Réunion Island, 13/4/2023

An Overview of
Blockchain Technology

fausto.spoto@univr.it

@ https://github.com/spoto/blockchain-course

Fausto Spoto Universita di Verona, ltaly - 1 /135

https://github.com/spoto/blockchain-course

© Introduction
@ Bitcoin

© Proof of work
@ Ethereum

© Smart contracts
@ Tendermint

@ Hotmoka + Takamaka

Fausto Spoto Universita di Verona, ltaly - 2 /135

Introduction

Fausto Spoto Universita di Verona, ltaly - 3 /135

The mainstream view of blockchain

How a 26-Year-Old College Dropout i ini
Makes $15,000 a Month \?Vith Birthoin Meet the bItCOII'I mvestors WhO

and Cryptocurrency Without got insanely rich off crypto
Breaking a Sweat By Suzy Weiss January 13,2021 | 723pm 1| Update
By Marc Thomson Published on February 16, 2021, Finar lex.co

Fausto Spoto Universita di Verona, ltaly - 4 /135

1988 proof of work (Dwork & Naor)

1991 a cryptographically secure chain of blocks (Haber & Stornetta)
199x smart contracts (Szabo)

2008 Bitcoin (Nakamoto)

2012 proof of stake (Peercoin)

2013 Ethereum (Buterin & Wood)

2014 proof of space (Burstcoin/Signum)

2014 Tendermint generic proof of stake engine (Kwon)

2022 Ethereum 2.0 moves to proof of stake

Fausto Spoto Universita di Verona, ltaly - 5 / 135

Distributed network

Centralized vs Decentralized vs Distributed Network: An Overview

Centralized Network Decentralized Network Distributed Network
All the nodes are connected No single authority server Every node is independent
under a single authority controls the nodes, they all and interconnected with

have individual entity each other

e 101 Blockchain

Created by 101blockchains.com

Fausto Spoto Universita di Verona, ltaly - 6 / 135

Cryptocurrencies

Bitcoin BTC

4 Ethereum ETH

Binance Coin ENE

@ Tether usoT

® Polkadot DOT

& Cardano ADA

D xre e

@ vitecoin L1C

@ chainlink LNk

Bitcoin Cash BCH

€43,439.39

€1,590.21

€215.69

€0.8232

€26.79

€0.7630

€0.4433

€191.53

€591m

~1.78%

~1.60%

~39.28%

v 0.04%

~1.70%

v0.87%

v 0.24%

-0.26%

11.96%

~9.73%

4106.89%

¥ 0.10%

~2814%

40.49%

~26.86%

~23.29%

~34.87%

€811,654,732,050

€182,490,495,147

€32,922,693,592

€27,608,853,121

€24,343,111,959

€23,662,518,973

€20123,554,344

€12,730,944,343

€11,386,121,071

€11,009,352,859

€45,070,079,455
1,034,656 BTC

€21,692,262,865
13,638,149 ETH

€9,229,311,959
43320613 BNB

€86,517,646,829
105,076,438,643 USDT

€2,126,956,641
79,458,749 DOT

€3,853,459,801
5,066,692,562 ADA

€4,449,941,491
10,040,237.796 XRP

€6,268,248,742
32,751917 LTC

€1,672,730,305
59,793,604 LINK

€3,793,957,459
6,430,233 BCH

18,632,831 BTC

114,733,656 ETH

154,532,785 BNB

33,531,193,546 USDT

909,408,867 DOT

311112,484,646 ADA

45,404,028,640 XRP

66,519,829 LTC

407,009,556 LINK

18,659,331 BCH

[RATASTINS

na, ltaly

7/135

Bitcoin chart

2020 Jun 2021 Jun 2022 Jun 2023 uso

Fausto Spoto Universita di Verona, ltaly - 8 / 135

Bitcoin capitalization (2018)

Putting the World’s Money into Perspective

Bill
Jeff Bitcoin gates
All Bezos
Cryptocurrencies

Amazon

usDin Apple
Circulation

Gold

Market Cap y a @ $90B
Physical I $1128
Stock Money? . ‘ $1128

All _ Markets $ 52028

$970B
$1.5T
$7.8T

17th, 2018

* All Money = money in any form including bank or other
deposits as well as notes and coins

by bank

2Phisical Money = money in forms that can be used as a medium
of exchange, generally notes, coins, and certain balances held
s,

how
source: HowMuch.net, a financial literacy website
Fausto Spoto

net

Universita di Verona, ltaly -

9 /135

HowMuch.net

Credit cards transactions (billions, 2018) vs Bitcoin

UnionPay
Mastercard

Visa: around 451,639,000 transactions per day
UnionPay: around 268,579,000 transactions per day
Mastercard: around 246,448,000 transactions per day

Bitcoin: around 300,000 transactions per day

Fausto Spoto Universita di Verona, Italy - 10 / 135

Bitcoin transaction fees

50.00

=]
wn
=

20N 2022 2023

Independent from the transacted value

Fausto Spoto Universita di Verona, ltaly - 11 / 135

Credit cards transaction fees

Average credit card interchange fees

Payment network Interchange fee range
Visa 1.15% + $0.05 to 2.40% + $0.10
Mastercard 1.15% + $0.05 to 2.50% + $0.10
Discover 1.40% + $0.05 to 2.40% + $0.10
American Express 1.43% + $0.10 to 3.15% +$0.10

Sources: Visa USA Interchange Reimbursement Fees published on April 13, 2019, Mastercard 2019-2020 U.5. Region Interchange Program and Rates, and Wells Fargo Payment Network

Proportional to the transacted value

Fausto Spoto rsita di Verona, ltaly - 12 / 135

The hype cycle

AVISIBILITY

Peak of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

‘ Technology Trigger TIME

\

Fausto Spoto Universita di Verona, ltaly - 13 / 135

Beyond the hype

Applications Of Bloc

r=Ta
@

Digital IDs Bitcoin

Internet of Things

Real estate

< 1)
G@%c‘&% &

Online music Banking

Fausto Spoto Universita di Verona, ltaly - 14 / 135

Bitcoin

Fausto Spoto iversita di Verona, ltaly -

The internet of money

What we expect from money

@ money should be protected from counterfeiting (legality)

money should not be spent twice (uniqueness)
no one can claim that my money belongs to him (ownership)

money should be untained (fungibility)

money should be movable (liquidity)

Electronic money exists since decades (credit cards, online transactions)

Bitcoin provides a fully decentralized electronic cash system, for the first
time (a single State cannot shut down the bitcoin network) J

“Bitcoin: A Peer-to-Peer Electronic Cash System” by Satoshi Nakamoto,
2008

Fausto Spoto Universita di Verona, ltaly - 16 / 135

The best reference

Mastering

Bitcoin

PROGRAMMING TH HAIN

Andreas M. Antonopoulos

https://github.com/bitcoinbook/bitcoinbook

Fausto Spoto Universita di Verona, ltaly - 17 / 135

https://github.com/bitcoinbook/bitcoinbook

Bitcoin as a web service

|

.

N — B

- {)

Browser on Internet
users

computer Web server

The server keeps a map (ledger) user_id = balance and accepts
transactions to transfer balances

Users interact through a browser (wallet) to ask to transfer balances

The server is actually a worldwide peer-to-peer (p2p) network of computers

Fausto Spoto Universita di Verona, ltaly - 18 / 135

Mobile wallets

At the first start-up, a bitcoin address is created for you, then transactions
from/to that address are tracked:

ACCOUNTS BALANCE TRANSACTIONS

Send O] Receive

Exchange rate not available for Kraken

Buy / Sell Bitcoin

The address can be seen as our IBAN. Its creation is a local operation that
does not do anything on the network: fully anonymous

Fausto Spoto Universita di Verona, ltaly - 19 / 135

Address creation

When Alice’s wallet starts for the first time:

o

2]

it generates a finite sequence of bits through a secure random
generator (a secret private key)

it computes the bitcoin address as an abstraction of the private key
(hashing)

it shows the bitcoin address as an alphanumeric string and as a
picture (QR code)

the address is not sensitive information: Alice can publish it in her
web page
the private key is sensitive information: Alice keeps it secret

e a hardware wallet stores it in its internal memory

o a desktop wallet stores it in Alice’s computer’s file system (1)
o a mobile wallet stores it in Alice's phone (!!!)

o

Fausto Spoto Universita di Verona, Italy - 20 / 135

Alice charges her wallet with a transaction

o
(]
()
(]
(]

What is the price?

she asks a friend to send bitcoins to her address
meets a bitcoin seller in person
earns bitcoin by working

uses a bitcoin ATM

uses a bitcoin currency exchange company

It is not set by the computer network! It's a social agreement, the average
of the last sell operations. You can look online for it

