) & G, η〉 [if A is built-in and Aη ∈ D]
7. Σ 〈Φ;A & G, η〉 −→ error [if A is built-in and Aη /∈ D]
8. Σ 〈Φ; (E & F) & G, η〉 −→ Σ 〈Φ;E & (F & G), η〉
9. Σ 〈Φ; (E or F) & G, η〉 −→ Σ 〈Φ;F & G, η;E & G, η〉

10. Σ 〈Φ; (E or F) & G, η〉 −→ Σ 〈Φ;E & G, η;F & G, η〉

5

Fred Mesnard

Fred Mesnard

11. Σ 〈Φ; (somexF) & G, η〉 −→ Σ 〈Φ;F{y/x} & G, η ∪ {y/y}〉 [where y is new]
12. Σ 〈Φ; (notF) & G, η〉 −→ Σ 〈Φ; (notF) & G, η〉 〈[F], η〉 [if Fη is ground]
13. Σ 〈Φ; (notF) & G, η〉 −→ error [if Fη is not ground]
14. Σ 〈Φ; (notF) & G, η〉 〈Ψ ; true, τ〉 −→ Σ 〈Φ〉
15. Σ 〈Φ; (notF) & G, η〉 〈〉 −→ Σ 〈Φ;G, η〉
16. 〈Φ; true, η〉 −→ yes(η)
17. 〈〉 −→ no

Remark 1. Rule 1 says that the goal true can be deleted. In 2, the goal fail
starts backtracking. This means that the topmost frame of the topmost stack
is popped. In 3 and 4, equations are solved by unification. If the unification is
successful, it changes the current environment; if the unification fails then back-
tracking starts. We assume that mgu(s, t) returns an idempotent most general
unifier if s and t are unifiable. Rule 5 and 6 deal with atomic goals. User-defined
predicates are replaced by their definition forms. Built-in predicates are replaced
by their built-in definitions provided that the necessary type conditions are sat-
isfied. Otherwise, in 7, built-in predicates report an error message. Rule 8 says
that the left goal is selected in a conjunction. This corresponds to a left-most goal
selection rule in standard terminology or to so-called LDNF-resolution (see [2]).
Rule 9 and 10 are nondeterministic. This is the only place where nondetermin-
ism occurs. To solve a disjunction E or F means either to solve first E and
then F or to solve first F and then E. In both cases, new frames are allocated.
Without rule 10 one obtains the deterministic evaluation procedure of Prolog.
In 11, existential quantified variables are standardized apart. The environment
is enlarged. The variable y must be chosen in such a way that is does not appear
free neither in the query (somexF) & G nor in the environment η. In 12, negated
goals start subcomputations. In order to process the goal notFη, the query [Fη]
is started in a subcomputation, provided that Fη is ground. Otherwise, in 13,
an error message is raised. Rule 14 and 16 deal with the cases where the query
of the topmost frame is the goal true; rule 15 and 17 deal with the cases where
the topmost stack is empty. Rule 14 says that if F succeeds then notF fails.
Rule 15 says that if F fails then notF succeeds. Rule 16 corresponds to a global
success and rule 17 to a global failure.

Definition 2. We say that

1. a query G succeeds with answer σ, if there exists a computation with initial
state init(G) and final state yes(η) such that σ is the restriction of η to the
variables of G;

2. a query G succeeds with answer including σ, if there exist substitutions
τ and θ such that G succeeds with answer τ and Gτθ ≡ Gσ;

3. a query G fails, if there exists a computation with initial state init(G) and
final state no;

4. a query G terminates, if all computations with initial state init(G) are finite
and do not end in error;

5. a query G is safe, if there exists no computation with initial state init(G)
and final state error.

6

Fred Mesnard

Fred Mesnard

Fred Mesnard

Fred Mesnard

Fred Mesnard

Fred Mesnard

If a query is safe then during a computation all negative goals goals are ground at
the time when they are processed and all built-in atoms belong to D when they
are called. We have defined termination in such a way that it includes safeness.
If a goal terminates then it is safe. Note, that termination means universal ter-
mination. For Prolog-like systems this means that one can hit the semicolon key
a finite number of times until one finally obtains the message no more solutions.

