
Réunion Island, 13/4/2023

An Overview of
Blockchain Technology

fausto.spoto@univr.it

https://github.com/spoto/blockchain-course

Fausto Spoto Università di Verona, Italy - 1 / 135

https://github.com/spoto/blockchain-course

1 Introduction

2 Bitcoin

3 Proof of work

4 Ethereum

5 Smart contracts

6 Tendermint

7 Hotmoka + Takamaka

Fausto Spoto Università di Verona, Italy - 2 / 135

Introduction

Fausto Spoto Università di Verona, Italy - 3 / 135

The mainstream view of blockchain

Fausto Spoto Università di Verona, Italy - 4 / 135

History

1988 proof of work (Dwork & Naor)

1991 a cryptographically secure chain of blocks (Haber & Stornetta)

199x smart contracts (Szabo)

2008 Bitcoin (Nakamoto)

2012 proof of stake (Peercoin)

2013 Ethereum (Buterin & Wood)

2014 proof of space (Burstcoin/Signum)

2014 Tendermint generic proof of stake engine (Kwon)

2022 Ethereum 2.0 moves to proof of stake

Fausto Spoto Università di Verona, Italy - 5 / 135

Distributed network

Fausto Spoto Università di Verona, Italy - 6 / 135

Cryptocurrencies

Fausto Spoto Università di Verona, Italy - 7 / 135

Bitcoin chart

Fausto Spoto Università di Verona, Italy - 8 / 135

Bitcoin capitalization (2018)

source: HowMuch.net, a financial literacy website

Fausto Spoto Università di Verona, Italy - 9 / 135

HowMuch.net

Credit cards transactions (billions, 2018) vs Bitcoin

Visa: around 451,639,000 transactions per day
UnionPay: around 268,579,000 transactions per day
Mastercard: around 246,448,000 transactions per day

Bitcoin: around 300,000 transactions per day

Fausto Spoto Università di Verona, Italy - 10 / 135

Bitcoin transaction fees

Independent from the transacted value

Fausto Spoto Università di Verona, Italy - 11 / 135

Credit cards transaction fees

Proportional to the transacted value

Fausto Spoto Università di Verona, Italy - 12 / 135

The hype cycle

Fausto Spoto Università di Verona, Italy - 13 / 135

Beyond the hype

Fausto Spoto Università di Verona, Italy - 14 / 135

Bitcoin

Fausto Spoto Università di Verona, Italy - 15 / 135

The internet of money

What we expect from money

money should be protected from counterfeiting (legality)

money should not be spent twice (uniqueness)

no one can claim that my money belongs to him (ownership)

money should be untained (fungibility)

money should be movable (liquidity)

Electronic money exists since decades (credit cards, online transactions)

Bitcoin provides a fully decentralized electronic cash system, for the first
time (a single State cannot shut down the bitcoin network)

“Bitcoin: A Peer-to-Peer Electronic Cash System” by Satoshi Nakamoto,
2008

Fausto Spoto Università di Verona, Italy - 16 / 135

The best reference

https://github.com/bitcoinbook/bitcoinbook

Fausto Spoto Università di Verona, Italy - 17 / 135

https://github.com/bitcoinbook/bitcoinbook

Bitcoin as a web service

The server keeps a map (ledger) user id ⇒ balance and accepts
transactions to transfer balances

Users interact through a browser (wallet) to ask to transfer balances

The server is actually a worldwide peer-to-peer (p2p) network of computers

Fausto Spoto Università di Verona, Italy - 18 / 135

Mobile wallets

At the first start-up, a bitcoin address is created for you, then transactions
from/to that address are tracked:

The address can be seen as our IBAN. Its creation is a local operation that
does not do anything on the network: fully anonymous

Fausto Spoto Università di Verona, Italy - 19 / 135

Address creation

When Alice’s wallet starts for the first time:

1 it generates a finite sequence of bits through a secure random
generator (a secret private key)

2 it computes the bitcoin address as an abstraction of the private key
(hashing)

3 it shows the bitcoin address as an alphanumeric string and as a
picture (QR code)

4 the address is not sensitive information: Alice can publish it in her
web page

5 the private key is sensitive information: Alice keeps it secret

a hardware wallet stores it in its internal memory
a desktop wallet stores it in Alice’s computer’s file system (!)
a mobile wallet stores it in Alice’s phone (!!!)
a web wallet stores it at a third-party service (!!!!!!!)

Fausto Spoto Università di Verona, Italy - 20 / 135

Alice charges her wallet with a transaction

she asks a friend to send bitcoins to her address

meets a bitcoin seller in person

earns bitcoin by working

uses a bitcoin ATM

uses a bitcoin currency exchange company

What is the price?

It is not set by the computer network! It’s a social agreement, the average
of the last sell operations. You can look online for it

Fausto Spoto Università di Verona, Italy - 21 / 135

Transactions form a chain, outputs can be change

Fausto Spoto Università di Verona, Italy - 22 / 135

Typical transaction: pay somebody and gets the change

Fausto Spoto Università di Verona, Italy - 23 / 135

Typical transaction: aggregate small notes into a larger one

Fausto Spoto Università di Verona, Italy - 24 / 135

Typical transaction: distribution

Fausto Spoto Università di Verona, Italy - 25 / 135

A DAG of transactions

Fausto Spoto Università di Verona, Italy - 26 / 135

How Alice’s wallet prepares a transaction

1 Alice’s wallet keeps a list of all known unspent outputs for the address
of Alice

if it does not know it, it can query the bitcoin network through an API

2 the wallet selects a subset inputs of the unspent outputs, enough to
cover the amount of the transaction and signs to prove she’s their
owner

any strategy can be applied here

3 the wallet specifies an output for the destination address of the
transaction and the amount ≥ 0 sent to that output

4 the wallet specifies a second output, normally Alice’s address itself,
and the change ≥ 0 sent back to Alice

5 the difference

fee =
∑

inputs − amount − change ≥ 0

is the network’s reward (and protection) for processing the transaction

Fausto Spoto Università di Verona, Italy - 27 / 135

How Alice sends the transaction

1 Alice’s wallet sends the bytes of the transaction to a node of the
bitcoin p2p network

2 the transaction gets forwarded among all peers (flooding)

3 the wallet of the destination will very soon see a transaction for its
address and can assume that it will eventually be processed
(unconfirmed transaction)

4 eventually, around 10 minutes later, the transaction will be processed
by the network and the wallet of the destination will notice that
(confirmed transaction)

5 after some time, around one hour, the transaction can be considered
as definitively processed (finalized transaction)

Merchants can wait for 3, 4 or 5 before handling over the good, depending
on the relevance of the transaction

Fausto Spoto Università di Verona, Italy - 28 / 135

Miners and Rewards

Miners are (some) nodes of the bitcoin network. They receive, forward and
aggregate transactions into collectors, called blocks

When a node creates a new block, it has the right to tag the block with a
bitcoin address µ, called the miner’s address:

the fees ϕ1 · · ·ϕn of the n transactions in the block go to µ

some amount of money ι is created out of thin air and goes to µ

Typically, µ belongs to the person/organization who owns the machine that
runs the node

ι is the inflation: it is computed through a fixed algorithm that makes it
decrease with the time and will eventually reach 0, the day when 21,000,000
total bitcoins will be mined

⇒ bitcoin is deflationary

Fausto Spoto Università di Verona, Italy - 29 / 135

Bitcoin supply over the years

Fausto Spoto Università di Verona, Italy - 30 / 135

How miners work

1 Each miner listens the p2p network for new transactions and stores
them in a temporary area called mempool

2 when enough new transactions are available in the mempool, it
selects some of them

typically, it selects those with the largest fees, but any other choice is
fine: different miners can use different strategies

3 it builds a new block (mining):

it adds the selected transactions
it adds a special coinbase transaction with no inputs, whose only
output is µ and whose amount is ι+

∑n
i=1 ϕi

it tags the block with a reference to the previous block
if no other miner has been faster, it forwards the new block to all its
peers

Fausto Spoto Università di Verona, Italy - 31 / 135

Block’s height, depth and confirmations

Fausto Spoto Università di Verona, Italy - 32 / 135

The transaction

no coins, no senders, no recipients, no balances, no accounts, no addresses

{
"vins": [

{
"txid": "7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18",

"vout": 0,

"unlock": "3045022100884d142d86652a3f47... 0484ecc0d46f..."