Fausto Spoto Universita di Verona, ltaly - 21 / 135

Transactions form a chain, outputs can be change

Transaction 7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18

INPUTS From OUTPUTS To
Fun e kbl g A e G0N gt
Transaction Fees: 0.0000 BTC
Transaction 0627052b6f28912f2703066a912ea577f2ce4dajeda5a5fhd8a57286c345c22
INPUTS From OUTPUTS To
:7557-213§fe-64f-SOHKl3:tde-76383-a2;8530-d8-14§a4-1dgéaisgtsg)aé?zsa-%;mﬁs- o': .(_)qu_ut_#ﬁ B-oE’s_A?i dress " T 0 0TS0 8TC (_sp_eth)_:
e e SEER S o) it BT ATGES AT (change) 0.0845 BTC (anspent)
0.0005 BTC
Transaction 2bbac8bb3a57a2363407ac8¢16a67015ed2e88 8af58cf90299e0744d3ded
oo INPUSFrOM___ __ ________ OUTPUTS To
.oez7oszbsfzs91§fég)soeea91zea577f2ce4da4caa5a5fhdsa57zsac345c2fz 01 Output #0 Gopesh's Address 0.0100 BTC (unspent)
[T ==~ ~==== =TT =- q Output #1Bob’s Address (change) 0.0045 BTC (unspent)
Transaction Fees: 0.0005 BTC

Fausto Spoto Universita di Verona, ltaly - 22 / 135

Typical transaction: pay somebody and gets the change

Common Transaction
Qutput 0
“To Bob”
Input 0
“From Alice,
signed by
Alice”
Qutput 1
“To Alice”
(change)

Fausto Spoto

Universita di Verona, ltaly - 23 / 135

Typical transaction: aggregate small notes into a larger one

Aggregating Transaction

Input 0

Input 1

[nput 2

InputN

Output 0

Fausto Spoto

Universita di Verona, ltaly -

24 / 135

Typical transaction: distribution

Distributing Transaction

Output 0

Output 1

Input 0

Output 2

QutputN

Fausto Spoto Universita di Verona, ltaly - 25 / 135

A DAG of transacti

ons

Tx1 ™3
(| imput0 | | | inputo |
10kS _
™0 output0 w| inputl |
................. 40ks ||
outputt | outputo p
G |
output0 |/
outputl s Tx2 Tx4
[inputo | | [inputo |
gmoks /
output0 output0

I outputl |=

srsp UTXO
— TXO

value in Satoshis

‘ output0 - --b

Fausto Spoto

Universita di Verona, ltaly -

How Alice's wallet prepares a transaction

© Alice's wallet keeps a list of all known unspent outputs for the address
of Alice

e if it does not know it, it can query the bitcoin network through an API

@ the wallet selects a subset inputs of the unspent outputs, enough to
cover the amount of the transaction and signs to prove she's their
owner

e any strategy can be applied here

© the wallet specifies an output for the destination address of the
transaction and the amount > 0 sent to that output

@ the wallet specifies a second output, normally Alice’'s address itself,
and the change > 0 sent back to Alice

© the difference
fee = Z inputs — amount — change > 0

is the network’s reward (and protection) for processing the transaction

Fausto Spoto Universita di Verona, ltaly - 27 / 135

How Alice sends the transaction

@ Alice’s wallet sends the bytes of the transaction to a node of the
bitcoin p2p network

@ the transaction gets forwarded among all peers (flooding)

© the wallet of the destination will very soon see a transaction for its
address and can assume that it will eventually be processed
(unconfirmed transaction)

Q eventually, around 10 minutes later, the transaction will be processed
by the network and the wallet of the destination will notice that
(confirmed transaction)

@ after some time, around one hour, the transaction can be considered
as definitively processed (finalized transaction)

Merchants can wait for 3, 4 or 5 before handling over the good, depending
on the relevance of the transaction

Fausto Spoto Universita di Verona, ltaly - 28 / 135

Miners and Rewards

Miners are (some) nodes of the bitcoin network. They receive, forward and

aggregate transactions into collectors, called

When a node creates a new block, it has the right to tag the block with a
bitcoin address p, called the miner's address:

o the fees ¢y - - - ¢, of the n transactions in the block go to

@ some amount of money ¢ is created out of thin air and goes to u

Typically, 1 belongs to the person/organization who owns the machine that
runs the node)

¢ is the inflation: it is computed through a fixed algorithm that makes it
decrease with the time and will eventually reach 0, the day when 21,000,000
total bitcoins will be mined

= bitcoin is deflationary

Fausto Spoto Universita di Verona, ltaly - 29 / 135

Bitcoin supply over the years

Bitcoin Created

Bitcoin Money Supply

20,000,000
18,000,000
16,000,000
14.000,000
12,000,000
10,000,000
2,000,000
6,000,000
4,000,000
2,000,000

12010 12015 1112020 1102025 10172030

Time

Fausto Spoto

Universita di Verona, ltaly - 30 / 135

How miners work

@ Each miner listens the p2p network for new transactions and stores
them in a temporary area called mempool
@ when enough new transactions are available in the mempool, it
selects some of them
o typically, it selects those with the largest fees, but any other choice is
fine: different miners can use different strategies

© it builds a new block (mining):
e it adds the selected transactions
e it adds a special coinbase transaction with no inputs, whose only
output is 1 and whose amount is ¢ + Y1 &;
e it tags the block with a reference to the previous block
o if no other miner has been faster, it forwards the new block to all its

peers

Universita di Verona, ltaly - 31 / 135

Fausto Spoto

Block’s height, depth and confirmations

Block 277318
Transactions

Block Depth -

Block 277317
Transactions

"

Block 277316
Alice’s Transaction

fymypg

Block 277315

Block Height -
ockrelg Transactions

Block 277314
Transactions

Fausto Spoto Universita di Verona, ltaly - 32 / 135

The transaction

no coins, no senders, no recipients, no balances, no accounts, no addresses

{
"vins": [
{
"txid": "7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6£18",
"vout": O,
"unlock": "3045022100884d142d86652a3f47... 0484ecc0d46f..."

}
]’
"vouts": [
{
"value": 0.01500000,
"lock": "DUP HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7
EQUALVERIFY CHECKSIG"
e
{
"value": 0.08450000,
"lock": "DUP HASH160 7f9b1a7fb68d60c536c2fd8aeaab3a8f3cc025a8
EQUALVERIFY CHECKSIG"
}

Fausto Spoto Universita di Verona, ltaly - 33 / 135

The real transaction

two new UTXOs (unspent transaction outputs)

{
"vins": [
{
"txid": "7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6£18",
"vout": O,
"unlock": "3045022100884d142d86652a3f47... 0484ecc0d46f..."
}
] 3
"vouts": [
{
"value": 0.01500000,
"lock": "DUP HASH160 ab68025513c3dbd2f7b92a94e0581£5d50f654e7
EQUALVERIFY CHECKSIG"
Js
{
"value": 0.08450000,
"lock": "DUP HASH160 7f9b1a7fb68d60c536c2fd8aeaab3a8f3cc025a8
EQUALVERIFY CHECKSIG",
}
]
}

Fausto Spoto Universita di Verona, ltaly - 34 / 135

The real transaction

reference to an old UTXO (soon to be TXO)

{
"vins": [
{
"txid": "7957a35fe64£80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6£18",
"vout": O,
"unlock": "3045022100884d142d86652a3f47... 0484ecc0d46f..."
¥
] 3
"vouts": [
{
"value": 0.01500000,
"lock": "DUP HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7
EQUALVERIFY CHECKSIG"
Ko
{
"value": 0.08450000,
"lock": "DUP HASH160 7f9b1a7fb68d60c536c2fd8aeaab3a8f3cc025a8
EQUALVERIFY CHECKSIG"
}
1
}

Fausto Spoto Universita di Verona, ltaly - 35 / 135

The real transaction

the amount of the first new UTXO (in satoshis)

{
"vins": [
{
"txid": "7957a35fe64£80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6£18",
"vout": O,
"unlock": "3045022100884d142d86652a3f47... 0484ecc0d46f..."
}
]’
"vouts": [
{
"value": 0.01500000,
"lock": "DUP HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7
EQUALVERIFY CHECKSIG"
Ko
{
"value": 0.08450000,
"lock": "DUP HASH160 7f9b1a7fb68d60c536c2fd8aeaab3a8f3cc025a8
EQUALVERIFY CHECKSIG"
}
1
}

Fausto Spoto Universita di Verona, ltaly - 36 / 135

The real transaction

the unlocking or witness script of the first new UTXO (crypto-puzzle)

