
Ranking Functions for Automatic Program
Termination Analysis

Roberto BAGNARA, David MERCHAT, Fred MESNARD,
Andrea PESCETTI, Alessandro ZACCAGNINI,

Enea ZAFFANELLA

University of Parma, Italy
University of La Réunion, France

Département de Mathématiques et Informatique, St Denis de La Réunion, France, Indian Ocean, May 24, 2006 1

THE PROBLEM

Ü Does a given program (part) terminate for all possible inputs?

Ü Answering this question is essential to turn assertions of partial
correctness into assertions of total correctness.

Ü The property of termination of a program fragment is not less important
than properties concerning the absence of run-time errors.
Ü For instance, critical reactive systems (such as fly-by-wire avionics

systems) must maintain a continuous interaction with the
environment: failure to terminate of some program components can
stop the interaction the same way as if an unexpected,
unrecoverable run-time error occurred.

Ü Another example: all versions of Windows are plagued by device
drivers that hang: Microsoft has set up the “TERMINATOR” research
project to address this situation.

THE PROBLEM 2

THE PROBLEM (CONT.)
Ü Does a given program (part) terminate for all possible inputs?

Ü The problem is notoriously undecidable (Halting Problem).

Ü But for a subset of programs we can prove termination by synthesizing
ranking functions:
Ü Functions that “decrease” after each iteration. . .
Ü . . . and are “bounded” from below.

Ü If a ranking function exists, the program terminates

Ü . . . and vice versa.

Ü Advantage: the program termination problem is approximated by a
mathematical problem that may be algorithmically tractable.

Ü Typically, a class of functions (e.g., linear functions) is selected and the
synthesis of ranking functions is formulated as a search problem in that
class (search space).

Ü Notice that ranking functions may exist outside the selected class!

THE PROBLEM (CONT.) 3

REMINDER: WELL-FOUNDED RELATIONS

A well-founded relation is a binary relation ‘≺’ over a set S such that
there exists no infinite “descending chain”, i.e., a sequence of
elements of S such that

a0 � a1 � · · · � ai � · · ·

• ai+1 is a predecessor of ai, which, in turn, is a successor of ai+1.

• (S,≺) is said to be a well-founded set.

• Equivalently, well-founded relations can be defined as:

Every non-empty subset of S has an element with no
predecessors in S, i.e., for each U ⊆ S such that U 6= ∅,
there exists v ∈ U such that u ⊀ v for each u ∈ U \ {v}.

REMINDER: WELL-FOUNDED RELATIONS 4

WELL-FOUNDED RELATIONS: EXAMPLES AND NON-EXAMPLES

• (N, <) is well-founded.

There exists no infinite descending chain on N.

• (Z, <) is not well-founded.

An infinite descending chain is −1,−2,−3, . . .

• (Z,≺) where

a ≺ b ⇐⇒ |a| < |b|

is well-founded.

• (R, <) is not well-founded.

WELL-FOUNDED RELATIONS: EXAMPLES AND NON-EXAMPLES 5

WELL-FOUNDED RELATIONS: MORE EXAMPLES

• (R+, <), where R+ = {x ∈ R | x ≥ 0 }, is not well founded.

• (R+, <ε) where ε > 0 and

a <ε b ⇐⇒ a+ ε ≤ b

is well-founded.

WELL-FOUNDED RELATIONS: MORE EXAMPLES 6

SIMPLE LOOPS

Consider an individual loop of the form

{ I } while B do C

where
Ü I is a loop invariant that a previous analysis phase has determined to

hold just before any evaluation of B;

Ü B is a (side-effect-free) boolean guard expressing the condition on the
state upon which iteration continues;

Ü C is a command that, in the context of that loop, is known (perhaps
thanks to a previous analysis) to always terminate.

SIMPLE LOOPS 7

CAPTURING THE EFFECTS OF INVARIANT, GUARD AND UPDATES

Consider again the simple loop

{ I } while B do C

Ü Let x = (x1, . . . , xn) be the tuple of variables occurring in I and/or B
and/or C.

Ü The command C may update some of them, or perhaps all of them.
Ü We focus on one single execution of C within the loop:

Ü let us overload x = (x1, . . . , xn) to represent also the values of the
program variables before the execution of C;

Ü let the new variables x′ = (x′1, . . . , x
′
n) represent the values of the

(unprimed) variables after the execution of C;
Ü of course, x′ depends on x, I, B and C;

Ü We suppose we are given a formula c[x,x′] in some first-order
language that correctly approximates the above dependencies for each
iteration of the loop.

CAPTURING THE EFFECTS OF INVARIANT, GUARD AND UPDATES 8

RANKING FUNCTIONS

Ü Consider the simple loop of the previous slides, and assume its
variables take values in D.

Ü Consider also a well-founded set (S,≺).
Ü A ranking function for the loop is a function f : Dn → S such that

∀x,x′ ∈ Dn : c[x,x′] =⇒ f(x′) ≺ f(x).

Ü The mere existence of a ranking function ensures termination:
Ü its existence implies that any iteration of the loop corresponds to a

strict decrease in the well-founded ordering (S,≺);
Ü as this strict decrease cannot go on forever, the loop cannot go on

forever.
Ü In other words, for the purpose of termination analysis, existence of a

ranking function is all we need.
Ü However, exhibition of one or more ranking functions is interesting for

other reasons (e.g., witnessing termination).

RANKING FUNCTIONS 9

EXAMPLE: SIMPLE WHILE LOOP

Ü Consider the following program fragment, where variables are Z-valued:

x := input integer;
y := 0;
while x >= 2 do begin

x := x div 2;
y := y + 1

end

Ü Standard analysis techniques can obtain the following simple loop:

{ y >= 0 }
while x >= 2 do begin

x := x div 2;
y := y + 1

end

Ü Here I = (y ≥ 0), B = (x ≥ 2) and C is x := x div 2; y := y + 1.

