
Size-Change Termination1

SIZE-CHANGE 
TERMINATION

A partial survey

mostly based on work by

Neil Jones, DIKU

Chin Soon Lee, MPI

Amir Ben-Amram, MTA



Size-Change Termination3

BACKGROUND:
THE TERMINATION PROBLEM

• A cornerstone of program verification
• Also important for program generators, 

e.g., specializers
• … and certain interpreters
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• As the problem is undecidable in 
general, we make do with conservative 
(safe) approximations.

decidable set
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One reason for hope:

many programmers are able to argue that their 
programs do terminate.
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YE OLDE ART

OF TERMINATION PROOFS
• Examples will use a simple functional language
(hence, it’s infinite recursion we guard against).

• All values will be natural numbers.

add(x,y) = 
if x=0 then y

else 1+add(x-1, y)

Argument: 1st parameter decreases in every call.
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A slightly harder one

Argument: 1st parameter decreases after two calls.

add(x,y) = 
if x=0 then y

else 1+add(y, x-1)
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GCD program
gcd(x,y) = 

if x≤1 or x=y then x
else if x<y then gcd(x, y-x)

else gcd(y, x-y)

Argument: larger of param’s decreases in every call.
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Ackermann’s function
ack(x,y) = 

if x=0 then y+1
else if y=0 

then ack(x-1, y)
else ack(x-1, ack(x, y-1))

Argument:

In every call, either x decreases or x stays  
put and y decreases.

⇒ the pair (x,y) decreases lexicographically.
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Summary
All these examples (and many others) are based 
on impossibility of infinite descent (Floyd 1967)

In every (hypothetical) chain of calls, 
something is shown to decrease indefinitely, 
which cannot really happen (because it’s taken 
from a well-founded order).

Ingenuity is required either to define that 
“something” (sum, pair of param’s…) or to show 
the infinite descent (consider two consecutive 
calls…)
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SCT handles all these 
examples automatically.

subject program

program analysis

a set of graphs

SCT tester

SCT is a purely 
combinatorial problem.

Supporting program 
analyses are outside 
the scope of this work.
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Products of program analysis
Control-Flow Graph:  possible calls in a program.

f g

SCT is based on conservative analysis –
every path is considered.
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Size-Change Graph:  what’s happenning in a call?

Consider call:  add(x,y) = …add(x-1,y)…

x

y

x

y

Information: 1st param decreases. 2nd unchanged.

pre

means: pre > post

post

pre

means: pre ≥ post

post
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size-change graphs

gcd(x,y) = …gcd(y,x-y)…
x

y

x

y

ack(x,y) =… ack(x-1, ack(…))
x

y

x

y
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Analyzing SCT

Size-Change Graphs “sit” on arcs of the CFG

f g
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Multipaths
A multipath results of concatenating SCG’s along

a CFG path.

Example: a loop of add (2nd ver.) looks like that:
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Threads
A thread is a (infinite) path in the multipath.
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A thread is infinitely descending if it has 
infinitely many down-arcs.
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Size-Change Termination

A CFG/SCG-set satisfies SCT if every 
infinite multipath contains an infinitely 
descending thread.

SCT is a sufficient condition for program 
termination.
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An Example: ack

ack(x,y) =… ack(x-1, ack(…))
x

y

x

y

ack(x,y) =… ack(x, y-1)
x

y

x

y
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Is SCT decidable?

Proof #1:  redfine it as a problem about
Büchi automata.

Proof #2: the Closure Algorithm.
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The Closure Algorithm

• Define the composition of size-change graphs
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• form the composition closure of the given 
graphs – a finite set!



Size-Change Termination22

THM: SCT holds iff in the composition closure,

every idempotent graph has an in-situ down-arc.

The Closure Algorithm

x

y

x

y

in-situ down-arc
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An Example
p(m, n, r) = if r>0 then p(m, r-1, n) else

if n>0 then p(r, n-1, m) else m
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A Brief History

LJB, POPL 2001

Sagiv, Logic Prog. Symp. 1991,

Lindenstrauss & Sagiv, ICLP 1997,

Codish & Taboch, JLP 1999
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THE REST OF THE TALK

• The Complexity-Theoretic Quest
• The Recursion-Theoretic Quest
• The Algorithmic Quest

Additional related work
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The Complexity-Theoretic Quest
[LJB 2001]

THM: the SCT problem is PSPACE-complete. 

Upper bound: provided by the Closure Algorithm 
(implemented in a small-space manner).

Hardness: a reduction from Termination of Boolean 
Programs.  Such a program has a fixed number of 
memory bits and therefore its termination problem 
is PSPACE (and easily proved complete).
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The Recursion-Theoretic Quest
[B 2003]

primitive recursive

Recursion Theory deals with classes of functions,
of which the best known are:
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The Recursion-Theoretic Quest

• No usefully-defined programming system 
captures exactly the Total Recursive functions.

• Primitive Recursive functions are captured by a 
very simple type of recursive programs.

• Ackermann’s function is “the” classic example of 
a total recursive function which is not PR.

• But the ack program is easy to prove terminating.

add(x,y) = …add(x-1,y)…
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The Multiply-Recursive Functions

DEF: A multiply-recursive function is one 
defined using (nested) recursion which obeys 
lexicographic descent.

ack(x,y) = 
if x=0 then y+1

else if y=0 
then ack(x-1, y)
else ack(x-1, ack(x, y-1))
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The Multiply-Recursive Functions

primitive recursive

multiply recursive

total recursive

Lexicographic descent is easily captured by SCT.

What is the class of SCT-computable functions?
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Conjecture (Jones, 2000):
It’s the same as the multiply-recursive class.

Note – SCT programs can have very 
complicated forms of descent.

Now, it’s a theorem.

Proof (B 2003):

Essentially an algorithm to compile every SCT 
program into one that has lexicographic descent.
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The Algorithmic Quest
[BL]

THM: the SCT problem is PSPACE-complete. 

Conclusion: the exponential worst-case behaviour 
is unbeatable.

The heuristic approach: an efficient algorithm 
that works for (many) practical problem instances. 
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SCP: 
Size-Change termination in 

Polynomial time
(cubic - often quadratic)

(-) We lack an elegant, complete theoretical 
characterization of the instances it handles.

(+) The proof of the pudding is in the eating.
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Experimental Evaluation of SCP
• A benchmark of Prolog queries assembled by 
several researchers of termination in the Prolog 
context.

• Size-change information obtained (with very little 
adjustment) from the Prolog analyzer Terminweb of 
Codish and Taboch (1999).

QUERIES       SCT correct     SCP correct

123 118 118
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A glimpse of the algorithm

DEF: A set of parameter names is a Thread Preserver 
(TP) is a thread reaching one of these parameters can 
be continued throughout any possible multipath.
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Example: {y,b} is a TP in the following set of graphs
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LEMMA: if a set of size-change graphs has a TP 
consisting entirely of down-arcs, the set satisfies SCT.

This can be tested in linear time.

The algorithm tests some other, more subtle 
conditions that also guarantee SCT, all based on 
the computation of Thread Preservers.
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THANK YOU