}
],

"vouts": [

{
"value": 0.01500000,

"lock": "DUP HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7

EQUALVERIFY CHECKSIG"

},
{

"value": 0.08450000,

"lock": "DUP HASH160 7f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a8

EQUALVERIFY CHECKSIG"

}
]

}

Fausto Spoto Università di Verona, Italy - 33 / 135

The real transaction

two new UTXOs (unspent transaction outputs)

{
"vins": [

{
"txid": "7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18",

"vout": 0,

"unlock": "3045022100884d142d86652a3f47... 0484ecc0d46f..."

}
],

"vouts": [

{
"value": 0.01500000,

"lock": "DUP HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7

EQUALVERIFY CHECKSIG"

},
{

"value": 0.08450000,

"lock": "DUP HASH160 7f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a8

EQUALVERIFY CHECKSIG",

}
]

}

Fausto Spoto Università di Verona, Italy - 34 / 135

The real transaction

reference to an old UTXO (soon to be TXO)

{
"vins": [

{
"txid": "7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18",

"vout": 0,

"unlock": "3045022100884d142d86652a3f47... 0484ecc0d46f..."

}
],

"vouts": [

{
"value": 0.01500000,

"lock": "DUP HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7

EQUALVERIFY CHECKSIG"

},
{

"value": 0.08450000,

"lock": "DUP HASH160 7f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a8

EQUALVERIFY CHECKSIG"

}
]

}

Fausto Spoto Università di Verona, Italy - 35 / 135

The real transaction

the amount of the first new UTXO (in satoshis)

{
"vins": [

{
"txid": "7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18",

"vout": 0,

"unlock": "3045022100884d142d86652a3f47... 0484ecc0d46f..."

}
],

"vouts": [

{
"value": 0.01500000,

"lock": "DUP HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7

EQUALVERIFY CHECKSIG"

},
{

"value": 0.08450000,

"lock": "DUP HASH160 7f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a8

EQUALVERIFY CHECKSIG"

}
]

}

Fausto Spoto Università di Verona, Italy - 36 / 135

The real transaction

the unlocking or witness script of the first new UTXO (crypto-puzzle)

{
"vins": [

{
"txid": "7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18",

"vout": 0,

"unlock": "3045022100884d142d86652a3f47... 0484ecc0d46f..."

}
],

"vouts": [

{
"value": 0.01500000,

"lock": "DUP HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7

EQUALVERIFY CHECKSIG"

},
{

"value": 0.08450000,

"lock": "DUP HASH160 7f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a8

EQUALVERIFY CHECKSIG"

}
]

}

Fausto Spoto Università di Verona, Italy - 37 / 135

The real transaction

the hash of the transaction whose voutth UTXO is being spent

{
"vins": [

{
"txid": "7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18",

"vout": 0,

"unlock": "3045022100884d142d86652a3f47... 0484ecc0d46f..."

}
],

"vouts": [

{
"value": 0.01500000,

"lock": "DUP HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7

EQUALVERIFY CHECKSIG"

},
{

"value": 0.08450000,

"lock": "DUP HASH160 7f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a8

EQUALVERIFY CHECKSIG"

}
]

}

Fausto Spoto Università di Verona, Italy - 38 / 135

The real transaction

the unlocking script (usually digital signature + public key)

{
"vins": [

{
"txid": "7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18",

"vout": 0,

"unlock": "3045022100884d142d86652a3f47... 0484ecc0d46f..."

}
],

"vouts": [

{
"value": 0.01500000,

"lock": "DUP HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7

EQUALVERIFY CHECKSIG"

},
{

"value": 0.08450000,

"lock": "DUP HASH160 7f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a8

EQUALVERIFY CHECKSIG",

}
]

}

Fausto Spoto Università di Verona, Italy - 39 / 135

The real transaction

scripts are written in the Script programming language

{
"vins": [

{
"txid": "7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18",

"vout": 0,

"unlock": "3045022100884d142d86652a3f47... 0484ecc0d46f..."

}
],

"vouts": [

{
"value": 0.01500000,

"lock": "DUP HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7

EQUALVERIFY CHECKSIG"

},
{

"value": 0.08450000,

"lock": "DUP HASH160 7f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a8

EQUALVERIFY CHECKSIG"

}
]

}

Fausto Spoto Università di Verona, Italy - 40 / 135

The Script programming language

Reverse-polish stack-based stateless language

sequence

conditional

repetition

⇒ Turing incomplete

Why Turing incomplete?

1 predictable execution time

2 guaranteed termination

denial of service attacks are impossible at language level

Fausto Spoto Università di Verona, Italy - 41 / 135

Script validity

A program in the Script language is valid if its execution does not stop with
failure and terminates with a stack whose topmost element is TRUE

Execution proceeds left-to-right

Let us execute 2 3 ADD 5 EQUAL to see if it’s valid

Fausto Spoto Università di Verona, Italy - 42 / 135

2 3 ADD 5 EQUAL

Fausto Spoto Università di Verona, Italy - 43 / 135

2 3 ADD 5 EQUAL

Fausto Spoto Università di Verona, Italy - 43 / 135

2 3 ADD 5 EQUAL

Fausto Spoto Università di Verona, Italy - 43 / 135

2 3 ADD 5 EQUAL

Fausto Spoto Università di Verona, Italy - 43 / 135

2 3 ADD 5 EQUAL

The program is valid!

Fausto Spoto Università di Verona, Italy - 43 / 135

Other examples of (in-)valid scripts

These are all valid

TRUE

FALSE TRUE

2 7 ADD 3 SUB 1 ADD 7 EQUAL

2 7 EQUAL IF FALSE ELSE TRUE ENDIF

These are all invalid

FALSE

2 7 EQUAL

2 7 EQUAL IF TRUE ELSE FALSE ENDIF

2 7 EQUAL TRUE ENDIF

Fausto Spoto Università di Verona, Italy - 44 / 135

The validation algorithm for bitcoin transactions

previous_tx = { // this transaction has hash H

"vins":

"vouts": [{ "value":, "lock": "....." },]

}

tx = {
"vins": [{ "txid": H, "vout":, "unlock": "....." },],

"vouts":

}

boolean is_valid(Transaction tx) {
for each (txid, vout, unlock) in tx.vins

previous_tx = get_transaction(txid)

lock = previous_tx.vouts[vout].lock

if (unlock lock is invalid)

return false

return true

}

Fausto Spoto Università di Verona, Italy - 45 / 135

The typical P2PKH script (pay to publickey hash)

“I want to send some value to address”

previous_tx = { // this transaction has hash H

"vins":

"vouts": [{ "value": ..., "lock": DUP HASH160 <address> EQUALVERIFY CHECKSIG },
.....]