Practice shows that most goals are terminating in this sense (cf. [1]). Also our
experience with the LPTP theorem prover supports this fact. We loose nothing if
we restrict our attention to terminating goals only. However, given a program P
and a goal G we have to prove that the goal G is terminating. This can be done,
for example, using the method of Apt and Pedreschi in [2] by guessing a level
mapping for atoms and a model of the program and showing that the program
is acceptable with respect to the level mapping and the model. Another method
which we present here is to use an appropriate first-order theory with induction.
This theory is called the inductive extension of pure Prolog programs and is
implemented in the interactive theorem prover LPTP.

3 The inductive extension of pure Prolog programs

The inductive extension of a logic program P is, roughly speaking, Clark’s com-
pletion of a logic program (cf. [3]) plus induction along the definition of the
predicates. However, there are essential differences. For instance, the inductive
extension is consistent for arbitrary programs. This is not the case for Clark’s
completion. We can prove termination of predicates in the inductive extension.
This is not possible in Clark’s completion.

The inductive extension is formulated in a language L̂ which is obtained
from L in the following way. For each predicate symbol R of L we take in L̂
three predicates symbols Rs, Rf and Rt of the same arity as R. The intended
meaning of these predicates is that they express success, failure and termination
of R. L̂ contains in addition a special unary predicate gr which expresses that
an object is ground. The syntactic objects of L̂ are called formulas. They are

ϕ, χ, ψ ::= > | ⊥ | s = t | S(t) | ϕ ∧ ψ | ϕ ∨ ψ | ¬ϕ | ϕ→ ψ | ∀xϕ | ∃xϕ,

where S denotes any predicate symbol of L̂. We write s 6= t for ¬(s = t).
The meaning of formulas is given by the first-order predicate calculus of

classical logic. By an L̂-theory we mean a (possibly infinite) collection T of
formulas of L̂. We write T ` ϕ to express that the formula ϕ can be derived
from the L̂-theory T by the usual rules of predicate logic with equality.

For the declarative semantics of logic programs we need three syntactic oper-
ators S, F and T which transform goals of the language L into positive formulas
of L̂. The operators S, F and T are not part of the language. They are defined
notions. SG is read: G succeeds; FG is read: G fails; TG is read: G terminates

7

Fred Mesnard

Fred Mesnard

Fred Mesnard

Fred Mesnard

and is safe. The operator have the following definitions:

S true :≡ >, F true :≡ ⊥,
S fail :≡ ⊥, F fail :≡ >,
S s = t :≡ s = t, F s = t :≡ s 6= t,

SR(t) :≡ Rs(t), FR(t) :≡ Rf(t),

S(G & H) :≡ SG ∧ SH, F(G & H) :≡ FG ∨ FH,

S(G or H) :≡ SG ∨ SH, F(G or H) :≡ FG ∧ FH,

S somexG :≡ ∃xSG, F somexG :≡ ∀xFG,

S notG :≡ FG, F notG :≡ SG,

T true :≡ >, T(G & H) :≡ TG ∧ (FG ∨TH),

T fail :≡ >, T(G or H) :≡ TG ∧TH,

T s = t :≡ >, T somexG :≡ ∀xTG,

TR(t) :≡ Rt(t), T notG :≡ TG ∧ gr(G).

In this definition special attention require only the cases T(G & H), T(G or H)
and T notG. The other cases are as one would expect. The definition of T(G &
H) reflects the fact that a goal G & H terminates if, and only if,

(a) G terminates, and
(b) G fails or H terminates.

The definition of T(G or H) shows that termination has to be understood as
universal termination. The goal G or H terminates if, and only if, both branches
G and H terminate.

The definition of T notG is the essential difference between the T operator
here and the T (resp. L) operator in [10] and [12]. There, T notG is simply
defined as TG. Here, we require in addition that G is ground using the operator
gr which is defined as follows:

gr(true) :≡ >, gr(G & H) :≡ gr(G) ∧ gr(H),

gr(fail) :≡ >, gr(G or H) :≡ gr(G) ∧ gr(H),

gr(s = t) :≡ gr(s) ∧ gr(t), gr(somexG) :≡ ∃x gr(G),

gr(R(t1, . . . , tn)) :≡ gr(t1) ∧ . . . ∧ gr(tn), gr(notG) :≡ gr(G).

What we want is that for a goal G with free variables x1, . . . , xn the following
is true:

(∗) gr(G)↔ gr(x1) ∧ . . . ∧ gr(xn).

It is not possible to take this as a definition of gr(G) directly, since then we would
loose the substitution property that (TG)σ ≡ T(Gσ) for each substitution σ.
We will see that in the inductive extension of a logic program (∗) will be provable.