{
"vins": [
{
"txid": "7957a35fe64£80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6£18",
"vout": O,
"unlock": "3045022100884d142d86652a3f47... 0484ecc0d46f..."
}
] 3
"vouts": [
{
"value": 0.01500000,
"lock": "DUP HASH160 ab68025513c3dbd2f7b92a94e0581f5d450f654e7
EQUALVERIFY CHECKSIG"
Ko
{
"value": 0.08450000,
"lock": "DUP HASH160 7£f9b1a7fb68d60c536c2fd8aeaab3a8f3cc025a8
EQUALVERIFY CHECKSIG"
}
1
}

Fausto Spoto Universita di Verona, ltaly - 37 / 135

The real transaction

the hash of the transaction whose vout® UTXO is being spent

{
"vins": [
{
"txid": "7957a35fe64£80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6£18",
"vout": O,
"unlock": "3045022100884d142d86652a3f47... 0484ecc0d46f..."
}
] 3
"vouts": [
{
"value": 0.01500000,
"lock": "DUP HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7
EQUALVERIFY CHECKSIG"
Ko
{
"value": 0.08450000,
"lock": "DUP HASH160 7f9b1a7fb68d60c536c2fd8aeaab3a8f3cc025a8
EQUALVERIFY CHECKSIG"
}
1
}

Fausto Spoto Universita di Verona, ltaly - 38 / 135

The real transaction

the unlocking script (usually digital signature + public key)

{
"vins": [
{
"txid": "7957a35fe64£80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6£18",
"vout": O,
"unlock": "3045022100884d142d86652a3f47... 0484ecc0d46f..."
}
] 3
"vouts": [
{
"value": 0.01500000,
"lock": "DUP HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7
EQUALVERIFY CHECKSIG"
Ko
{
"value": 0.08450000,
"lock": "DUP HASH160 7£f9b1a7fb68d60c536c2fd8aeaab3a8f3cc025a8
EQUALVERIFY CHECKSIG",
}
1
}

Fausto Spoto Universita di Verona, Italy - 39 / 135

The real transaction

scripts are written in the Script programming language

{
"vins": [
{
"txid": "7957a35fe64£80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6£18",
"vout": O,
"unlock": "3045022100884d142d86652a3f47... 0484ecc0d46f..."
}
] 3
"vouts": [
{
"value": 0.01500000,
"lock": "DUP HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7
EQUALVERIFY CHECKSIG"
s
{
"value": 0.08450000,
"lock": "DUP HASH160 7f9b1a7fb68d60c536c2fdB8aeaab3a8f3cc025a8
EQUALVERIFY CHECKSIG"
}
]
}

Fausto Spoto Universita di Verona, ltaly - 40 / 135

The Script programming language

Reverse-polish stack-based stateless language

© sequence
© conditional

@ repetition

= Turing incomplete

Why Turing incomplete?

© predictable execution time

@ guaranteed termination

denial of service attacks are impossible at language level

Fausto Spoto Universita di Verona, ltaly - 41 / 135

Script validity

A program in the Script language is valid if its execution does not stop with
failure and terminates with a stack whose topmost element is TRUE J

Execution proceeds left-to-right
Let us execute 2 3 ADD 5 EQUAL to see if it's valid

Fausto Spoto

Universita di Verona, ltaly - 42 / 135

2 3 ADD 5 EQUAL

SCRIPT
2 3 ADD 5 EQUAL

EXECUTION
POINTER
2 Execution starts from the left
Constant value “2" is pushed to the top of the stack

STACK

Fausto Spoto Universita di Verona, ltaly - 43 / 135

2 3 ADD 5 EQUAL

SCRIPT
3 ADD 5 EQUAL

EXECUTION

3 POINTER

Execution continues, moving to the right with each step
Constant value “3" is pushed to the top of the stack

STACK
]

Fausto Spoto Universita di Verona, ltaly - 43 / 135

2 3 ADD 5 EQUAL

SCRIPT
ADD 5 EQUAL

EXECUTION
POINTER
Operator ADD pops the top two items out of the stack and adds them together (3 add 2);
then Operator ADD pushes the result (5) to the top of the stack

STACK
v

Fausto Spoto Universita di Verona, ltaly - 43 / 135

2 3 ADD 5 EQUAL

SCRIPT
5 EQUAL
5 EXECUTION
= POINTER
= 5 Constant value “5" is pushed to the top of the stack

Fausto Spoto Universita di Verona, ltaly - 43 / 135

2 3 ADD 5 EQUAL

STACK

SCRIPT

EQUAL

TRUE

1

EXECUTION
POINTER
Operator EQUAL pops the top two items out of the stack and compares the values (5 and 5)
and if they are equal, EQUAL pushes TRUE (TRUE = 1) to the top of the stack

The program is valid!

Fausto Spoto

Universita di Verona, ltaly - 43 / 135

Other examples of (in-)valid scripts

These are all valid

o TRUE

o FALSE TRUE

@ 2 7 ADD 3 SUB 1 ADD 7 EQUAL

@ 2 7 EQUAL IF FALSE ELSE TRUE ENDIF

These are all invalid
FALSE

2 7 EQUAL
2 7 EQUAL IF TRUE ELSE FALSE ENDIF
2 7 EQUAL TRUE ENDIF

Fausto Spoto Universita di Verona, ltaly - 44 / 135

The validation algorithm for bitcoin transactions

previous_tx = { // this transaction has hash H

"vins":
"vouts": [{ "value": s "lock": "..... LI R]
tx =
"vins": [{ "txid": H, "vout": s "unlock": "..... L 1,
"vouts":

boolean is_valid(Transaction tx) {
for each (txid, vout, unlock) in tx.vins
previous_tx = get_transaction(txid)
lock = previous_tx.vouts[vout].lock
if (unlock lock is invalid)
return false

return true

Fausto Spoto

Universita di Verona, ltaly - 45 / 135

The typical P2PKH script (pay to publickey hash)

“| want to send some value to address”

previous_tx = { // this transaction has hash H

"vins":
"vouts": [{ "value": ..., "lock": DUP HASH160 <address> EQUALVERIFY CHECKSIG },

tx = {
"vins": [{ "txid": H, "vout": s "unlock": <sig> <PubK>}, 1,
"vouts":

<sig> <PubK> DUP HASH160 <address> EQUALVERIFY CHECKSIG I

The bitcoin address is often referred to as PublicKHash

Fausto Spoto Universita di Verona, ltaly - 46 / 135

<sig> <PubK> DUP HASH160 <address> EQUALVERIFY

CHECKSIG

SCRIPT
<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

EXECUTION
- POINTER
= <sig> Execution starts
wvy

Value <sig> is pushed to the top of the stack

l’

Fausto Spoto Universita di Verona, ltaly - 47 / 135

<sig> <PubK> DUP HASH160 <address> EQUALVERIFY

CHECKSIG

SCRIPT
<PubK> DUP HASH16@ <PubKHash> EQUALVERIFY CHECKSIG
<PubK> EXECUTION
= - POINTER
= <sig> Execution continues, moving to the ri?ht with each step
n Value <PubK> is pushed to the top of the stack, on top of <sig>

l’

Fausto Spoto Universita di Verona, ltaly - 47 / 135

<sig> <PubK> DUP HASH160 <address> EQUALVERIFY

CHECKSIG

SCRIPT
DUP iASH16@ <PubKHash> EQUALVERIFY CHECKSIG

<PubK>

<PubK> EXECUTION
- POINTER
2 <sigs DUP operator duplicates the top item in the stack,
> the resulting value is pushed to the top of the stack

l’

Fausto Spoto Universita di Verona, ltaly - 47 / 135

<sig> <PubK> DUP HASH160 <address> EQUALVERIFY

CHECKSIG

SCRIPT
HASH160 <PubKHash> EQUALVERIFY CHECKSIG
<PubKHash> EXECUTION
<Pubk> POINTER
o} - HASH160 operator hashes the top item in the stack with RIPEMD160(SHA256(PubK))
= <sig> the resulting value (PubKHash) is pushed to the top of the stack

l’

Fausto Spoto Universita di Verona, ltaly - 47 / 135

<sig> <PubK> DUP HASH160 <address> EQUALVERIFY

CHECKSIG

SCRIPT
<PubKHash> EQUALVERTFY CHECKSIG
<PubKHash> t
<PubKHash> EXECUTION

<PubK> POINTER
The value PubKHash from the script is pushed on top of the value PubKHash calculated previously

<sig> from the HASH160 of the PubK

STACK

I

Universita di Verona, ltaly - 47 / 135

Fausto Spoto

<sig> <PubK> DUP HASH160 <address> EQUALVERIFY

CHECKSIG

SCRIPT
EQUALVERIFYCHECKSIG
EXECUTION
<PubK> POINTER
§ . The EQUALVERIFY operator compares the PubKHash encumbering the transaction with the PubKHash
= <sig> calculated from the user’s PubK. If they match, both are removed and execution continues

l’

Fausto Spoto Universita di Verona, ltaly - 47 / 135

<sig> <PubK> DUP HASH160 <address> EQUALVERIFY

CHECKSIG

SCRIPT
EQUALVERIFYCHECKSIG
EXECUTION
<PubK> POINTER
§ . The EQUALVERIFY operator compares the PubKHash encumbering the transaction with the PubKHash
= <sig> calculated from the user’s PubK. If they match, both are removed and execution continues

l’

CHECKSIG verifies that sig is a signature of the transaction generated by using
the private key corresponsing to pubk J

Fausto Spoto Universita di Verona, ltaly - 47 / 135

<sig> <PubK> DUP HASH160 <address> EQUALVERIFY

CHECKSIG

SCRIPT

CHECKSIG

EXECUTION
POINTER
TRUE The CHECKSIG operator checks that the signature <sig> matches the public key <PubK> and pushes
TRUE to the top of the stackif true.

