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In This Talk

The current state of affairs:

the local approach (one loop at a time): correctness
proof given by Dershowitz et al, 2001 (also by
Codish&Genaim, POPL2001)

completeness of termination for size-change graphs
given by Lee, Jones and Ben-Amram, POPL2001.

termination analyzers: TermiLog (Lindenstrauss, Sagiv,
1997), TerminWeb (Genaim, Taboch, Codish, 2002)

Our contribution:

the termination test used in TermiLog and TerminWeb is
complete for size-change graphs

completeness of termination analysis for monotonicity
constraints (extension of size-change graphs)
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Approximation of Termination

Programs are mapped to sets of loop descriptions

PROGRAM ⇒



























...

p(x̄)← µ , p(ȳ)

...

Size-Change Graphs

xi > yj , xi ≥ yj ,

xi ∈ x̄, yj ∈ ȳ

(Lee,Jones,Ben-Amram 2001)

Monotonicity Constraints

v > w, v ≥ w,

v, w ∈ (x̄ ∪ ȳ)

(Lindenstrauss,Sagiv, 1989)

Linear Constraints
∑

civi > c

vi ∈ (x̄ ∪ ȳ)

(Podelski,Rybalchenko, 2004)

Is termination decidable?
(It’s not about solving the Halting Problem!)

What’s the algorithm? What’s the cost?
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(Podelski,Rybalchenko, 2004)

Is termination decidable?
(It’s not about solving the Halting Problem!)

What’s the algorithm? What’s the cost?

Codish, Lagoon and Stuckey. Testing for Termination with Monotonicity Constraints, ICLP’05, Sitges, Spain – p. 3/17



Approximation of Termination

Programs are mapped to sets of loop descriptions

PROGRAM ⇒



























...

p(x̄)← µ , p(ȳ)
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Size-Change Graphs by Example

int Ack(int x, int y) {
if (x==0) return y + 1

else if (y==0) return Ack(x− 1, 1)
else return Ack(x− 1, Ack(x, y − 1))

}

x

��

y

x′ y′

x

���
�
�

y

��
x′ y′

Codish, Lagoon and Stuckey. Testing for Termination with Monotonicity Constraints, ICLP’05, Sitges, Spain – p. 4/17



Size-Change Graphs by Example

int Ack(int x, int y) {
if (x==0) return y + 1

else if (y==0) return Ack(x− 1, 1)
else return Ack(x− 1, Ack(x, y − 1))

}

x

��

y

x′ y′

x

���
�
�

y

��
x′ y′

Codish, Lagoon and Stuckey. Testing for Termination with Monotonicity Constraints, ICLP’05, Sitges, Spain – p. 4/17



Local vs. Global

Global approach – find a ranking function f :

∃f ∀loop. f decreases on the loop

Ack(x, y)

f : min(x, y)

x

��

y

x′ y′

x

���
�
�

y

��

x′ y′

Local approach – one loop at a time

for a “price” it is sufficient to prove termination for each
individual loop

there is also a “prize”: simpler termination conditions and
easier to automate
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One Loop at a Time

∃f ∀loop. f decreases on the loop

p(x1, x2)← [x1 > y1], p(y1, y2) : x1

��

x2

y1 y2

p(x1, x2)← [x2 > y2], p(y1, y2) : x1 x2

��
y1 y2

x1 x2

y1 y2
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x2
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A composition µ1(x̄, ȳ) ◦ µ2(x̄, ȳ) is a size-change graph
entailed by ∃z̄.µ1(x̄, z̄) ∧ µ2(z̄, ȳ).
Loop descriptions are closed under composition:

µ1 ∈ G∗ ∧ µ2 ∈ G∗ ⇒ µ1 ◦ µ2 ∈ G∗
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Idempotence

A size-change graph µ is idempotent if µ ◦ µ = µ.

Example: the two graphs of Ack(x, y) are idempotent:

•

��

•

• •

•

���
�

� •

��• •

Example: a non-idempotent graph:

•

��@
@@

@@
@@

•

��~~
~~

~~
~

• •

Theorem: each SCG has an idempotent degree
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Correctness of Local Approach

Let G be a set of size-change graphs. If every idempotent µ ∈ G∗ has a
ranking function then any program described by G terminates.
(Dershowitz et al, 2001) (Lee,Jones,Ben-Amram 2001)

Ramsey’s theorem (1930): Let X be some countably infinite set and colour
the pairs in X×X in C different colours. Then there exists some infinite
M ⊂ X such that the pairs of M all have the same colour.