8

Fred Mesnard

Fred Mesnard

Fred Mesnard

Fred Mesnard

Definition 3. The inductive extension of P , IND(P), comprises the following
axioms:

I. The axioms of Clark’s equality theory CET:

1. f(x1, . . . , xm) = f(y1, . . . , ym)→ xi = yi [if f is m-ary and 1 ≤ i ≤ m]
2. f(x1, . . . , xm) 6= g(y1, . . . , yn) [if f is m-ary, g is n-ary and f 6≡ g]
3. t 6= x [if x occurs in t and t 6≡ x]

II. Axioms for gr:

4. gr(c) [if c is a constant]
5. gr(x1) ∧ . . . ∧ gr(xm)↔ gr(f(x1, . . . , xm)) [if f is m-ary]

III. Uniqueness axioms (UNI):

6. ¬(Rs(x) ∧Rf(x))

IV. Totality axioms (TOT):

7. Rt(x)→ Rs(x) ∨Rf(x)

V. Fixed point axioms for user-defined predicates R:

8. SDP
R [x]↔ Rs(x), FDP

R [x]↔ Rf(x), TDP
R [x]↔ Rt(x)

VI. Fixed point axioms for built-in, atomic goals A ∈ D:

9. SB(A)↔ SA, FB(A)↔ FA, TB(A)↔ TA.

VII. True axioms for built-in predicates: We will explain below what we
mean by that.
VIII. The simultaneous induction scheme for user-defined predicates:
Let R1, . . . , Rn be user-defined predicates and let ϕ1(x1), . . . , ϕn(xn) be L̂ for-
mulas such that the length of xi is equal to the arity of Ri for i = 1, . . . , n.
Let

closed(ϕ1(x1)/Rs
1, . . . , ϕn(xn)/Rs

n)

be the formula obtained from

∀x1(SDP
R1

[x1]→ Rs
1(x1)) ∧ . . . ∧ ∀xn(SDP

Rn [xn]→ Rs
n(xn))

by replacing simultaneously all occurrences of Rs
i(t) by ϕi(t) for i = 1, . . . , n and

renaming the bound variables when necessary. Let

sub(ϕ1(x1)/Rs
1, . . . , ϕn(xn)/Rs

n)

be the formula

∀x1(Rs
1(x1)→ ϕ1(x1)) ∧ . . . ∧ ∀xn(Rs

n(xn)→ ϕn(xn)).

Then the simultaneous induction axiom is the formula

closed(ϕ1(x1)/Rs
1, . . . , ϕn(xn)/Rs

n)→ sub(ϕ1(x1)/Rs
1, . . . , ϕn(xn)/Rs

n).

9

Fred Mesnard

Remark 2. I. Clark’s equality theory CET is needed for the formalization of
unification.

II. The predicate gr is used to express that a term is ground. If gr(t) is
provable from IND(P), then t is ground. We assume that the language contains
at least one constant symbol.

III. From the uniqueness axioms (UNI) one can immediately derive the prin-
ciple ¬(SG ∧ FG) for arbitrary goals G.

IV. From the totality axioms (TOT) one can derive TG → SG ∨ FG for
each goal G.

V. The fixed point axioms for user defined-predicates express that one can
read a clause both, from body to head, but also from head to body.

VI. In the fixed point axioms for built-in predicates it is important that A
belongs to D. Otherwise, B(A) is not defined.

VII. For example, the following axioms for built-in predicates are true:

1. ∀x1, x2, y (Sx1 is y ∧ Sx2 is y → x1 = x2).
2. ∀x (gr(x)↔ T integer(x)).
3. ∀x(S integer(x)→ Fx < x).
4. ∀x1, x2, y1, y2 (Sx1 is y1 ∧ Sx2 is y2 → (Sx1 < x2 ↔ S y1 < y2)).
5. ∀x, y, z(S integer(x)∧S integer(y)∧S integer(z)∧Sx < y ∧S y < z →

Sx < z).

Note, that axioms like x = 7 ↔ S(x is 3 + 4) are included in the fixed point
axioms VI. The full version of this article [14] contains an exact definition of
what it means that an axiom is true.