STACK

This script gives proof of ownership!

Fausto Spoto Universita di Verona, ltaly - 47 / 135

Properties of Bitcoin's transactions

@ Script programs are only used to check the validity of the transactions
@ Script programs never modify the state of the system

@ Transactions undo is very easy (they just move money around)

Fausto Spoto Universita di Verona, ltaly - 48 / 135

Block headers contain the hash of all transactions in the

block (Merkle root)

Merkle Root

HaBD
Hash(Hpg+H cp)

/\

Hag
Hash(HA+ H B)

N

Ha
Hash(Tx A)

Hp
Hash(Tx B)

Hep
Hash(H (+HD)

N

He
Hash(Tx)

Hp
Hash(Tx D)

Fausto Spoto

Universita di Verona, ltaly - 49 / 135

Merkle trees provide an efficient inclusion test

~— P
|

i HuKLMNOP |

HABCDEFGH

7\
Hp

| know the root hash and want to know if the

is included

The four blue hashes can be given to me as that proof of inclusion (authen-
tication path)

Fausto Spoto

Universita di Verona, ltaly - 50 / 135

Proof of work

Fausto Spoto Universita di Verona, ltaly - 51 / 135

The vision of the miner
The goal of mining is to mint new coins and earn money

The vision of Nakamoto

The goal of mining is to secure the bitcoin network

Fausto Spoto Universita di Verona, ltaly - 52 / 135

Miners can only mine correct blocks

New valid block = it respects the consensus rules

@ the structure of data in the header and transactions must be correct
transactions have at least one input (but for coinbase transactions)
transactions have at least one output

transactions do not create money (but for coinbase transactions)

coinbase transactions have a correct reward

transactions are all valid (their unlocking scripts match the
corresponsing locking scripts)

@ transaction inputs refer to unspent UTXO only (no double-spending
inside the same history)

o ...
y

Fausto Spoto Universita di Verona, ltaly - 53 / 135

How to kill a dictator

Without proof of work

A single node dictates the history of the blockchain if it is faster than each
other node

Fausto Spoto Universita di Verona, ltaly - 54 / 135

How to kill a dictator

Without proof of work

A single node dictates the history of the blockchain if it is faster than each
other node

With proof of work

A single node dictates the history of the blockchain if it is faster than the
sum of all other nodes

Fausto Spoto Universita di Verona, ltaly - 54 / 135

Proof of work (PoW)

Add the following consensus rule

The hash of valid blocks is smaller than a given constant difficulty

Miners must work hard now
© build a new block
@ set the nonce field of its header to a random value
© compute the hash h of the header
Q if h < difficulty stop
© otherwise, go back to step 2 and try again

@ the header of the resulting block is the PoW
@ the time to solve this puzzle is inversely proportional to difficulty

@ the algorithm can be easily run in parallel, GPU, ASIC

Fausto Spoto Universita di Verona, ltaly - 55 / 135

Fork: all nodes start with the same vision

Blockchain

Fausto Spoto Universita di Verona, ltaly - 56 / 135

Fork: two nodes expand the blockchain simultaneously

Imineda
new block: /\

I'mined a
new block7

Fausto Spoto Universita di Verona, ltaly - 57 / 135

Fork: the network is split

Blockchain

Blockchain

Fausto Spoto Universita di Verona, ltaly - 58 / 135

Fork: either chain is expanded further

Blockchain

/Imineda
ode 1 newblock: |

Blockchain

Fausto Spoto Universita di Verona, ltaly - 59 / 135

Fork: the network reconverges

Blockchain

Blockchain

Fausto Spoto Universita di Verona, ltaly - 60 / 135

State update in case of history change

The longest chain is admitted as the main chain

r
1
1
1

. Stale blocks are discarded . _

© the transactions in the discarded chain must be undone (easy in
Bitcoin)
@ the transactions in the longest chain must be done (easy)

Fausto Spoto Universita di Verona, ltaly - 61 / 135

The magic behind PoW

It makes expensive the production of new blocks, in time and cost (electric-
ity)
@ who produces invalid blocks sees its blocks rejected by peers and
wastes resources

@ a single node cannot drive the history, since it must fight against the
hashing power of all other nodes together

o forks become unlikely, since the probability of two nodes finding a
new block at the same time is small

Fausto Spoto

Universita di Verona, ltaly - 62 / 135

Difficulty over time

Bitcoin network: total computation speed

dLFFIJ:ultg —_]] ! !
T-d: ind timate ——
OB B Wi etinate — 5 it
30-day window estimate —— %
- 10000
16nm
10000
ASICs
GPU era J 1
q
100 >
3
E
E
o 941 b
= o
= At
7 3
£ 1E g
Amateur ASICs era el
- o0.01 =
0.01
- 0.0001
CPU era
0.0001 -
7 - le-06
1e-06 I L I L L 1
Jan "03 Jan 10 Jan 11 Jan 12 Jan '13 Jan "14 Jan 15 Jan 16 Jan 17

Fausto Spoto Universita di Verona, ltaly - 63 / 135

PoW costs electricity

Country Ranking

Switzerland Czechia Bitcoin
58.46 62.34 6415

v

Fausto Spoto

Universita di Verona, ltaly -

64 / 135

Consensus attacks

Two main categories

© history change (for the topmost few blocks)

@ denial of service (against specific transactions or accounts)

Possible if the attacker controls a large portion of the total hashing power

Fausto Spoto Universita di Verona, ltaly - 65 / 135

Bitcoin has probabilistic finality

PROBABILITY A TRANSACTION
IS COMPLETE

PROBABILISTIC FINALITY

> TIME

Fausto Spoto Universita di Verona, ltaly - 66 / 135

Ethereum

Fausto Spoto iversita di Verona, ltaly - 67 / 135

The world computer

An open source, globally decentralized computing infrastructure that exe-
cutes programs called smart contracts, written in a Turing-complete pro-
gramming language, translated into bytecode and run on a virtual machine.
It uses a blockchain to synchronize and store the system'’s singleton state
changes (key/value tuples), along with a cryptocurrency called ether to me-
ter and constrain execution resource costs. It enables developers to build
decentralized applications with built-in economic functions

Fausto Spoto Universita di Verona, ltaly - 68 / 135

DApps = smart contracts (Solidity) + web3 frontend (JavaScript...)

Fausto Spoto Universita di Verona, ltaly - 69 / 135

People behind Ethereum

Vitalik Buterin Gavin Wood

Fausto Spoto Universita di Verona, ltaly - 70 / 135

Suggested r nces

Yellow Paper:
https://ethereum.github.io/yellowpaper/paper.pdf

OREILLY"

OREILLY
Hands-On

Smart Contract

et Development
Building Games with Solidity & Ethereum
With Ethereum From Fundamentals to Deployment

Mastering #
Ethereum

IMPLEMENTING DIGITAL CONTRACTS

“ % Andreas M. Antonopoulos

Dr. Gavin Wood

Kevin Solorio,
Randall Kanna

& David Hoover

Apress’

The leftmost: https://github.com/ethereumbook/ethereumbook

Fausto Spoto Universita di Verona, ltaly - 71 / 135

https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/ethereumbook/ethereumbook

Deterministic (infinite) state machine

A very abstract view of blockchain

A blockchain is a distributed ledger of transaction requests, aggregated in
blocks

Bitcoin: transaction requests require a change of the set of UTXOs

Ethereum: transaction requests require a change of a map key — value

The change must be deterministic otherwise consensus cannot be reached!

v

Fausto Spoto

Universita di Verona, ltaly - 72 / 135

Externally owned accounts (EOA) and contracts

EOAs have keys, contracts have code, both have an address)

update blockchain

Destination EOA

Source EOA B
Contract I
Transaction——p» ~ g— i

run code & update Blockchain

L—message——————p ?