/.-,()*+p
f

((

f

''

f

''. . . /.-,()*+p

f

66

f

77. . . /.-,()*+p
f

((. . . . . .
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Completeness

Completness means that we can eiher find a ranking
function or prove that none exists.

If there is ANY ranking function. . .

f(〈x1, . . . , xn〉) =

√

√

√

√

1

n − 1

n
∑

i=1

(xi − x̄)

f(〈x0, . . . , xn−1〉) =
n−1
∑

j=0

∣

∣

∣

∣

∣

n−1
∑

k=0

xke
− 2πi

n
jk

∣

∣

∣

∣

∣

. . . then there is a ranking function of the certain kind.
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Completeness Results

PROGRAM ⇒



























...

p(x̄)← µ , p(ȳ)

...

Size-Change Graphs

xi > yj , xi ≥ yj ,

xi ∈ x̄, yj ∈ ȳ

Completeness:
√

Monotonicity Constraints

v > w, v ≥ w,

v, w ∈ (x̄ ∪ ȳ)

Completeness:
√√

Linear Constraints
∑

civi > c

vi ∈ (x̄ ∪ ȳ)

Completeness:
√

(wrt. linear f )
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Completeness for Size-Change Graphs

For an idempotent SCG if there is any ranking function f

then there is one of the form f(x̄) = xi. (Lee et al, 2001)

The algorithm:

1. Compute the closure G∗

2. Compute the subset of idempotent graphs I ⊆ G∗

3. For each µ(x̄, ȳ) ∈ I check that ∃i.µ(x̄, ȳ)→ (xi > yi)

Example: Ack(x, y) is terminating

I = G∗ =















x

��

y

x′ y′

x

���
�
�

y

��

x′ y′














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Completeness for Size-Change Graphs

For any SCG if there is a ranking function f then there is
one of the form f(x̄) =

∑

i∈I xi. (this work)

The algorithm:

1. Compute the closure G∗

2. For each µ(x̄, ȳ) ∈ G∗ check that µ(x̄, ȳ) |=
∨

i
(xi > yi)

Example:

G=















x1

!!CC
CC

C
x2

}}{{
{{

{

y1 y2















G
∗ =















x1

!!CC
CC

C
x2

}}{{
{{

{

y1 y2

x1

��

x2

��
y1 y2















µ(x̄, ȳ) |=
∨

i

(xi > yi)

≡ ¬
(

µ(x̄, ȳ) ∧
∧

i

(xi ≤ yi)
)
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Test for Ranking Function

∨

iµ(x̄, ȳ) |= (xi > yi) idempotent graphs (Lee et al)

µ(x̄, ȳ) |= ∨

i(xi > yi) all graphs (this work)
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Monotonicity Constraints

We want to analyze programs like: while x<b do x=x+1

µ(〈x, b〉 ,
〈

x′, b′
〉

) = (x < x′, x < b, b = b′)

x boo

�
�
�

x′

OO

b′

Neither f(x, b) = x nor f(x, b) = b is a ranking function.
The ranking function is f(x, b) = b − x.
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Completeness for MC’s

Theorem: for an idempotent monotonicity constraint µ(x̄, ȳ) if
there is a ranking function then there is a ranking function of
the form f(x̄) = xi or of the form f(x̄) = xi − xj

Theorem: for a monotonicity constraint µ(x̄, ȳ) if there is a
ranking function then there is a linear ranking function.

Unfortunately, finding the ranking function is not as easy as
for SCGs. We can

check for idempotence and examine xi − xj for all pairs

apply the method of Podelski and Rybalchenko (based
on linear programming)
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Using Completeness of Podelski et al

If there is a linear ranking function for a linear constraint
then the method of Podelski & Rybalchenko can find it.

Monotonicity constraints are special case of linear
constraints.

We show that for termination of monotonicity constraints
there must exist a linear ranking function.

So, we can apply the method of Podelski & Rybalchenko,
and it’s complete.
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Conclusion

We’ve shown that:

The TermiLog/TerminWeb test for ranking function is
complete for size-change graphs.

The TermiLog/TerminWeb test for ranking function is
incomplete for monotonicity constraints.

(Size-change graphs and monotonicity constraints are
not the same.)

Termination analysis is complete for monotonicity
constraints.

There is no loss of precision when not checking for
idempotence.
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