VIII. The simultaneous induction scheme expresses the minimality of the Rs

predicates. Note, that the formulas SDP
R are positive. Informally, the induction

scheme says that one can use induction along the definition of the predicates.
For example, for the append/3 and the list/1 predicate we have the following
rules:

∀` ϕ([], `, `)
∀x, `1, `2, `3 (S append(`1, `2, `3) ∧ ϕ(`1, `2, `3)→ ϕ([x|`1], `2, [x|`3]))

∀`1, `2, `3 (S append(`1, `2, `3)→ ϕ(`1, `2, `3))

ϕ([]) ∀x, ` (S list(`) ∧ ϕ(`)→ ϕ([x|`]))
∀` (S list(`)→ ϕ(`))

The predicates list/1 and append/3 have their standard definitions:

list([]). append([], `, `).

list([x|`]) :- list(`). append([x|`1], `2, [x|`3]) :- append(`1, `2, `3).

The expression [] denotes a constant for the empty list and [·|·] is a binary
function symbol for constructing list.

10

Fred Mesnard

Fred Mesnard

Fred Mesnard

Fred Mesnard

Fred Mesnard

Fred Mesnard

Fred Mesnard

The inductive extension is related to Clark’s completion and Kunen’s three-
valued completion in the following way. Let (FIX) be the collection of the fixed-
point axioms for the Rs and Rf relations. Then (CET)+(UNI)+(FIX) is equiv-
alent to Kunen’s three-valued completion of [8]. Moreover, Clark’s completion
of [3] can be obtained from the three-valued completion be adding the stronger
totality axiom Rs(t) ∨Rf(t).

Example 4. The simultaneous induction scheme is more natural for logic pro-
grams than structural induction on the Herbrand universe. Assume that the
language L has exactly one constant symbol c and one unary function symbol f .
In this case, induction on the universe is the scheme

(∗∗) ϕ(c) ∧ ∀x (ϕ(x)→ ϕ(f(x))→ ∀xϕ(x).

Let P be the program with the two clauses q :- r(x) and r(f(x)) :- r(x). Using
induction on the universe (∗∗) for ϕ(x) :≡ T r(x) and the fixed point axioms

∀xT r(x)↔ T q and ∀y(x = f(y)→ T r(y))↔ T r(x)

one can easily derive ∀xT r(x) and hence T q. But the goal q does not terminate
under query evaluation. Therefore, induction on the universe is not appropriate
for our purposes. We want that TG is provable if, and only if, G terminates.

Proofs of the following two theorems can be found in the full version of this
paper [14]. They use ideas from [8] and [11].

Theorem 1 (Soundness).

1. If G terminates, then IND(P) ` TG.
2. If G succeeds with answer σ, then IND(P) ` SGσ.
3. If G fails, then IND(P) ` FG.

In the proof of this theorem the full power of the inductive extension is not
used. Only CET and the directions from left to right in the fixed point axioms
are needed.

Theorem 2 (Adequacy).

1. If IND(P) ` TG, then G terminates.
2. If IND(P) ` TG ∧ SGσ, then G succeeds with answer including σ.
3. If IND(P) ` TG ∧ FG, then G fails.

This theorem is not trivial, since the term model in which Rt(t) is true iff R(t)
terminates is, in general, not a model of the inductive extension (cf. Example 4).
Note, that the theorem implies, for example, the following existence property:

Corollary 1. If IND(P) ` S(somexG[x]) ∧ T(somexG[x]) then there exists a
term t such that the goal G[x] succeeds with answer {t/x} and IND(P) ` SG[t].

11

Fred Mesnard

Fred Mesnard

Fred Mesnard

It is important to note, that from the provability of TG if follows not only that
all computations forG terminate but also that there are no errors in calls of built-
in predicates during the computation. There is an interesting analogy between
the T operator and the logic of partial terms (cf. eg. [5,6]). In the logic of partial
terms the expression t↓ means that the functional program t terminates and that
during the evaluation there are no type conflicts, i.e. the program is dynamically
well-typed. The meaning of TG is similar. It means that the evaluation of the
goal G terminates and that there are no error messages caused by non-ground
negative goals or wrongly typed built-in atomic goals.

The next theorem is proved in [13] using standard methods like partial cut-
elimination for infinitary systems and asymmetric interpretations.

Theorem 3. Without built-in predicates, IND(P) has the same proof-theoretic
strength as Peano Arithmetic.