}

“I’m address, here is my signature, use that value”

tx = {
"vins": [{ "txid": H, "vout":, "unlock": <sig> <PubK>},],

"vouts":

}

unlock lock

<sig> <PubK> DUP HASH160 <address> EQUALVERIFY CHECKSIG

The bitcoin address is often referred to as PublicKHash

Fausto Spoto Università di Verona, Italy - 46 / 135

<sig> <PubK> DUP HASH160 <address> EQUALVERIFY

CHECKSIG

+

CHECKSIG verifies that sig is a signature of the transaction generated by using
the private key corresponsing to pubK

This script gives proof of ownership!

Fausto Spoto Università di Verona, Italy - 47 / 135

<sig> <PubK> DUP HASH160 <address> EQUALVERIFY

CHECKSIG

+

CHECKSIG verifies that sig is a signature of the transaction generated by using
the private key corresponsing to pubK

This script gives proof of ownership!

Fausto Spoto Università di Verona, Italy - 47 / 135

<sig> <PubK> DUP HASH160 <address> EQUALVERIFY

CHECKSIG

+

CHECKSIG verifies that sig is a signature of the transaction generated by using
the private key corresponsing to pubK

This script gives proof of ownership!

Fausto Spoto Università di Verona, Italy - 47 / 135

<sig> <PubK> DUP HASH160 <address> EQUALVERIFY

CHECKSIG

+

CHECKSIG verifies that sig is a signature of the transaction generated by using
the private key corresponsing to pubK

This script gives proof of ownership!

Fausto Spoto Università di Verona, Italy - 47 / 135

<sig> <PubK> DUP HASH160 <address> EQUALVERIFY

CHECKSIG

+

CHECKSIG verifies that sig is a signature of the transaction generated by using
the private key corresponsing to pubK

This script gives proof of ownership!

Fausto Spoto Università di Verona, Italy - 47 / 135

<sig> <PubK> DUP HASH160 <address> EQUALVERIFY

CHECKSIG

+

CHECKSIG verifies that sig is a signature of the transaction generated by using
the private key corresponsing to pubK

This script gives proof of ownership!

Fausto Spoto Università di Verona, Italy - 47 / 135

<sig> <PubK> DUP HASH160 <address> EQUALVERIFY

CHECKSIG

+

CHECKSIG verifies that sig is a signature of the transaction generated by using
the private key corresponsing to pubK

This script gives proof of ownership!

Fausto Spoto Università di Verona, Italy - 47 / 135

<sig> <PubK> DUP HASH160 <address> EQUALVERIFY

CHECKSIG

+

CHECKSIG verifies that sig is a signature of the transaction generated by using
the private key corresponsing to pubK

This script gives proof of ownership!

Fausto Spoto Università di Verona, Italy - 47 / 135

Properties of Bitcoin’s transactions

Script programs are only used to check the validity of the transactions

Script programs never modify the state of the system

Transactions undo is very easy (they just move money around)

Fausto Spoto Università di Verona, Italy - 48 / 135

Block headers contain the hash of all transactions in the
block (Merkle root)

Fausto Spoto Università di Verona, Italy - 49 / 135

Merkle trees provide an efficient inclusion test

I know the root hash and want to know if the black HK is included

The four blue hashes can be given to me as that proof of inclusion (authen-
tication path)

Fausto Spoto Università di Verona, Italy - 50 / 135

Proof of work

Fausto Spoto Università di Verona, Italy - 51 / 135

Mining

The vision of the miner

The goal of mining is to mint new coins and earn money

The vision of Nakamoto

The goal of mining is to secure the bitcoin network

Fausto Spoto Università di Verona, Italy - 52 / 135

Miners can only mine correct blocks

New valid block = it respects the consensus rules

the structure of data in the header and transactions must be correct

transactions have at least one input (but for coinbase transactions)

transactions have at least one output

transactions do not create money (but for coinbase transactions)

coinbase transactions have a correct reward

transactions are all valid (their unlocking scripts match the
corresponsing locking scripts)

transaction inputs refer to unspent UTXO only (no double-spending
inside the same history)

. . .

But what about fairness and progress?

Fausto Spoto Università di Verona, Italy - 53 / 135

How to kill a dictator

Without proof of work

A single node dictates the history of the blockchain if it is faster than each
other node

With proof of work

A single node dictates the history of the blockchain if it is faster than the
sum of all other nodes

Fausto Spoto Università di Verona, Italy - 54 / 135

How to kill a dictator

Without proof of work

A single node dictates the history of the blockchain if it is faster than each
other node

With proof of work

A single node dictates the history of the blockchain if it is faster than the
sum of all other nodes

Fausto Spoto Università di Verona, Italy - 54 / 135

Proof of work (PoW)

Add the following consensus rule

The hash of valid blocks is smaller than a given constant difficulty

Miners must work hard now

1 build a new block

2 set the nonce field of its header to a random value

3 compute the hash h of the header

4 if h < difficulty stop

5 otherwise, go back to step 2 and try again

the header of the resulting block is the PoW

the time to solve this puzzle is inversely proportional to difficulty

the algorithm can be easily run in parallel, GPU, ASIC

Fausto Spoto Università di Verona, Italy - 55 / 135

Fork: all nodes start with the same vision

Fausto Spoto Università di Verona, Italy - 56 / 135

Fork: two nodes expand the blockchain simultaneously

Fausto Spoto Università di Verona, Italy - 57 / 135

Fork: the network is split

Fausto Spoto Università di Verona, Italy - 58 / 135

Fork: either chain is expanded further

Fausto Spoto Università di Verona, Italy - 59 / 135

Fork: the network reconverges

Fausto Spoto Università di Verona, Italy - 60 / 135

State update in case of history change

1 the transactions in the discarded chain must be undone (easy in
Bitcoin)

2 the transactions in the longest chain must be done (easy)

Fausto Spoto Università di Verona, Italy - 61 / 135

The magic behind PoW

It makes expensive the production of new blocks, in time and cost (electric-
ity)

who produces invalid blocks sees its blocks rejected by peers and
wastes resources

a single node cannot drive the history, since it must fight against the
hashing power of all other nodes together

forks become unlikely, since the probability of two nodes finding a
new block at the same time is small

Fausto Spoto Università di Verona, Italy - 62 / 135

Difficulty over time

Fausto Spoto Università di Verona, Italy - 63 / 135

PoW costs electricity

2019

Fausto Spoto Università di Verona, Italy - 64 / 135

Consensus attacks

Two main categories

1 history change (for the topmost few blocks)

2 denial of service (against specific transactions or accounts)

Possible if the attacker controls a large portion of the total hashing power

Fausto Spoto Università di Verona, Italy - 65 / 135

Bitcoin has probabilistic finality

Fausto Spoto Università di Verona, Italy - 66 / 135

Ethereum

Fausto Spoto Università di Verona, Italy - 67 / 135

The world computer

An open source, globally decentralized computing infrastructure that exe-
cutes programs called smart contracts, written in a Turing-complete pro-
gramming language, translated into bytecode and run on a virtual machine.
It uses a blockchain to synchronize and store the system’s singleton state
changes (key/value tuples), along with a cryptocurrency called ether to me-
ter and constrain execution resource costs. It enables developers to build
decentralized applications with built-in economic functions

Fausto Spoto Università di Verona, Italy - 68 / 135

DApps

DApps = smart contracts (Solidity) + web3 frontend (JavaScript. . .)