Another Contract

Fausto Spoto Universita di Verona, ltaly - 73 / 135

Ethereum transactions

A transaction is a signed message originated by an EOA, transmitted by the
Ethereum network, and recorded on the Ethereum blockchain:

@ nonce: sequence number per each originating EOA
gas price: maximum willing to pay

gas limit: maximum willing to consume

to: recipient (destination address)

value: ether sent to destination

data: generic payload (method name, parameters, contract code. . .)

® 6 6 o6 o o

signature: ECDSA signature of the originating EOA

The address of the originating EOA is implied by the signature

Fausto Spoto Universita di Verona, ltaly - 74 / 135

Many kinds of transactions

An “ordinary” transaction
transferring some ether to
another account

A

[Nonce | |

To

| [Value | [Signature | | GasPrice | [StartGas |

creating a contract

A

Nonce

To

| [Value | [Signature | [GasPrice | |StartGas | [Code |

invoking a contract
with some data

Nonce | |

To

‘ | Value ‘ ‘Signature‘ ‘Gas Price ‘ ‘ Start Gas ‘ ‘ Data

Fausto Spoto

Universita di Verona, ltaly -

75 / 135

The nonce

The nonce of an EOA
A scalar value equal to the number of transactions sent from the EOA

Wallets keep track of nonces
They increase it and attach to each transaction they create per originating
EOA

| A

Nodes check nonces
They count the number n of transactions originated by the EOA. If the
nonce is smaller than n 4 1, the transaction is rejected. If the nonce is
greater than n+ 1, the transaction is delayed and not yet executed:

@ this guarantees transaction ordering

@ and avoids transaction replaying

Universita di Verona, ltaly - 76 / 135

Fausto Spoto

Why Ethereum’s transactions have a nonce?

Bitcoin's transactions can only transform UTXOs into TXOs

It is not possible to spend a UTXO again, inside the same history: it would
be against the consensus rules

= Executing a valid transaction today makes it invalid tomorrow

Ethereum’s transactions can induce any state change or fail

A valid (syntactically correct) transaction can always be executed in
Ethereum

= Executing a valid transaction today doesn’t make it invalid tomorrow
(without a nonce)

Fausto Spoto Universita di Verona, ltaly - 77 / 135

The state of Ethereum

The state of Ethereum is a global singleton map o : key — value

The state is not in blockchain!

API of the state

© value=get(address)

©Q put(address, value)

Fausto Spoto Universita di Verona, ltaly - 78 / 135

Encoding data into the state

Store the balance of an EOA
put (address_of _EQOA, balance)

Read the balance of an EOA
get (address_of _E0OA)

—
—

Fausto Spoto Universita di Verona, ltaly - 79 / 135

Encoding data into the state

EOA installs a smart contract

put (hash(address_of EOA, nonce_of EOA), bytecode_of_smart_contract)

address of the new smart contract

A smart contract writes v into its nth instance variable (field)

put (hash(address_of _smart_contract, n), v)

address of ;fTe n—th field

A smart contract reads from its nth instance variable (field)

get (hash(address_of_smart_contract, n))

address of ;l;e n—th field

Fausto Spoto Universita di Verona, Italy - 80 / 135

The hash of the state

In , the header of a block contains the hash

the block

That is, the head of the Merkle tree of transactions. Miners must execute
the transactions to validate them, since invalid transactions would make the
whole block invalid, which would make the miner lose money

In , the header of a block contains the hash

end of the execution of the transactions in the block

Since syntactically correct transactions are always valid, this obliges the
miners to execute the transactions

API of the state

(1) value=get (address)

(2] put(address, value)

(3] h=get_hash()

v

Fausto Spoto Universita di Verona, ltaly - 81 / 135

The state of a node must change across different views

The longest chain is admitted as the main chain

r
1
1
1

. Stale blocks are discarded . _

© the transactions in the discarded chain must be undone (hard in
Ethereum)

@ the transactions in the longest chain must be done (easy)

Fausto Spoto Universita di Verona, ltaly - 82 / 135

Ethereum = Bitcoin + Git

Undo of state updates, up to the state at the end of an old block

checkout (old_block.header.state _hash)
(possible through a Merkle-Patricia trie)

The final API of the state

value=get (address)
put (address, value)

h=get_hash()

©00O0

checkout (h)

Fausto Spoto Universita di Verona, ltaly - 83 / 135

Smart contracts

Fausto Spoto Universita di Verona, ltaly - 84 / 135

A smart contract is. ..

a computer program (not smart nor a contract)
immutable

deterministic

operating on restricted data

running on a decentralized world computer

°
°
°
°
°

In Ethereum:
@ compiled into EVM bytecode
@ installed in blockchain
@ has no keys
@ its installer gets no automatic privileges
°

runs after a transaction initiated by an EOA

e or a chain of transactions initiated by an EOA
@ no parallelism, no background processing

transactions are atomic

Fausto Spoto Universita di Verona, ltaly - 85 / 135

Gavin Wood's Solidity

There are many programming languages for Ethereum smart contracts, but
Solidity is the de facto standard:

@ imperative

@ vaguely object-oriented
@ in continuous evolution
@ non-strongly-typed
o

unorthogonal features

©

sequence

©

conditional

©@ repetition

= Turing complete (bug or feature?)

Fausto Spoto Universita di Verona, ltaly - 86 / 135

A simple Solidity example

/] Version of Solidity compiler this program was written for
pragma solidity 70.6.0;

// Our first contract is a faucet!
contract Faucet {
// Accept any incoming amount
receive () external payable {}

// Give out ether to anyone who asks
function withdraw(uint) public {

// Limit withdrawal amount
require(withdraw_amount <= 100000000000000000);

// Send the amount to the address that requested it
msg.sender.transfer(withdraw_amount);

Fausto Spoto Universita di Verona, ltaly - 87 / 135

Basic Solidity types

with constants true and false and usual operators

signed or unsigned, with usual operators, in increments of 8 bit size: uints,
uint16, int24.... Without specification, they stand for int256 and uint256,
respectively

fixedM X N, ufixedM x N

fixed point arithmetic, signed or unsigned, M bits, N decimals after the
point: currently not implemented

Fausto Spoto Universita di Verona, ltaly - 88 / 135

Basic Solidity types

fixed-size array of bytes, of length N

bytes Or string

variable-sized arrays of bytes

uint32[1[5] is a fixed size array of five dynamic arrays of 32 bits unsigned
integers

Enumerations
enum NAME { A, B, ... }

Fausto Spoto Universita di Verona, ltaly - 89 / 135

Basic Solidity types

struct pair {
intl16 x;
uint8 y;

X

Mappings
mapping(address => uint256) balances;

A field of type mapping spreads its values into the state through hashing:
balances[k]=v executes put(hash(balances,k) , v)

address of balances [k]
= mappings default to 0

= there is no containskey (you need a sentinel value)
= it is not possible to compute the key set or value set of a mapping

= it is not possible to iterate on a mapping

v

Fausto Spoto Universita di Verona, ltaly - 90 / 135

A simple Ponzi scheme

pragma solidity ~0.4.21;

contract SimplePonzi {
address public currentlInvestor;
uint public currentInvestment = 0;

function () payable external {
uint minimumInvestment = currentInvestment * 11 / 10;
require(msg.value > minimumInvestment);
address previousInvestor = currentInvestor;
currentInvestor = msg.sender;
currentInvestment = msg.value;
[/ for malicious investors it will return false but not fail
previousInvestor.send(msg.value);

The first investment will be burned to address 0x0

Fausto Spoto Universita di Verona, ltaly - 91 / 135

Gas consumption

Each bytecode instruction and transaction type has a gas cost

@ it is possible to compute in advance the gas cost of simple functions
(use estimateGas in the web3 library for instance)

@ the result is wrong in the presence of loops or recursion!

e obvious, since gas cost computation is harder than complexity analysis
which can be used to decide termination of programs

= an algorithm for computing gas costs in advance cannot exist
@ in general, it is important to know which operations (might) cost
much gas, and avoid them

o loops over unbounded dynamic arrays
e calls to unknown contracts

Fausto Spoto Universita di Verona, ltaly - 92 / 135

A gradual Ponzi scheme

pragma solidity ~0.4.21;

contract GradualPonzi {

}

address[] public investors; // dynamic array
mapping (address => uint) public balances; // map
uint public constant MINIMUM_INVESTMENT = 1el5;

constructor () public {
investors.push(msg.sender);
}

function () public payable {
require(msg.value >= MINIMUM_INVESTMENT);
uint eachInvestorGets = msg.value / investors.length;
for (uint 1 = 0; 1 < investors.length; i++)
balances[investors[i]] += eachInvestorGets;
investors.push(msg.sender);

}

function withdraw() public {
uint payout = balances[msg.sender];
balances[msg.sender] = 0;
msg.sender.transfer(payout);

Fausto Spoto Universita di Verona, ltaly - 93 / 135

Type address: Solidity is strongly-typed

@ casts are not checked

@ parameter types are just Christmas decorations

Fausto Spoto Universita di Verona, ltaly - 94 / 135

The DAO attack (2016): they talked to strangers. ..