From the proof of this theorem in [13] one could extract a program P with a
distinguished predicate symbol R such that the true formula

∀x(S list(x)→ TR(x))

is not provable in IND(P). The reason that the formula is not provable is that
the computation tree for R(`) grows too fast compared to the length of the list `.
In practice, however, such programs do not occur.

4 LPTP — a logic program theorem prover

In this section we give a short overview of LPTP, an interactive theorem prover
which is based on the inductive extension of pure Prolog programs. LPTP is a
proof refinement system that allows a user to construct formal proofs interac-
tively. The user can generate proofs deductively from the assumptions forwards
to the goal or goal directed backwards from the goal to the axioms. LPTP has
the ability to search for proofs automatically. In the simplest case, LPTP just
finds the name of a lemma that can be used at a certain point in a proof. In
the best case, LPTP finds complete proofs. In general LPTP can complete au-
tomatically small gaps in proofs that require not more than, say, 10 steps. For
the rest of the proof LPTP has to be guided by the user.

LPTP consists of 6500 lines of Prolog code. It runs in CProlog, Quintus
Prolog, and SICStus Prolog under Unix. LPTP has a graphical user interface in
the Gnu Emacs Editor. For example, the user can double-click on a quantifier
and the whole scope of the quantifier is highlighted. LPTP generates TEX and
HTML output.

The kernel of LPTP is written in exactly the fragment of Prolog that can
be treated in LPTP. This means that LPTP uses no single cut. Moreover, it is
possible to prove properties of LPTP within LPTP.

The largest program we have verified with LPTP is 635 lines long. It is a
parser for standard ISO Prolog. The 635 lines comprise not only the implemen-
tation but also the specification of the parser. The correctness proof includes

12

Fred Mesnard

Fred Mesnard

Fred Mesnard

Fred Mesnard

theorems like the following: if a parse tree is transformed into a token list (using
write) and the token list is parsed back into a parse tree (using read), then this
parse tree is identical to the original one.

The fully formalized correctness proof for the ISO Prolog parser is 13000
lines long. So we have a factor of 20 for the full verification of this example
program. LPTP is able to check the whole proof (133 pages) in 99.2 seconds on
a Sun SPARCstation. This speed, however, says not much about LPTP, since
it is much more important how fast a user can create proofs using the system.
A skilled user can generate more than 1000 lines of formal proofs in one day.
Altogether we have generated 25000 lines of formal proofs with LPTP.

5 En example proof in LPTP

As an example, we now sketch a proof of an algorithm that inserts elements into
AVL trees. AVL trees are ordered binary trees. They are subject to the Adelson-
Velskii-Landis balance criterion: A tree is balanced iff for every node the heights
of its two subtrees differ by at most 1. Our Prolog version of the algorithm is
generic in two predicates a/1 and r/2. The idea is that r/2 is a total ordering on
the set a/1. In fact, we only need that a/1 and r/2 satisfy the following axioms:

1. ∀x, y, z(S a(x) ∧ S a(y) ∧ S a(z) ∧ S r(x, y) ∧ S r(y, z)→ S r(x, z))
2. ∀x, y(S a(x) ∧ S a(y)→ S r(x, y) ∨ S r(y, x))
3. ∀x, y(S a(x) ∧ S a(y)→ T r(x, y)
4. ∀x(S a(x)→ gr(x)).

Axiom (1) says that r/2 is transitive on a/1; (2) says that r/2 is total on a/1;
(3) says that r/2 terminates on a/1; (4) says that a/1 contains only ground
terms.

The algorithm is coded as predicate addavl/3. If x is a value of a/1 and t1 is
an AVL tree then addavl(x, t1, t2) inserts x into t1 and returns the result in t2.

The empty tree is represented as t. A tree with value x, left subtree ` and
right subtree r is represented as t(x, b, `, r); b is the difference of the height of r
and the height of `; b can be -1, 0 or 1.

For the specification of the correctness of the algorithm we need the predi-
cates avl/1 and in/2. The predicate avl(t) expresses that (i) t is a tree with
values x belonging to a/1; (ii) t satisfies the Adelson-Velskii-Landis balance cri-
terion; (iii) t is ordered, i.e. in a node t(x, b, `, r), x is an upper bound of the
elements of ` and a lower bound of the elements of r with respect to the order-
ing r/2. The predicate in(x, t) expresses that the value x occurs in the tree t.