Fausto Spoto Università di Verona, Italy - 69 / 135

People behind Ethereum

Vitalik Buterin Gavin Wood

Fausto Spoto Università di Verona, Italy - 70 / 135

Suggested references

Yellow Paper:
https://ethereum.github.io/yellowpaper/paper.pdf

The leftmost: https://github.com/ethereumbook/ethereumbook

Fausto Spoto Università di Verona, Italy - 71 / 135

https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/ethereumbook/ethereumbook

Deterministic (infinite) state machine

A very abstract view of blockchain

A blockchain is a distributed ledger of transaction requests, aggregated in
blocks

Bitcoin: transaction requests require a change of the set of UTXOs

Ethereum: transaction requests require a change of a map key → value

The change must be deterministic otherwise consensus cannot be reached!

Fausto Spoto Università di Verona, Italy - 72 / 135

Externally owned accounts (EOA) and contracts

EOAs have keys, contracts have code, both have an address

Fausto Spoto Università di Verona, Italy - 73 / 135

Ethereum transactions

A transaction is a signed message originated by an EOA, transmitted by the
Ethereum network, and recorded on the Ethereum blockchain:

nonce: sequence number per each originating EOA

gas price: maximum willing to pay

gas limit: maximum willing to consume

to: recipient (destination address)

value: ether sent to destination

data: generic payload (method name, parameters, contract code. . .)

signature: ECDSA signature of the originating EOA

The address of the originating EOA is implied by the signature

Fausto Spoto Università di Verona, Italy - 74 / 135

Many kinds of transactions

Fausto Spoto Università di Verona, Italy - 75 / 135

The nonce

The nonce of an EOA

A scalar value equal to the number of transactions sent from the EOA

Wallets keep track of nonces

They increase it and attach to each transaction they create per originating
EOA

Nodes check nonces

They count the number n of transactions originated by the EOA. If the
nonce is smaller than n + 1, the transaction is rejected. If the nonce is
greater than n + 1, the transaction is delayed and not yet executed:

this guarantees transaction ordering

and avoids transaction replaying

Fausto Spoto Università di Verona, Italy - 76 / 135

Why Ethereum’s transactions have a nonce?

Bitcoin’s transactions can only transform UTXOs into TXOs

It is not possible to spend a UTXO again, inside the same history: it would
be against the consensus rules

⇒ Executing a valid transaction today makes it invalid tomorrow

Ethereum’s transactions can induce any state change or fail

A valid (syntactically correct) transaction can always be executed in
Ethereum

⇒ Executing a valid transaction today doesn’t make it invalid tomorrow
(without a nonce)

Fausto Spoto Università di Verona, Italy - 77 / 135

The state of Ethereum

The state of Ethereum is a global singleton map σ : key → value

The state is not in blockchain!

Each node keeps and maintains its own copy in a private database

API of the state

1 value=get(address)

2 put(address, value)

Fausto Spoto Università di Verona, Italy - 78 / 135

Encoding data into the state

Store the balance of an EOA

put(address of EOA, balance)

Read the balance of an EOA

get(address of EOA)

Fausto Spoto Università di Verona, Italy - 79 / 135

Encoding data into the state

EOA installs a smart contract

put(hash(address of EOA, nonce of EOA)︸ ︷︷ ︸
address of the new smart contract

, bytecode of smart contract)

A smart contract writes v into its nth instance variable (field)

put(hash(address of smart contract, n)︸ ︷︷ ︸
address of the n−th field

, v)

A smart contract reads from its nth instance variable (field)

get(hash(address of smart contract, n)︸ ︷︷ ︸
address of the n−th field

)

Fausto Spoto Università di Verona, Italy - 80 / 135

The hash of the state

In Bitcoin, the header of a block contains the hash of the transactions in
the block

That is, the head of the Merkle tree of transactions. Miners must execute
the transactions to validate them, since invalid transactions would make the
whole block invalid, which would make the miner lose money

In Ethereum, the header of a block contains the hash of the state at the
end of the execution of the transactions in the block

Since syntactically correct transactions are always valid, this obliges the
miners to execute the transactions

API of the state

1 value=get(address)

2 put(address, value)

3 h=get hash()

Fausto Spoto Università di Verona, Italy - 81 / 135

The state of a node must change across different views

1 the transactions in the discarded chain must be undone (hard in
Ethereum)

2 the transactions in the longest chain must be done (easy)

Fausto Spoto Università di Verona, Italy - 82 / 135

Ethereum = Bitcoin + Git

Undo of state updates, up to the state at the end of an old block

checkout(old block.header.state hash)

(possible through a Merkle-Patricia trie)

The final API of the state

1 value=get(address)

2 put(address, value)

3 h=get hash()

4 checkout(h)

Fausto Spoto Università di Verona, Italy - 83 / 135

Smart contracts

Fausto Spoto Università di Verona, Italy - 84 / 135

A smart contract is. . .

a computer program (not smart nor a contract)

immutable

deterministic

operating on restricted data

running on a decentralized world computer

In Ethereum:

compiled into EVM bytecode

installed in blockchain

has no keys

its installer gets no automatic privileges

runs after a transaction initiated by an EOA

or a chain of transactions initiated by an EOA
no parallelism, no background processing

transactions are atomic

Fausto Spoto Università di Verona, Italy - 85 / 135

Gavin Wood’s Solidity

There are many programming languages for Ethereum smart contracts, but
Solidity is the de facto standard:

imperative

vaguely object-oriented

in continuous evolution

non-strongly-typed

unorthogonal features

sequence

conditional

repetition

⇒ Turing complete (bug or feature?)

Fausto Spoto Università di Verona, Italy - 86 / 135

A simple Solidity example

Fausto Spoto Università di Verona, Italy - 87 / 135

Basic Solidity types

bool

with constants true and false and usual operators

int, uint

signed or unsigned, with usual operators, in increments of 8 bit size: uint8,
uint16, int24. . . . Without specification, they stand for int256 and uint256,
respectively

fixedM × N, ufixedM × N

fixed point arithmetic, signed or unsigned, M bits, N decimals after the
point: currently not implemented

Fausto Spoto Università di Verona, Italy - 88 / 135

Basic Solidity types

bytesN

fixed-size array of bytes, of length N

bytes or string

variable-sized arrays of bytes

Arrays

uint32[][5] is a fixed size array of five dynamic arrays of 32 bits unsigned
integers

Enumerations

enum NAME { A, B, ... }

Fausto Spoto Università di Verona, Italy - 89 / 135

Basic Solidity types

Structures

struct pair {

int16 x;

uint8 y;

}

Mappings

mapping(address => uint256) balances;

A field of type mapping spreads its values into the state through hashing:
balances[k]=v executes put(hash(balances,k)︸ ︷︷ ︸

address of balances[k]

, v)

⇒ mappings default to 0

⇒ there is no containsKey (you need a sentinel value)

⇒ it is not possible to compute the key set or value set of a mapping

⇒ it is not possible to iterate on a mapping

Fausto Spoto Università di Verona, Italy - 90 / 135

A simple Ponzi scheme

The first investment will be burned to address 0x0

Fausto Spoto Università di Verona, Italy - 91 / 135

Gas consumption

Each bytecode instruction and transaction type has a gas cost

it is possible to compute in advance the gas cost of simple functions
(use estimateGas in the web3 library for instance)

the result is wrong in the presence of loops or recursion!
obvious, since gas cost computation is harder than complexity analysis
which can be used to decide termination of programs

⇒ an algorithm for computing gas costs in advance cannot exist

in general, it is important to know which operations (might) cost
much gas, and avoid them

loops over unbounded dynamic arrays
calls to unknown contracts

Fausto Spoto Università di Verona, Italy - 92 / 135

A gradual Ponzi scheme

Fausto Spoto Università di Verona, Italy - 93 / 135

Type address: Solidity is not strongly-typed

1 casts are not checked
2 parameter types are just Christmas decorations

A function declaring a formal parameter of type address or explicitly C can
actually receive any value, of any type, also completely unrelated to C.
No run-time error occurs. Callers can inject malicious code through such
parameters!