Malicious Proxy Contract
Initiate Withdrawal

fallback function

overridden by the developer,
triggers another withdraw

Ether transfer
send Ether, pass along gos

withdrawBalance

update balance

internal state update

Fausto Spoto Universita di Verona, ltaly - 95 / 135

The DAO attack (2016)

The most famous reentrancy exploit
@ the DAO was a contract for autonomous decentralized organizations
@ the attacker used reentrancy to steal 50M$ equivalent of ETH

@ the Ethereum team decided to make the consensus rules more
restrictive in order to make such transactions illegal and get some of
that money back

@ some node maintainers didn't accept the change and continued
operating with the old rules and another chain id, leading to a
network hard fork known as Ethereum Classic

®

Fausto Spoto Universita di Verona, Italy - 96 / 135

Security best practice

Minimalism: the simpler, the better

Code reuse: DRY, use well-known libraries

Study: be aware of well-known issues and solutions
Readability: simpler audit

Test: try corner cases

Analysis: static or dynamic, still in infancy

Fausto Spoto Universita di Verona, ltaly -

Tendermint

Fausto Spoto iversita di Verona, ltaly - 98 / 135

Who decides the next block?

Proof of work [PoW] (who works harder and is lucky)
proof of stake [PoS] (who commits more money)
proof of space (who commits more disk space)

proof of authority (who has more authority)

PoS is a variant of Practical Byzantine Fault Tolerance (BFT)

Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance and
Proactive Recovery. ACM Trans. Comput. Syst., 20(4):398-461, November
2002

Fausto Spoto Universita di Verona, ltaly - 99 / 135

Tendermint (now Ignite): ignite.com

Jae Kwon. Tendermint: Consensus without Mining, 2014.
https://tendermint.com/static/docs/tendermint.pdf

@ a dynamic set V of validators decides the next block
@ V might be different for each block

e but deterministically computed from the previous history
@ at each height H, each validator v € V:

@ identifies (deterministically) a validator p € V that is expected to
aggregate some transactions and that proposes a next block b

@ if v considers b valid, it pre-votes b

© v counts how many validators pre-voted b

@ if v counted at least % pre-votes, v pre-commits b

© v counts how many validators pre-committed b

@ if v counted at least % pre-commits, v commits b and increases H

@ v goes back to step 1

Tendermint is BFT. If step 1 or rewards are based on stakes, then it is PoS

Fausto Spoto Universita di Verona, ltaly - 100 / 135

ignite.com
https://tendermint.com/static/docs/tendermint.pdf

Inside a Tendermint block

Block H
Header ¥ Header Hash
Metwork name Height » Validation Hash
Faes Time —> Transactions Hash
Block H-1 Hash I |
StateHash T
Block H Hash

‘alidation for Block H-1

Validator 1's Sighature
Validator 2's Signature
Validator 3's Signature

Transactions

Transaction #1
Transaction #2

Transaction #3

Fausto Spoto Universita di Verona, Italy - 101 / 135

Proof of stake: can we trust it?

Yes we can: Ethereum successfully moved from PoW to PoS

@ it's a special case, whose coin is very valuable: validators are a serious
form of investment

No we can't: all new blockchain projects use PoS nowadays

Fausto Spoto Universita di Verona, ltaly - 102 / 135

A layered implementation in Golang

Tendermint Core

Application

I ABCI

Consensus

Networking

ABCI: Application BlockChain Interface

Fausto Spoto Universita di Verona, Italy - 103 / 135

The ABCI

https://docs.tendermint.com/master/spec/abci/abci.html

checkTx: called before entering the mempool and to verify blocks

= only transactions that satisfy checkTx are added in blocks
® must not modify the state of the application

beginBlock: called at the beginning of a block; receives information
about the validator set of the previous block and which of them
signed the previous block

deliverTx: called for each transaction added to a block: it executes
the transaction by modifying the state of the application

endBlock: called at the end of a block; provides information about the
validator set for the next block

comnit: called when a block is being committed; provides the hash of
the state of the application
query: called when the user wants to read data from the blockchain

Fausto Spoto Universita di Verona, ltaly - 104 / 135

https://docs.tendermint.com/master/spec/abci/abci.html

The database of blocks and the application state

)
il

ABCI
via
TCP
K State

TCP / Tcp
" . <=
Messages ﬁ

Other
i Tendermint
nodes
running
\ Database of blocks / the same
application

Fausto Spoto Universita di Verona, Italy - 105 / 135

The application state

It must have a function to compute its hash
Only that hash is reported in blockchain, for consensus

It must allow transactional, atomic updates

Between beginBlock and commit

The API of the state
Tendermint enjoys finality: there are no forks
=- one never needs to come back in time to the state of a previous block

O get data
@ put data
© h=get_hash()
Q <checkoutth)y = big opportunity for garbage collection!)

Universita di Verona, Italy - 106 / 135

Fausto Spoto

Cosmos: a Tendermint application in Golang

Application Layer

(Cosmos SDK)

ABCI

Consensus Layer

Tendermint Core

Networking Layer

Fausto Spoto Universita di Verona, ltaly - 107 / 135

Hotmoka + Takamaka

Fausto Spoto Universita di Verona, Italy - 108 / 135

Hotmoka (Fausto Spoto, 2019-2021): www.hotmoka.io

SR

S ollo s
we's Hotmoka

oY o

An open-source implementation of a network of nodes:
@ nodes of a blockchain
@ loT devices

@ computers in the cloud

Requests are OO-based

@ install code in the node
@ create an object
@ call a method of an object

@ methods are implemented in Takamaka (subset of Java)

Fausto Spoto Universita di Verona, Italy - 109 / 135

www.hotmoka.io

Hotmoka nodes can be Tendermint applications

)
il

ABCI
via
TCP
K State

TCP / Tcp
o <

Messages ﬁ

Other
i Tendermint
nodes
running
\ Database of blocks / the same
application

Fausto Spoto Universita di Verona, ltaly - 110 / 135

An OO state (hash is sha256)

Blockchain

State

requestl
request2
request3
request4

hash of state

hash of previous

Responses

hash(request1) =>

hash(request2) => response2

psponse3 |

hash(request4) => response4

hash(request3) => 1f

Histories

objl => hash, hash, hash,
obj2 => hash, hash, hash,

ash, hash, hash,

obj3 =>

Fausto Spoto

Universita di Verona, ltaly -

111 / 135

The state contains actual Java objects

manifest: 42a8allaee0405aee5775514b3b0456c7740bbb015b4b87df4776e6e4add7668#0

machine-independent memory address of an object

moka s e 42aB8allaee0405aee5775514b3b0456c7740bbb015b4b87df4776e6e4add7668#0

class io.takamaka.code.governance.Manifest (from jar installed at 02dfd29348abaa44f7205251..
allowsSelfCharged:boolean = false

allowsUnsignedFaucet:boolean = true

chainId: java.lang.String = "chain-ASdWiN"

gamete:io.takamaka.code.lang.Account = 4f7d7calfbeal52d8f323c21elabcfald979c7c4eab67d8457381a26b08a2d71#0
gasStation:io.takamaka.code.governance.GasStation = 42a8allaee0405aee5775514b3b0456c7740bbb015b4b8. . .
maxCumulativeSizeOfDependencies:long = 10000000

maxDependencies:int = 20

maxErrorLength:int = 300

signature: java.lang.String = "ed25519"

skipsVerification:boolean = false

validators:io.takamaka.code.governance.Validators = 42a8allaee0405aee5775514b3b0456c7740bbb015b4bs. . .
versions:io.takamaka.code.governance.Versions = 42a8allaee0405aee5775514b3b0456c7740bbb015b4b87df4. . .
balance: java.math.BigInteger = O (inherited from io.takamaka.code.lang.Contract)

" balanceRed: java.math.BigInteger = O (inherited from io.takamaka.code.lang.Contract)

" nonce:java.math.BigInteger = 227 (inherited from io.takamaka.code.lang.ExternallyOwnedAccount)

" publicKey:java.lang.String = "" (inherited from io.takamaka.code.lang.ExternallyOwnedAccount)

Universita di Verona, Italy 112 / 1

How can Hotmoka identify updates to fields of objects?