Correctness of the algorithm can be expressed by the following formulas:

1. ∀x, t1, t2(S a(x) ∧ S avl(t1) ∧ S addavl(x, t1, t2)→ S avl(t2)).
2. ∀x, t1, t2(S addavl(x, t1, t2)→ S in(x, t2)).
3. ∀x, y, t1, t2(S addavl(x, t1, t2) ∧ S in(y, t1)→ S in(y, t2)).
4. ∀x, y, t1, t2(S addavl(x, t1, t2) ∧ S in(y, t2)→ y = x ∨ S in(y, t1)).
5. ∀x, t1, t2(S a(x) ∧ S avl(t1)→ T addavl(x, t1, t2)).

13

Fred Mesnard

Fred Mesnard

Fred Mesnard

Fred Mesnard

Fred Mesnard

Fred Mesnard

6. ∀x, t1(S a(x) ∧ S avl(t1)→ ∃t2(S addavl(x, t1, t2))).

The formulas mean the following:

1. If we insert an element into an AVL tree, then the new tree we get is also
an AVL tree.

2. If we insert an element in an AVL tree, then the added element is an element
of the new AVL tree.

3. If we add an element to an AVL tree containing y, then the new AVL tree
also contains y.

4. If we add an element x to an AVL tree, and if the new AVL tree contains y,
then y is the element x we just added, or y was already in the initial AVL
tree.

5. The algorithm terminates for appropriate inputs.
6. The algorithm is complete. It can insert elements into arbitrary AVL trees.

The algorithm addavl/3 together with the predicates used in the specification
is 137 lines long. The formal correctness proof of formulas 1–6 is 2903 lines long.
It has been created by Patrik Fuhrer and Rene Lehmann and is part of the
distribution of LPTP.

References

1. K. R. Apt. From Logic Programming to Prolog. International Series in Computer
Science. Prentice Hall, 1996.

2. K. R. Apt and D. Pedreschi. Reasoning about termination of pure Prolog programs.
Information and Computation, 106(1):109–157, 1993.

3. K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 293–322. Plenum Press, New York, 1978.

4. S. K. Debray and P. Mishra. Denotational and operational semantics for Prolog.
J. of Logic Programming, 5(1):61–91, 1988.

5. S. Feferman. Logics for termination and correctness of functional programs. In
Y. N. Moschovakis, editor, Logic from Computer Science, pages 95–127, New York,
1992. Springer-Verlag.

6. S. Feferman. Logics for termination and correctness of functional programs, II.
Logics of strength PRA. In P. Aczel, H. Simmons, and S. S. Wainer, editors, Proof
Theory, pages 195–225. Cambridge University Press, 1992.

7. P. M. Hill and J. W. Lloyd. The Gödel Programming Language. The MIT Press,
1994.

8. K. Kunen. Signed data dependencies in logic programs. J. of Logic Programming,
7(3):231–245, 1989.

9. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury, an
efficient purely declarative logic programming language. J. of Logic Programming,
29(1–3):17–64, 1996.

10. R. F. Stärk. The declarative semantics of the Prolog selection rule. In Proceedings
of the Ninth Annual IEEE Symposium on Logic in Computer Science, LICS ’94,
pages 252–261, Paris, France, July 1994. IEEE Computer Society Press.

11. R. F. Stärk. Input/output dependencies of normal logic programs. J. of Logic and
Computation, 4(3):249–262, 1994.

14

Fred Mesnard

Fred Mesnard

12. R. F. Stärk. First-order theories for pure Prolog programs with negation. Archive
for Mathematical Logic, 34(2):113–144, 1995.

13. R. F. Stärk. The finite stages of inductive definitions. In P. Hájek, editor,
GÖDEL’96. Logical Foundations of Mathematics, Computer Science and Physics
— Kurt Gödel’s Legacy, pages 267–290, Brno, Czech Republic, 1996. Springer-
Verlag, Lecture Notes in Logic 6.

14. R. F. Stärk. The theoretical foundations of LPTP (a logic program theorem
prover). J. of Logic Programming, 36(3):241–269, 1998.

LPTP is available on the WWW from:
http://www.inf.ethz.ch/~staerk/lptp/lptp-1.06.tar.gz

Further information on LPTP can be found at:
http://www.inf.ethz.ch/~staerk/lptp.html

15

http://www.inf.ethz.ch/~staerk/lptp/lptp-1.06.tar.gz
http://www.inf.ethz.ch/~staerk/lptp.html

	Formal verification of logic programs: foundations and implementation