Never talk to strangers!

Fausto Spoto Università di Verona, Italy - 94 / 135

The DAO attack (2016): they talked to strangers. . .

Fausto Spoto Università di Verona, Italy - 95 / 135

The DAO attack (2016)

The most famous reentrancy exploit

the DAO was a contract for autonomous decentralized organizations

the attacker used reentrancy to steal 50M$ equivalent of ETH

the Ethereum team decided to make the consensus rules more
restrictive in order to make such transactions illegal and get some of
that money back

some node maintainers didn’t accept the change and continued
operating with the old rules and another chain id, leading to a
network hard fork known as Ethereum Classic

Fausto Spoto Università di Verona, Italy - 96 / 135

Security best practice

Minimalism: the simpler, the better

Code reuse: DRY, use well-known libraries

Study: be aware of well-known issues and solutions

Readability: simpler audit

Test: try corner cases

Analysis: static or dynamic, still in infancy

Considering the importance of security for smart contracts, it is question-
able to have invented Solidity (hard, new, weakly-typed, complex low-level
semantics) for writing such delicate pieces of software

Fausto Spoto Università di Verona, Italy - 97 / 135

Tendermint

Fausto Spoto Università di Verona, Italy - 98 / 135

Proof of. . .

Who decides the next block?

Proof of work [PoW] (who works harder and is lucky)

proof of stake [PoS] (who commits more money)

proof of space (who commits more disk space)

proof of authority (who has more authority)

. . .

PoS is a variant of Practical Byzantine Fault Tolerance (BFT)

Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance and
Proactive Recovery. ACM Trans. Comput. Syst., 20(4):398–461, November
2002

Fausto Spoto Università di Verona, Italy - 99 / 135

Tendermint (now Ignite): ignite.com

Jae Kwon. Tendermint: Consensus without Mining, 2014.
https://tendermint.com/static/docs/tendermint.pdf

a dynamic set V of validators decides the next block

V might be different for each block

but deterministically computed from the previous history

at each height H, each validator v ∈ V :
1 identifies (deterministically) a validator p ∈ V that is expected to

aggregate some transactions and that proposes a next block b
2 if v considers b valid, it pre-votes b
3 v counts how many validators pre-voted b
4 if v counted at least 2

3 pre-votes, v pre-commits b
5 v counts how many validators pre-committed b
6 if v counted at least 2

3 pre-commits, v commits b and increases H
7 v goes back to step 1

Tendermint is BFT. If step 1 or rewards are based on stakes, then it is PoS

Fausto Spoto Università di Verona, Italy - 100 / 135

ignite.com
https://tendermint.com/static/docs/tendermint.pdf

Inside a Tendermint block

Fausto Spoto Università di Verona, Italy - 101 / 135

Proof of stake: can we trust it?

Yes we can: Ethereum successfully moved from PoW to PoS

it’s a special case, whose coin is very valuable: validators are a serious
form of investment

No we can’t: all new blockchain projects use PoS nowadays

validators have no interest in being validators (the coin has no value)

validators are afraid of having a machine always connected and open
to the internet

validators find it expensive to maintain and update their machine

validators lose cryptocurrency if a blackout or network failure isolate
their machine

please ask this question: “How many validators your blockchain
project has, where are they and who maintains such machines”
(spoiler: very few, in the same room, all maintained by a single
person)

Fausto Spoto Università di Verona, Italy - 102 / 135

A layered implementation in Golang

ABCI: Application BlockChain Interface

Fausto Spoto Università di Verona, Italy - 103 / 135

The ABCI

https://docs.tendermint.com/master/spec/abci/abci.html

checkTx: called before entering the mempool and to verify blocks

⇒ only transactions that satisfy checkTx are added in blocks
must not modify the state of the application

beginBlock: called at the beginning of a block; receives information
about the validator set of the previous block and which of them
signed the previous block

deliverTx: called for each transaction added to a block: it executes
the transaction by modifying the state of the application

endBlock: called at the end of a block; provides information about the
validator set for the next block

commit: called when a block is being committed; provides the hash of
the state of the application
query: called when the user wants to read data from the blockchain

Fausto Spoto Università di Verona, Italy - 104 / 135

https://docs.tendermint.com/master/spec/abci/abci.html

The database of blocks and the application state

Fausto Spoto Università di Verona, Italy - 105 / 135

The application state

It must have a function to compute its hash

Only that hash is reported in blockchain, for consensus

It must allow transactional, atomic updates

Between beginBlock and commit

The API of the state

Tendermint enjoys finality: there are no forks

⇒ one never needs to come back in time to the state of a previous block

1 get data

2 put data

3 h=get hash()

4 checkout(h) ⇒ big opportunity for garbage collection!

Fausto Spoto Università di Verona, Italy - 106 / 135

Cosmos: a Tendermint application in Golang

Fausto Spoto Università di Verona, Italy - 107 / 135

Hotmoka + Takamaka

Fausto Spoto Università di Verona, Italy - 108 / 135

Hotmoka (Fausto Spoto, 2019–2021): www.hotmoka.io

An open-source implementation of a network of nodes:

nodes of a blockchain

IoT devices

computers in the cloud

Requests are OO-based

install code in the node

create an object

call a method of an object

methods are implemented in Takamaka (subset of Java)

Fausto Spoto Università di Verona, Italy - 109 / 135

www.hotmoka.io

Hotmoka nodes can be Tendermint applications

Fausto Spoto Università di Verona, Italy - 110 / 135

An OO state (hash is sha256)

Blockchain

request1

request2

request3

request4

Histories

hash(request4) => response4

hash(request3) => response3

hash(request2) => response2

hash(request1) => response1

Responses

State

obj1 => hash, hash, hash,

obj2 => hash, hash, hash,

obj3 => hash, hash, hash,

hash of state

hash of previous

instrumented jar

field updates

the Responses map

entries inside

Fausto Spoto Università di Verona, Italy - 111 / 135

The state contains actual Java objects

manifest: 42a8a11aee0405aee5775514b3b0456c7740bbb015b4b87df4776e6e4add7668#0︸ ︷︷ ︸
machine-independent memory address of an object

moka state 42a8a11aee0405aee5775514b3b0456c7740bbb015b4b87df4776e6e4add7668#0 --url panarea.hotmoka.io

class io.takamaka.code.governance.Manifest (from jar installed at 02dfd29348abaa44f7205251...)

allowsSelfCharged:boolean = false

allowsUnsignedFaucet:boolean = true

chainId:java.lang.String = "chain-ASdWiN"

gamete:io.takamaka.code.lang.Account = 4f7d7ca1fbea152d8f323c21e1abcfa1d979c7c4ea667d8457381a26b08a2d71#0

gasStation:io.takamaka.code.governance.GasStation = 42a8a11aee0405aee5775514b3b0456c7740bbb015b4b8...

maxCumulativeSizeOfDependencies:long = 10000000

maxDependencies:int = 20

maxErrorLength:int = 300

signature:java.lang.String = "ed25519"

skipsVerification:boolean = false

validators:io.takamaka.code.governance.Validators = 42a8a11aee0405aee5775514b3b0456c7740bbb015b4b8...

versions:io.takamaka.code.governance.Versions = 42a8a11aee0405aee5775514b3b0456c7740bbb015b4b87df4...

