
Size-Change Termination1

SIZE-CHANGE
TERMINATION

A partial survey

mostly based on work by

Neil Jones, DIKU

Chin Soon Lee, MPI

Amir Ben-Amram, MTA

Size-Change Termination3

BACKGROUND:
THE TERMINATION PROBLEM

• A cornerstone of program verification
• Also important for program generators,

e.g., specializers
• … and certain interpreters

Size-Change Termination4

• As the problem is undecidable in
general, we make do with conservative
(safe) approximations.

decidable set

Size-Change Termination5

One reason for hope:

many programmers are able to argue that their
programs do terminate.

Size-Change Termination6

YE OLDE ART

OF TERMINATION PROOFS
• Examples will use a simple functional language
(hence, it’s infinite recursion we guard against).

• All values will be natural numbers.

add(x,y) =
if x=0 then y

else 1+add(x-1, y)

Argument: 1st parameter decreases in every call.

Size-Change Termination7

A slightly harder one

Argument: 1st parameter decreases after two calls.

add(x,y) =
if x=0 then y

else 1+add(y, x-1)

Size-Change Termination8

GCD program
gcd(x,y) =

if x≤1 or x=y then x
else if x<y then gcd(x, y-x)

else gcd(y, x-y)

Argument: larger of param’s decreases in every call.

Size-Change Termination9

Ackermann’s function
ack(x,y) =

if x=0 then y+1
else if y=0

then ack(x-1, y)
else ack(x-1, ack(x, y-1))

Argument:

In every call, either x decreases or x stays
put and y decreases.

⇒ the pair (x,y) decreases lexicographically.

Size-Change Termination10

Summary
All these examples (and many others) are based
on impossibility of infinite descent (Floyd 1967)

In every (hypothetical) chain of calls,
something is shown to decrease indefinitely,
which cannot really happen (because it’s taken
from a well-founded order).

Ingenuity is required either to define that
“something” (sum, pair of param’s…) or to show
the infinite descent (consider two consecutive
calls…)

Size-Change Termination11

SCT handles all these
examples automatically.

subject program

program analysis

a set of graphs

SCT tester

SCT is a purely
combinatorial problem.

Supporting program
analyses are outside
the scope of this work.

Size-Change Termination12

Products of program analysis
Control-Flow Graph: possible calls in a program.

f g

SCT is based on conservative analysis –
every path is considered.

Size-Change Termination13

Size-Change Graph: what’s happenning in a call?

Consider call: add(x,y) = …add(x-1,y)…

x

y

x

y

Information: 1st param decreases. 2nd unchanged.

pre

means: pre > post

post

pre

means: pre ≥ post

post

Size-Change Termination14

size-change graphs

gcd(x,y) = …gcd(y,x-y)…
x

y

x

y

ack(x,y) =… ack(x-1, ack(…))
x

y

x

y

Size-Change Termination15

Analyzing SCT

Size-Change Graphs “sit” on arcs of the CFG

f g

Size-Change Termination16

Multipaths
A multipath results of concatenating SCG’s along

a CFG path.

Example: a loop of add (2nd ver.) looks like that:

x

y

x

y

x

y

x

y

Size-Change Termination17

Threads
A thread is a (infinite) path in the multipath.

x

y

x

y

x

y

x

y

A thread is infinitely descending if it has
infinitely many down-arcs.

Size-Change Termination18

Size-Change Termination

A CFG/SCG-set satisfies SCT if every
infinite multipath contains an infinitely
descending thread.

SCT is a sufficient condition for program
termination.

Size-Change Termination19

An Example: ack

ack(x,y) =… ack(x-1, ack(…))
x

y

x

y

ack(x,y) =… ack(x, y-1)
x

y

x

y

Size-Change Termination20

Is SCT decidable?

Proof #1: redfine it as a problem about
Büchi automata.

Proof #2: the Closure Algorithm.

Size-Change Termination21

The Closure Algorithm

• Define the composition of size-change graphs

x

y

a

b

a

b

x

y
=

x

y

x

y

• form the composition closure of the given
graphs – a finite set!