The original code
public class C {

public int i;
public void foo() {
i = 42;

}
}

No way to know if i changed its value during the execution of foo()

Fausto Spoto Universita di Verona, ltaly - 113 / 135

How can Hotmoka identify updates to fields of objects?

The instrumented code

public class C extends Storage {
public int i, old_i; // aliased at method start
public void foo() {
i = 42;
}
}

i changed its value during the execution of foo() iff at the end izo1d i

Fausto Spoto Universita di Verona, ltaly - 114 / 135

How can Hotmoka enforce gas limits?

The original code

public class C {
public void foo() {
while (...) {

This loop might run for very long or even forever

Fausto Spoto Universita di Verona, ltaly - 115 / 135

How can Hotmoka enforce gas limits?

The instrumented code

static long counter;
public class C {
public void foo() {
while (...) {
if (counter++ >= gaslimit)
throw new 0OutOfGasError();

Actual gas costs are more fine-grained

Fausto Spoto Universita di Verona, ltaly - 116 / 135

Verification and instrumentation of jars in state

Each jar that gets installed in a Hotmoka node undergoes two processes:
@ Verification: absence of frequent errors

o objects stored in state extend Storage

non-deterministic or non-terminating library code is not used
no synchronization

no native code

no dangerous bytecodes

no finalizers

no static fields (mostly)

code annotations are used correctly

O ooo

@ Instrumentation

o fields of storage classes get duplicated
e gas metering is weaved into the code
e code annotations get implemented by magic
@ caller() is given semantics
]

Fausto Spoto Universita di Verona, ltaly - 117 / 135

The Takamaka programming language

Takamaka is the subset of Java that passes the verification of a Hotmoka
node. It uses code annotations to implement contract-based aspects:

@ QFromContract annotates something that can only be called by a
contract, not by any other code; hence, it has a caller()

@ @Payable annotates something whose execution requires to pay some
cryptocurrency units

@ @view annotates something whose execution can be run for free,
without paying for its gas: it must not generate any update at its end
(pure code)

Takamaka comes equipped with a support library (io-takamaka-code) that
defines such annotations and other typical classes that are useful for
programming smart contracts (tokens, NFTs, DAOs)

Fausto Spoto Universita di Verona, ltaly - 118 / 135

An example of a Takamaka smart contract

import static io.takamaka.code.lang.Takamaka.require;
import java.math.BigInteger;

import io.takamaka.code.lang.Contract;

import io.takamaka.code.lang.FromContract;

import io.takamaka.code.lang.Payable;

import io.takamaka.code.lang.PayableContract;

import io.takamaka.code.lang.View;

o

public class SimplePonzi extends Contract {
private final BigInteger _10 = BigInteger.valueOf(10L), _11 = BigInteger.valueOf(11L);
private PayableContract currentInvestor;
private BigInteger currentInvestment = BigInteger.ZERO;

public QPayable QFromContract(PayableContract.class) void invest(BigInteger amount) {
BigInteger minimum = currentInvestment.multiply(_11).divide(_10);
require (amount . compareTo(minimum) >= 0, () -> "you must invest at least " + minimum)

if (currentInvestor != null)
currentInvestor.receive(amount); // no risk of reentrancy

currentInvestor = (PayableContract) caller();
currentInvestment = amount;

public @View BigInteger getCurrentInvestment() {
return currentInvestment;

}

ersita di Verona, Italy - 119 / 135

An insurance smart contract in Takamaka

The contract allows one to insure specific days of the year

If it rains on those days, one will get an indemnization larger than the cost
of the insurance

@ much larger in summer

@ just a bit larger in winter

The contract provides the following functionalities:
@ construction, upon specification of the oracle:

@FromContract @Payable Insurance(Biglnteger amount, Contract oracle)
@ purchase of an insurance for specific days:

@FromContract (PayableContract.class) @Payable void buy
(long amount, int day, int month, int year, int duration)

@ notification of rain and indemnization:
@FromContract void itRains()

Fausto Spoto Universita di Verona, ltaly - 120 / 135

An insurance contract

public class Insurance extends Contract {
public final static long MIN = 1_000, MAX = 1_000_000_000;
private final Contract oracle;
private final StorageSet<InsuredDay> insuredDays = new StorageTreeSet<>();

public @FromContract @Payable Insurance(BigInteger amount, Contract oracle) {
this.oracle = oracle;

}

// inner class
private static class InsuredDay extends Storage { /* not shown */ }

public @FromContract(PayableContract.class) @Payable void buy
(long amount, int day, int month, int year, int duration) { /* shown later */ }

public @FromContract void itRains() { /* shown later */ }

Fausto Spoto Universita di Verona, ltaly - 121 / 135

Buy an insurance

public @FromContract(PayableContract.class) @Payable void buy
(long amount, int day, int month, int year, int duration) {

require(duration >= 1, "you must insure at least one day");
require(duration <= 7, "you cannot insure more than a week");
require(amount >= MIN * duration,

() -> "we insure a single day for at least " + MIN + " units of coin");
require(amount <= MAX * duration,

() -> "we insure a single day for up to " + MAX + " units of coin");

// if the date is wrong, this generates an exception
LocalDate start = LocalDate.of (year, month, day);

PayableContract payer = (PayableContract) caller();
for (int offset = 0; offset < duration; offset++)
insuredDays.add(new InsuredDay
(payer, amount / duration, start.plusDays(offset)));

Fausto Spoto Universita di Verona, ltaly - 122 / 135

Pay the indemnization

public @FromContract void itRains() {
require(caller() == oracle, "only the oracle can call this method");

// pay who insured today
insuredDays.stream()
.filter(InsuredDay: : isToday)
.forEachOrdered (insuredDay ->
insuredDay.payer.receive (insuredDay.indemnization()));

// clean-up the set of insured days

insuredDays.stream()
.filter(InsuredDay: : isTodayOrBefore)
.forEachOrdered (insuredDays: :remove) ;

Fausto Spoto Universita di Verona, ltaly - 123 / 135

On-chain verification: incorrect use of annotations

Assume that the programmer forgets the FromContract annotation in buy

Fausto Spoto Universita di Verona, ltaly - 124 / 135

On-chain verification: incorrect use of annotations

Assume that the programmer forgets the FromContract annotation in buy

mvn clean package = regenerates target/insurance-0.0.1.jar

Fausto Spoto Universita di Verona, ltaly - 124 / 135

rification: incorrect use of annotations

Assume that the programmer forgets the FromContract annotation in buy

mvn clean package = regenerates target/insurance-0.0.1.jar

Let's try to install this version of the jar

moka install

O6aabalafabc82c7161ffcdc2391a2136101aaeb94f64edd53a1d0d1436d610e#0
target/insurance-0.0.1.jar
--url panarea.hotmoka.io

Fausto Spoto Universita di Verona, ltaly - 124 / 135

On-chain verification: incorrect use of annotations

Assume that the programmer forgets the FromContract annotation in buy

mvn clean package = regenerates target/insurance-0.0.1.jar

Let's try to install this version of the jar

moka install
O6aabalafabc82c7161ffcdc2391a2136101aaeb94f64edd53a1d0d1436d610e#0
target/insurance-0.0.1.jar

--url panarea.hotmoka.io

Do you really want to spend up to 852500 gas units to install the jar [Y/N] Y
total gas consumed: 852500

for CPU: 255

for RAM: 1326

for storage: 381762

for penalty: 469157 trrrrn
io.hotmoka.beans.TransactionException:
io.takamaka.code.verification.VerificationException:
it/univr/insurance/Insurance. java method buy:
Q@Payable can only be applied to a @FromContract method or constructor

Fausto Spoto Universita di Verona, ltaly - 124 / 135

On-chain verification: potential non-determinism

Assume to use forEach instead of forEachOrdered in itRains

Fausto Spoto Universita di Verona, ltaly - 125 / 135

On-chain verification: potential non-determinism

Assume to use forEach instead of forEachOrdered in itRains

mvn clean package = regenerates target/insurance-0.0.1.jar

Fausto Spoto Universita di Verona, ltaly - 125 / 135

On-chain verification: potential non-determinism

Assume to use forEach instead of forEachOrdered in itRains

mvn clean package = regenerates target/insurance-0.0.1.jar

Let's try to install this version of the jar

moka install

O6aabalafabc82c7161ffcdc2391a2136101aaeb94f64edd53a1d0d1436d610e#0
target/insurance-0.0.1.jar
--url panarea.hotmoka.io

v

Fausto Spoto Universita di Verona, ltaly - 125 / 135

On-chain verification: potential non-determinism

Assume to use forEach instead of forEachOrdered in itRains

mvn clean package = regenerates target/insurance-0.0.1.jar

Let's try to install this version of the jar

moka install
O6aabalafabc82c7161ffcdc2391a2136101aaeb94f64edd53a1d0d1436d610e#0
target/insurance-0.0.1.jar