^ balance:java.math.BigInteger = 0 (inherited from io.takamaka.code.lang.Contract)

^ balanceRed:java.math.BigInteger = 0 (inherited from io.takamaka.code.lang.Contract)

^ nonce:java.math.BigInteger = 227 (inherited from io.takamaka.code.lang.ExternallyOwnedAccount)

^ publicKey:java.lang.String = "" (inherited from io.takamaka.code.lang.ExternallyOwnedAccount)

Fausto Spoto Università di Verona, Italy - 112 / 135

How can Hotmoka identify updates to fields of objects?

The original code

public class C {

public int i;

public void foo() {

i = 42;

}

}

No way to know if i changed its value during the execution of foo()

Fausto Spoto Università di Verona, Italy - 113 / 135

How can Hotmoka identify updates to fields of objects?

The instrumented code

public class C extends Storage {

public int i, old i; // aliased at method start

public void foo() {

i = 42;

}

}

i changed its value during the execution of foo() iff at the end i̸=old i

Fausto Spoto Università di Verona, Italy - 114 / 135

How can Hotmoka enforce gas limits?

The original code

public class C {

public void foo() {

while (...) {

...

}

}

}

This loop might run for very long or even forever

Fausto Spoto Università di Verona, Italy - 115 / 135

How can Hotmoka enforce gas limits?

The instrumented code

static long counter;

public class C {

public void foo() {

while (...) {

if (counter++ >= gaslimit)

throw new OutOfGasError();

...

}

}

}

Actual gas costs are more fine-grained

Fausto Spoto Università di Verona, Italy - 116 / 135

Verification and instrumentation of jars in state

Each jar that gets installed in a Hotmoka node undergoes two processes:
1 Verification: absence of frequent errors

objects stored in state extend Storage

non-deterministic or non-terminating library code is not used
no synchronization
no native code
no dangerous bytecodes
no finalizers
no static fields (mostly)
code annotations are used correctly
. . .

2 Instrumentation

fields of Storage classes get duplicated
gas metering is weaved into the code
code annotations get implemented by magic
caller() is given semantics
. . .

Fausto Spoto Università di Verona, Italy - 117 / 135

The Takamaka programming language

Takamaka is the subset of Java that passes the verification of a Hotmoka
node. It uses code annotations to implement contract-based aspects:

@FromContract annotates something that can only be called by a
contract, not by any other code; hence, it has a caller()

@Payable annotates something whose execution requires to pay some
cryptocurrency units

@View annotates something whose execution can be run for free,
without paying for its gas: it must not generate any update at its end
(pure code)

Takamaka comes equipped with a support library (io-takamaka-code) that
defines such annotations and other typical classes that are useful for
programming smart contracts (tokens, NFTs, DAOs)

Fausto Spoto Università di Verona, Italy - 118 / 135

An example of a Takamaka smart contract

import static io.takamaka.code.lang.Takamaka.require;

import java.math.BigInteger;

import io.takamaka.code.lang.Contract;

import io.takamaka.code.lang.FromContract;

import io.takamaka.code.lang.Payable;

import io.takamaka.code.lang.PayableContract;

import io.takamaka.code.lang.View;

public class SimplePonzi extends Contract {

private final BigInteger _10 = BigInteger.valueOf(10L), _11 = BigInteger.valueOf(11L);

private PayableContract currentInvestor;

private BigInteger currentInvestment = BigInteger.ZERO;

public @Payable @FromContract(PayableContract.class) void invest(BigInteger amount) {

BigInteger minimum = currentInvestment.multiply(_11).divide(_10);

require(amount.compareTo(minimum) >= 0, () -> "you must invest at least " + minimum);

if (currentInvestor != null)

currentInvestor.receive(amount); // no risk of reentrancy

currentInvestor = (PayableContract) caller();

currentInvestment = amount;

}

public @View BigInteger getCurrentInvestment() {

return currentInvestment;

}

}

Fausto Spoto Università di Verona, Italy - 119 / 135

An insurance smart contract in Takamaka

The contract allows one to insure specific days of the year

If it rains on those days, one will get an indemnization larger than the cost
of the insurance

much larger in summer

just a bit larger in winter

The contract provides the following functionalities:

construction, upon specification of the oracle:

@FromContract @Payable Insurance(BigInteger amount, Contract oracle)

purchase of an insurance for specific days:

@FromContract(PayableContract.class) @Payable void buy
(long amount, int day, int month, int year, int duration)

notification of rain and indemnization:

@FromContract void itRains()

Fausto Spoto Università di Verona, Italy - 120 / 135

An insurance contract

public class Insurance extends Contract {

public final static long MIN = 1_000, MAX = 1_000_000_000;

private final Contract oracle;

private final StorageSet<InsuredDay> insuredDays = new StorageTreeSet<>();

public @FromContract @Payable Insurance(BigInteger amount, Contract oracle) {

this.oracle = oracle;

}

// inner class

private static class InsuredDay extends Storage { /* not shown */ }

public @FromContract(PayableContract.class) @Payable void buy

(long amount, int day, int month, int year, int duration) { /* shown later */ }

public @FromContract void itRains() { /* shown later */ }

}

Fausto Spoto Università di Verona, Italy - 121 / 135

Buy an insurance

public @FromContract(PayableContract.class) @Payable void buy

(long amount, int day, int month, int year, int duration) {

require(duration >= 1, "you must insure at least one day");

require(duration <= 7, "you cannot insure more than a week");

require(amount >= MIN * duration,

() -> "we insure a single day for at least " + MIN + " units of coin");

require(amount <= MAX * duration,

() -> "we insure a single day for up to " + MAX + " units of coin");

// if the date is wrong, this generates an exception

LocalDate start = LocalDate.of(year, month, day);

PayableContract payer = (PayableContract) caller();

for (int offset = 0; offset < duration; offset++)

insuredDays.add(new InsuredDay

(payer, amount / duration, start.plusDays(offset)));

}

Fausto Spoto Università di Verona, Italy - 122 / 135

Pay the indemnization

public @FromContract void itRains() {

require(caller() == oracle, "only the oracle can call this method");

// pay who insured today

insuredDays.stream()

.filter(InsuredDay::isToday)

.forEachOrdered(insuredDay ->

insuredDay.payer.receive(insuredDay.indemnization()));

// clean-up the set of insured days

insuredDays.stream()

.filter(InsuredDay::isTodayOrBefore)

.forEachOrdered(insuredDays::remove);

}

Fausto Spoto Università di Verona, Italy - 123 / 135

On-chain verification: incorrect use of annotations

Assume that the programmer forgets the FromContract annotation in buy

public @FromContract(PayableContract.class) @Payable void buy (long

amount, int day, int month, int year, int duration)

mvn clean package ⇒ regenerates target/insurance-0.0.1.jar

Let’s try to install this version of the jar
moka install

06aa6a1afabc82c7161ffcdc2391a2136101aaeb94f64edd53a1d0d1436d610e#0

target/insurance-0.0.1.jar

--url panarea.hotmoka.io

Do you really want to spend up to 852500 gas units to install the jar [Y/N] Y

total gas consumed: 852500

for CPU: 255

for RAM: 1326

for storage: 381762

for penalty: 469157 !!!!!!!

io.hotmoka.beans.TransactionException:

io.takamaka.code.verification.VerificationException:

it/univr/insurance/Insurance.java method buy:

@Payable can only be applied to a @FromContract method or constructor

Fausto Spoto Università di Verona, Italy - 124 / 135

On-chain verification: incorrect use of annotations

Assume that the programmer forgets the FromContract annotation in buy

public @FromContract(PayableContract.class) @Payable void buy (long

amount, int day, int month, int year, int duration)

mvn clean package ⇒ regenerates target/insurance-0.0.1.jar

Let’s try to install this version of the jar
moka install

06aa6a1afabc82c7161ffcdc2391a2136101aaeb94f64edd53a1d0d1436d610e#0

target/insurance-0.0.1.jar

--url panarea.hotmoka.io

Do you really want to spend up to 852500 gas units to install the jar [Y/N] Y

total gas consumed: 852500

for CPU: 255

for RAM: 1326

for storage: 381762

for penalty: 469157 !!!!!!!

io.hotmoka.beans.TransactionException:

io.takamaka.code.verification.VerificationException:

it/univr/insurance/Insurance.java method buy:

@Payable can only be applied to a @FromContract method or constructor

Fausto Spoto Università di Verona, Italy - 124 / 135

On-chain verification: incorrect use of annotations

Assume that the programmer forgets the FromContract annotation in buy

public @FromContract(PayableContract.class) @Payable void buy (long

amount, int day, int month, int year, int duration)

mvn clean package ⇒ regenerates target/insurance-0.0.1.jar

Let’s try to install this version of the jar
moka install

06aa6a1afabc82c7161ffcdc2391a2136101aaeb94f64edd53a1d0d1436d610e#0

target/insurance-0.0.1.jar

--url panarea.hotmoka.io

Do you really want to spend up to 852500 gas units to install the jar [Y/N] Y

total gas consumed: 852500

for CPU: 255

for RAM: 1326

for storage: 381762

for penalty: 469157 !!!!!!!

io.hotmoka.beans.TransactionException:

io.takamaka.code.verification.VerificationException:

it/univr/insurance/Insurance.java method buy:

@Payable can only be applied to a @FromContract method or constructor

Fausto Spoto Università di Verona, Italy - 124 / 135

On-chain verification: incorrect use of annotations

Assume that the programmer forgets the FromContract annotation in buy

public @FromContract(PayableContract.class) @Payable void buy (long

amount, int day, int month, int year, int duration)

mvn clean package ⇒ regenerates target/insurance-0.0.1.jar

Let’s try to install this version of the jar
moka install

06aa6a1afabc82c7161ffcdc2391a2136101aaeb94f64edd53a1d0d1436d610e#0

target/insurance-0.0.1.jar

--url panarea.hotmoka.io

Do you really want to spend up to 852500 gas units to install the jar [Y/N] Y

total gas consumed: 852500

for CPU: 255

for RAM: 1326

for storage: 381762

for penalty: 469157 !!!!!!!

io.hotmoka.beans.TransactionException:

io.takamaka.code.verification.VerificationException:

it/univr/insurance/Insurance.java method buy:

@Payable can only be applied to a @FromContract method or constructor

Fausto Spoto Università di Verona, Italy - 124 / 135

On-chain verification: potential non-determinism

Assume to use forEach instead of forEachOrdered in itRains

insuredDays.stream().filter(InsuredDay::isToday).forEach(...);

mvn clean package ⇒ regenerates target/insurance-0.0.1.jar

Let’s try to install this version of the jar
moka install

06aa6a1afabc82c7161ffcdc2391a2136101aaeb94f64edd53a1d0d1436d610e#0

target/insurance-0.0.1.jar

--url panarea.hotmoka.io

Do you really want to spend up to 852500 gas units to install the jar [Y/N] Y

total gas consumed: 853700

for CPU: 255

for RAM: 1326

for storage: 382362

for penalty: 469757 !!!!!!!

io.hotmoka.beans.TransactionException:

io.takamaka.code.verification.VerificationException:

it/univr/insurance/Insurance.java:95:

illegal call to non-white-listed method java.util.stream.Stream.forEach

Fausto Spoto Università di Verona, Italy - 125 / 135

On-chain verification: potential non-determinism

Assume to use forEach instead of forEachOrdered in itRains

insuredDays.stream().filter(InsuredDay::isToday).forEach(...);

mvn clean package ⇒ regenerates target/insurance-0.0.1.jar

Let’s try to install this version of the jar
moka install

06aa6a1afabc82c7161ffcdc2391a2136101aaeb94f64edd53a1d0d1436d610e#0

target/insurance-0.0.1.jar

--url panarea.hotmoka.io

Do you really want to spend up to 852500 gas units to install the jar [Y/N] Y

total gas consumed: 853700

for CPU: 255

for RAM: 1326

for storage: 382362

for penalty: 469757 !!!!!!!

io.hotmoka.beans.TransactionException:

io.takamaka.code.verification.VerificationException:

it/univr/insurance/Insurance.java:95:

illegal call to non-white-listed method java.util.stream.Stream.forEach

Fausto Spoto Università di Verona, Italy - 125 / 135

On-chain verification: potential non-determinism

Assume to use forEach instead of forEachOrdered in itRains

insuredDays.stream().filter(InsuredDay::isToday).forEach(...);

mvn clean package ⇒ regenerates target/insurance-0.0.1.jar

Let’s try to install this version of the jar
moka install

06aa6a1afabc82c7161ffcdc2391a2136101aaeb94f64edd53a1d0d1436d610e#0

target/insurance-0.0.1.jar

--url panarea.hotmoka.io

Do you really want to spend up to 852500 gas units to install the jar [Y/N] Y

total gas consumed: 853700

for CPU: 255

for RAM: 1326

for storage: 382362

for penalty: 469757 !!!!!!!

io.hotmoka.beans.TransactionException:

io.takamaka.code.verification.VerificationException:

it/univr/insurance/Insurance.java:95:

illegal call to non-white-listed method java.util.stream.Stream.forEach

Fausto Spoto Università di Verona, Italy - 125 / 135

On-chain verification: potential non-determinism

Assume to use forEach instead of forEachOrdered in itRains

insuredDays.stream().filter(InsuredDay::isToday).forEach(...);

mvn clean package ⇒ regenerates target/insurance-0.0.1.jar

Let’s try to install this version of the jar
moka install

06aa6a1afabc82c7161ffcdc2391a2136101aaeb94f64edd53a1d0d1436d610e#0

target/insurance-0.0.1.jar

--url panarea.hotmoka.io

Do you really want to spend up to 852500 gas units to install the jar [Y/N] Y

total gas consumed: 853700

for CPU: 255

for RAM: 1326

for storage: 382362

for penalty: 469757 !!!!!!!

io.hotmoka.beans.TransactionException:

io.takamaka.code.verification.VerificationException:

it/univr/insurance/Insurance.java:95:

illegal call to non-white-listed method java.util.stream.Stream.forEach

Fausto Spoto Università di Verona, Italy - 125 / 135

Off-chain verification

Using the blockchain as a debugger is very expensive. . .

moka verify <jar> --libs dependencies

We verify the jar off-chain, to find all errors
moka verify

it/univr/insurance/Insurance.java method buy:

@Payable can only be applied to a @FromContract method or constructor

it/univr/insurance/Insurance.java:46:

caller() can only be used inside a @FromContract method or constructor

it/univr/insurance/Insurance.java:95:

illegal call to non-white-listed method java.util.stream.Stream.forEach

it/univr/insurance/Insurance.java:99:

illegal call to non-white-listed method java.util.stream.Stream.forEach

Fausto Spoto Università di Verona, Italy - 126 / 135

Off-chain verification

Using the blockchain as a debugger is very expensive. . .