Size-Change Termination22

THM: SCT holds iff in the composition closure,

every idempotent graph has an in-situ down-arc.

The Closure Algorithm

x

y

x

y

in-situ down-arc

Size-Change Termination23

An Example
p(m, n, r) = if r>0 then p(m, r-1, n) else

if n>0 then p(r, n-1, m) else m

Size-Change Termination24

A Brief History

LJB, POPL 2001

Sagiv, Logic Prog. Symp. 1991,

Lindenstrauss & Sagiv, ICLP 1997,

Codish & Taboch, JLP 1999

Size-Change Termination25

THE REST OF THE TALK

• The Complexity-Theoretic Quest
• The Recursion-Theoretic Quest
• The Algorithmic Quest

Additional related work

Size-Change Termination26

The Complexity-Theoretic Quest
[LJB 2001]

THM: the SCT problem is PSPACE-complete.

Upper bound: provided by the Closure Algorithm
(implemented in a small-space manner).

Hardness: a reduction from Termination of Boolean
Programs. Such a program has a fixed number of
memory bits and therefore its termination problem
is PSPACE (and easily proved complete).

Size-Change Termination27

The Recursion-Theoretic Quest
[B 2003]

primitive recursive

Recursion Theory deals with classes of functions,
of which the best known are:

Size-Change Termination28

The Recursion-Theoretic Quest

• No usefully-defined programming system
captures exactly the Total Recursive functions.

• Primitive Recursive functions are captured by a
very simple type of recursive programs.

• Ackermann’s function is “the” classic example of
a total recursive function which is not PR.

• But the ack program is easy to prove terminating.

add(x,y) = …add(x-1,y)…

Size-Change Termination29

The Multiply-Recursive Functions

DEF: A multiply-recursive function is one
defined using (nested) recursion which obeys
lexicographic descent.

ack(x,y) =
if x=0 then y+1

else if y=0
then ack(x-1, y)
else ack(x-1, ack(x, y-1))

Size-Change Termination30

The Multiply-Recursive Functions

primitive recursive

multiply recursive

total recursive

Lexicographic descent is easily captured by SCT.

What is the class of SCT-computable functions?

Size-Change Termination31

Conjecture (Jones, 2000):
It’s the same as the multiply-recursive class.

Note – SCT programs can have very
complicated forms of descent.

Now, it’s a theorem.

Proof (B 2003):

Essentially an algorithm to compile every SCT
program into one that has lexicographic descent.

Size-Change Termination32

The Algorithmic Quest
[BL]

THM: the SCT problem is PSPACE-complete.

Conclusion: the exponential worst-case behaviour
is unbeatable.

The heuristic approach: an efficient algorithm
that works for (many) practical problem instances.

Size-Change Termination33

SCP:
Size-Change termination in

Polynomial time
(cubic - often quadratic)

(-) We lack an elegant, complete theoretical
characterization of the instances it handles.

(+) The proof of the pudding is in the eating.

Size-Change Termination34

Experimental Evaluation of SCP
• A benchmark of Prolog queries assembled by
several researchers of termination in the Prolog
context.

• Size-change information obtained (with very little
adjustment) from the Prolog analyzer Terminweb of
Codish and Taboch (1999).

QUERIES SCT correct SCP correct

123 118 118

Size-Change Termination35

A glimpse of the algorithm

DEF: A set of parameter names is a Thread Preserver
(TP) is a thread reaching one of these parameters can
be continued throughout any possible multipath.

x

y

a

b

a

b

x

y

x

y

x

y

Example: {y,b} is a TP in the following set of graphs

Size-Change Termination36

LEMMA: if a set of size-change graphs has a TP
consisting entirely of down-arcs, the set satisfies SCT.

This can be tested in linear time.

The algorithm tests some other, more subtle
conditions that also guarantee SCT, all based on
the computation of Thread Preservers.

Size-Change Termination38

THANK YOU