--url panarea.hotmoka.io

Do you really want to spend up to 852500 gas units to install the jar [Y/N] Y
total gas consumed: 853700

for CPU: 255

for RAM: 1326

for storage: 382362

for penalty: 469757 e
io.hotmoka.beans.TransactionException:
io.takamaka.code.verification.VerificationException:
it/univr/insurance/Insurance. java:95:
illegal call to non-white-listed method java.util.stream.Stream.forEach

v

Fausto Spoto Universita di Verona, ltaly - 125 / 135

Off-chain verification

Using the blockchain as a debugger is very expensive. ..

moka verify <jar> --1libs dependencies

Fausto Spoto Universita di Verona, ltaly - 126 / 135

Off-chain verification

Using the blockchain as a debugger is very expensive. . .

moka verify <jar> --1libs dependencies

We verify the jar off-chain, to find all errors

moka verify

Fausto Spoto Universita di Verona, ltaly - 126 / 135

Off-chain verification

Using the blockchain as a debugger is very expensive. . .

moka verify <jar> --1libs dependencies

We verify the jar off-chain, to find all errors

moka verify
jar

Fausto Spoto Universita di Verona, ltaly - 126 / 135

Off-chain verification

Using the blockchain as a debugger is very expensive. . .

moka verify <jar> --1libs dependencies

We verify the jar off-chain, to find all errors

moka verify
target/insurance-0.0.1.jar

Fausto Spoto Universita di Verona, ltaly - 126 / 135

Off-chain verification

Using the blockchain as a debugger is very expensive. . .

moka verify <jar> --1libs dependencies

We verify the jar off-chain, to find all errors

moka verify
target/insurance-0.0.1.jar
--1libs dependencies

Fausto Spoto Universita di Verona, ltaly - 126 / 135

Off-chain verification

Using the blockchain as a debugger is very expensive. . .

moka verify <jar> --1libs dependencies

We verify the jar off-chain, to find all errors

moka verify
target/insurance-0.0.1.jar
--libs io-takamaka-code-1.0.0.jar

Fausto Spoto Universita di Verona, ltaly - 126 / 135

Off-chain verification

Using the blockchain as a debugger is very expensive. . .

moka verify <jar> --1libs dependencies

We verify the jar off-chain, to find all errors

moka verify
target/insurance-0.0.1.jar
--libs io-takamaka-code-1.0.0.jar

it/univr/insurance/Insurance. java method buy:

@Payable can only be applied to a @FromContract method or constructor
it/univr/insurance/Insurance. java:46:

caller() can only be used inside a Q@FromContract method or constructor
it/univr/insurance/Insurance. java:95:

illegal call to non-white-listed method java.util.stream.Stream.forEach
it/univr/insurance/Insurance. java:99:

illegal call to non-white-listed method java.util.stream.Stream.forEach

Fausto Spoto Universita di Verona, ltaly - 126 / 135

QO: c®

Allowance

the amount of
approved tokens

Fausto Spoto

0eeE@®
0°©

Total supply
How many tokens there

are, you have to set a ©
finite supply unless the @—)
token is mintable @%

Transfer
Here you can query Enable the transfer

of tokens to a user
from whoever calls

ERc A
-__2° the transfer function

=

Universita di Verona, ltaly -

127 / 135

ERC20 Tokens

Fausto Spoto

Approve [Balance of
Approve other users to Permits the que-
spend your tokens. This rying of token
“approved” amount is holder balances

stored in Allowance

=

@

Eh

Transfer from

The function associated with trans-
ferring from Allowances, essentially
how other users will spend the tokens
you have approved them to, these
funds are taken from Allowance

0 — 09— Q

Universita di Verona, ltaly - 128 / 135

The OpenZeppelin reference implementation

We follow (in part) the implementation by OpenZeppelin

OpenZeppelin

https://docs.openzeppelin.com/contracts/2.x/api/token/erc20

Fausto Spoto Universita di Verona, ltaly - 129 / 135

https://docs.openzeppelin.com/contracts/2.x/api/token/erc20

The hierarchy of the implementation

IERC20View
& @View totalSupply(): UnsignedBiginteger

#} @View balanceOf(account: Contract): UnsignedBiginteger
& snapshot(): IERC20View

i

‘ «Interface » ‘

| «Interface » |

IERC20

4 @FromContract transfer(to: Contract, amount: UnsignedBiglnteger): boolean
4 @FromContract transfer(to: Contract, amount: int): boolean

4 @FromContract transfer(to: Contract, amount: long): boolean

4 @FromContract approve(spender: Contract, amount: UnsignedBiginteger): boolean
4 @View allowance(owner: Contract, spender: Contract): UnsignedBiginteger
4 @FromContract transterFrom(from: Contract, to: Contract, amount: UnsignedBiginteger): boolean
il
ERC20 |

4 ERC20(name: String, symbol: String)

@View name(): String

4 @View symbol(): String

4, mint(account: Contract, amount: UnsignedBiginteger)

i

ERC20Burnable |
#; ERC20Bumable(name: String, symbol: String)
@FromContract burn(amount: UnsignedBiginteger)

| CryptoBuddy }
#; @FromContract CryptoBuddy()

& @FromContract mintFor(account: Contract, amount: UnsignedBiginteger) ‘
#; @FromContract burnFrom(account: Contract, amount: UnsignedBiginteger)

ERC20Capped |

\
&

ERC20Capped(name: String, symbol: String, cap: UnsignedBiginteger) |

Verona, ltaly 130 / 13

Inconsistent view

token.balance Of(x)
token.balanceOf(y)

~—— token.transfer(...)
—_—
e —

token.balanceOf(z)

Between a call to balance0f and the next, the state of the token might
change in the database because other users might call the transfer
functions, concurrently

Fausto Spoto Universita di Verona, ltaly - 131 / 135

Consistent view

snapshot = token. snapshot()

snapshot.balanceOf(X) ————

~—— token.transfer(...)
snapshot.balanceOf(y) ——
snapshot.balanceOf(z) — 8 ——

@ snapshot() works in O(1)

@ all calls to palance0f refer to the same, consistent state of the token
(possibly not the latest)

@ impossible in Solidity, where maps cannot be cloned

Fausto Spoto Universita di Verona, ltaly - 132 / 135

References

@ Fausto Spoto: A Java Framework for Smart Contracts. Financial
Cryptography Workshops 2019: 122-137

e Fausto Spoto: Enforcing Determinism of Java Smart Contracts.
Financial Cryptography Workshops 2020: 568-533

@ Luca Olivieri, Fausto Spoto, Fabio Tagliaferro: On-Chain Smart
Contract Verification over Tendermint. Financial Cryptography
Workshops 2021: 333-347

@ Marco Crosara, Luca Olivieri, Fausto Spoto, Fabio Tagliaferro:
Re-engineering ERC-20 Smart Contracts with Efficient Snapshots for
the Java Virtual Machine. BCCA 2021: 187-194, to appear in Cluster
Computing

@ Andrea Benini, Mauro Gambini, Sara Migliorini, Fausto Spoto: Power
and Pitfalls of Generic Smart Contracts. BCCA 2021: 179-186, to
appear in Cluster Computing

Fausto Spoto Universita di Verona, ltaly - 133 / 135

Proof of space

@ proof of work is too expensive and polluting

@ proof of stake is complex and makes it hard to have many really
independent validators

Proof of space

In 2014, Burstcoin (later Signum) implemented a mining algorithm where
miners must solve a puzzle to gain the right to mine a new block:

@ the puzzle is too hard to be computed for each new block

@ the puzzle becomes very simple if some information is precomputed
and stored on disk

@ the CPU of the miners remains largely idle: no electricity cost

@ the more precomputation, the more disk is committed, the higher the
probability of solving the puzzle and mining a new block

Fausto Spoto Universita di Verona, ltaly - 134 / 135

Mokamint (www.mokamint.io)

Signum is monolithic, non-commented, Java 5, undocumented code

The idea of Mokamint (Fausto Spoto 2023, work in progress)

@ Tendermint: a generic blockchain engine based on proof of stake

@ Mokamint: a generic blockchain engine based on proof of space

s —

MOKAM|NTD§DD

Later attach Hotmoka on top of Mokamint, as an application instance

Fausto Spoto Universita di Verona, ltaly - 135 / 135

www.mokamint.io

	Introduction
	Bitcoin
	Proof of work
	Ethereum
	Smart contracts
	Tendermint
	Hotmoka + Takamaka