moka verify <jar> --libs dependencies

We verify the jar off-chain, to find all errors
moka verify

it/univr/insurance/Insurance.java method buy:

@Payable can only be applied to a @FromContract method or constructor

it/univr/insurance/Insurance.java:46:

caller() can only be used inside a @FromContract method or constructor

it/univr/insurance/Insurance.java:95:

illegal call to non-white-listed method java.util.stream.Stream.forEach

it/univr/insurance/Insurance.java:99:

illegal call to non-white-listed method java.util.stream.Stream.forEach

Fausto Spoto Università di Verona, Italy - 126 / 135

Off-chain verification

Using the blockchain as a debugger is very expensive. . .

moka verify <jar> --libs dependencies

We verify the jar off-chain, to find all errors
moka verify

jar

it/univr/insurance/Insurance.java method buy:

@Payable can only be applied to a @FromContract method or constructor

it/univr/insurance/Insurance.java:46:

caller() can only be used inside a @FromContract method or constructor

it/univr/insurance/Insurance.java:95:

illegal call to non-white-listed method java.util.stream.Stream.forEach

it/univr/insurance/Insurance.java:99:

illegal call to non-white-listed method java.util.stream.Stream.forEach

Fausto Spoto Università di Verona, Italy - 126 / 135

Off-chain verification

Using the blockchain as a debugger is very expensive. . .

moka verify <jar> --libs dependencies

We verify the jar off-chain, to find all errors
moka verify

target/insurance-0.0.1.jar

it/univr/insurance/Insurance.java method buy:

@Payable can only be applied to a @FromContract method or constructor

it/univr/insurance/Insurance.java:46:

caller() can only be used inside a @FromContract method or constructor

it/univr/insurance/Insurance.java:95:

illegal call to non-white-listed method java.util.stream.Stream.forEach

it/univr/insurance/Insurance.java:99:

illegal call to non-white-listed method java.util.stream.Stream.forEach

Fausto Spoto Università di Verona, Italy - 126 / 135

Off-chain verification

Using the blockchain as a debugger is very expensive. . .

moka verify <jar> --libs dependencies

We verify the jar off-chain, to find all errors
moka verify

target/insurance-0.0.1.jar

--libs dependencies

it/univr/insurance/Insurance.java method buy:

@Payable can only be applied to a @FromContract method or constructor

it/univr/insurance/Insurance.java:46:

caller() can only be used inside a @FromContract method or constructor

it/univr/insurance/Insurance.java:95:

illegal call to non-white-listed method java.util.stream.Stream.forEach

it/univr/insurance/Insurance.java:99:

illegal call to non-white-listed method java.util.stream.Stream.forEach

Fausto Spoto Università di Verona, Italy - 126 / 135

Off-chain verification

Using the blockchain as a debugger is very expensive. . .

moka verify <jar> --libs dependencies

We verify the jar off-chain, to find all errors
moka verify

target/insurance-0.0.1.jar

--libs io-takamaka-code-1.0.0.jar

it/univr/insurance/Insurance.java method buy:

@Payable can only be applied to a @FromContract method or constructor

it/univr/insurance/Insurance.java:46:

caller() can only be used inside a @FromContract method or constructor

it/univr/insurance/Insurance.java:95:

illegal call to non-white-listed method java.util.stream.Stream.forEach

it/univr/insurance/Insurance.java:99:

illegal call to non-white-listed method java.util.stream.Stream.forEach

Fausto Spoto Università di Verona, Italy - 126 / 135

Off-chain verification

Using the blockchain as a debugger is very expensive. . .

moka verify <jar> --libs dependencies

We verify the jar off-chain, to find all errors
moka verify

target/insurance-0.0.1.jar

--libs io-takamaka-code-1.0.0.jar

it/univr/insurance/Insurance.java method buy:

@Payable can only be applied to a @FromContract method or constructor

it/univr/insurance/Insurance.java:46:

caller() can only be used inside a @FromContract method or constructor

it/univr/insurance/Insurance.java:95:

illegal call to non-white-listed method java.util.stream.Stream.forEach

it/univr/insurance/Insurance.java:99:

illegal call to non-white-listed method java.util.stream.Stream.forEach

Fausto Spoto Università di Verona, Italy - 126 / 135

ERC20 Tokens

Fausto Spoto Università di Verona, Italy - 127 / 135

ERC20 Tokens

Fausto Spoto Università di Verona, Italy - 128 / 135

The OpenZeppelin reference implementation

We follow (in part) the implementation by OpenZeppelin

https://docs.openzeppelin.com/contracts/2.x/api/token/erc20

Fausto Spoto Università di Verona, Italy - 129 / 135

https://docs.openzeppelin.com/contracts/2.x/api/token/erc20

The hierarchy of the implementation

Fausto Spoto Università di Verona, Italy - 130 / 135

Inconsistent view

token.balanceOf(x)

token.balanceOf(y)

token.balanceOf(z)

token.transfer(...)

Between a call to balanceOf and the next, the state of the token might
change in the database because other users might call the transfer
functions, concurrently

Fausto Spoto Università di Verona, Italy - 131 / 135

Consistent view

token.transfer(...)

snapshot = token.snapshot()

snapshot.balanceOf(x)

snapshot.balanceOf(z)

snapshot.balanceOf(y)

snapshot() works in O(1)

all calls to balanceOf refer to the same, consistent state of the token
(possibly not the latest)

impossible in Solidity, where maps cannot be cloned

Fausto Spoto Università di Verona, Italy - 132 / 135

References

Fausto Spoto: A Java Framework for Smart Contracts. Financial
Cryptography Workshops 2019: 122-137

Fausto Spoto: Enforcing Determinism of Java Smart Contracts.
Financial Cryptography Workshops 2020: 568-583

Luca Olivieri, Fausto Spoto, Fabio Tagliaferro: On-Chain Smart
Contract Verification over Tendermint. Financial Cryptography
Workshops 2021: 333-347

Marco Crosara, Luca Olivieri, Fausto Spoto, Fabio Tagliaferro:
Re-engineering ERC-20 Smart Contracts with Efficient Snapshots for
the Java Virtual Machine. BCCA 2021: 187-194, to appear in Cluster
Computing

Andrea Benini, Mauro Gambini, Sara Migliorini, Fausto Spoto: Power
and Pitfalls of Generic Smart Contracts. BCCA 2021: 179-186, to
appear in Cluster Computing

Fausto Spoto Università di Verona, Italy - 133 / 135

Proof of space

proof of work is too expensive and polluting

proof of stake is complex and makes it hard to have many really
independent validators

Proof of space

In 2014, Burstcoin (later Signum) implemented a mining algorithm where
miners must solve a puzzle to gain the right to mine a new block:

the puzzle is too hard to be computed for each new block

the puzzle becomes very simple if some information is precomputed
and stored on disk

the CPU of the miners remains largely idle: no electricity cost

the more precomputation, the more disk is committed, the higher the
probability of solving the puzzle and mining a new block

Fausto Spoto Università di Verona, Italy - 134 / 135

Mokamint (www.mokamint.io)

Signum is monolithic, non-commented, Java 5, undocumented code

The idea of Mokamint (Fausto Spoto 2023, work in progress)

Tendermint: a generic blockchain engine based on proof of stake

Mokamint: a generic blockchain engine based on proof of space

Later attach Hotmoka on top of Mokamint, as an application instance

Fausto Spoto Università di Verona, Italy - 135 / 135

www.mokamint.io

	Introduction
	Bitcoin
	Proof of work
	Ethereum
	Smart contracts
	Tendermint
	Hotmoka + Takamaka