EXAMPLE: SIMPLE WHILE LOOP 10

EXAMPLE: CAPTURING THE EFFECTS. . .
Ü Consider again the simple loop

{ y >= 0 }
while x >= 2 do begin

x := x div 2;
y := y + 1

end

Ü There are program analysis techniques that are able to derive, in a
completely automatic way, that

c[x, y, x′, y′] = (x ≥ 2 ∧ y ≥ 0 ∧ 0 ≤ x− 2x′ ≤ 1 ∧ y′ = y + 1)

correctly describes the values of x and y before and after each
execution of x := x div 2; y := y + 1 within the loop.

Ü In fact x ≥ 2 (given by B), y ≥ 0 (given by I), 0 ≤ x− 2x′ ≤ 1 (x ≥ 2 is
divided by 2 in C), and y′ = y + 1 (y is incremented by 1 in C).

EXAMPLE: CAPTURING THE EFFECTS. . . 11

EXAMPLE: RANKING FUNCTIONS (MANUAL SYNTHESIS)
Ü Recall the condition

c[x, y, x′, y′] = (x ≥ 2 ∧ y ≥ 0 ∧ 0 ≤ x− 2x′ ≤ 1 ∧ y′ = y + 1)

Ü Consider the well-founded set (R+, <1) where, for each a, b ∈ R+,

a <1 b ⇐⇒ a+ 1 ≤ b.

Ü Let also f : Z2 → R be defined for each n,m ∈ Z by f(n,m) = n.
Ü It is easy to show that

∀x, y, x′, y′ ∈ Z : c[x, y, x′, y′] =⇒ f(x′, y′) <1 f(x, y).

Ü In fact:

1. ∀x, y, x′, y′ ∈ Z : c[x, y, x′, y′] =⇒ f(x′, y′), f(x, y) ∈ R+;
2. ∀x, y, x′, y′ ∈ Z : c[x, y, x′, y′] =⇒ f(x′, y′) + 1 ≤ f(x, y), since c

implies x′ ≤ x/2 and x ≥ 2, and x/2 ≤ x− 1 for x ≥ 2.

EXAMPLE: RANKING FUNCTIONS (MANUAL SYNTHESIS) 12

RESTRICTING TO LINEAR CONSTRAINTS AND FUNCTIONS

Ü In the example:
Ü the condition c[x, y, x′, y′], interpreted over the reals, was a

conjunction of linear constraints;
Ü the function f , when viewed as f : R2 → R, was a linear function.

Ü In general, the commitment to linearity implies:
Ü we lose something: there may be ranking functions that are

nonlinear or that can only be proved to be ranking functions by using
nonlinear arguments;

Ü but we can use analysis techniques based on convex polyhedra to
automatically derive the conditions c[x,x′];

Ü moreover, whatever is the method we use to derive c[x,x′], we can
use algorithms such as the simplex to prove that ranking functions
exist.

Ü We can also use other concepts from linear algebra, such as
eigenvalues and eigenvectors, to reason on termination in a slightly
different way.

RESTRICTING TO LINEAR CONSTRAINTS AND FUNCTIONS 13

REMINDER: LINEAR PROGRAMMING

Ü Given a matrix A ∈ Rm×n, two vectors b ∈ Rm and c ∈ Rn, and an
n-columns vector x of unknowns, the following is a Linear Programming
(LP) problem:

minimize cTx

subject to Ax ≥ b

Ü The feasible region is the polyhedron F ⊆ Rn whose points are all the
solutions of the linear constraints Ax ≥ b.

Ü The objective function is the linear expression cTx.
Ü The LP problem can be either:

• unfeasible, if the feasible region is empty;
• unbounded, if the feasible region is not empty but there is no finite

lower bound to the value of the objective function;
• optimizable, otherwise; in this case, by linearity, the optimum value

for the objective function is met at a vertex of the polyhedron F .

REMINDER: LINEAR PROGRAMMING 14

REMINDER: THE SIMPLEX ALGORITHM

Ü The simplex algorithm solves an LP problem in two phases:

• In the first phase, the algorithm computes a feasible solution by
looking for a vertex of the feasible region F ⊆ Rn, if any.

• If the LP problem is feasible, the second phase optimizes the
objective function by moving from vertex to vertex.

Ü Since a polyhedron may have a number of vertices which is exponential
in the number n of dimensions and m of constraints, the simplex
algorithm has a worst case exponential complexity.

Ü There are polynomial-time algorithms for the solutions of LP problems,
but these heavily rely on non-linear computations that are expensive
(and necessarily subject to rounding errors).

Ü In contrast, the simplex algorithm is simpler, very efficient in practice
(and can be coded using exact arithmetic).

REMINDER: THE SIMPLEX ALGORITHM 15

THE DUALITY THEOREM FOR LINEAR PROGRAMMING

Ü Duality Theorem (a classical result of linear programming theory): every
linear programming problem can be converted into an equivalent dual
problem. If y is an m-columns vector of unknowns,

minimize cTx

subject to Ax ≥ b
←→

maximize yTb

subject to yTA = cT

y ≥ 0

Ü The dual of the dual is again the primal.

Ü If both problems have bounded feasible solutions, then both of them
have optimal solutions and these solutions have the same value for the
corresponding objective functions.

Ü Several variants of this theorem, corresponding to various types of LP
problems, exist.

THE DUALITY THEOREM FOR LINEAR PROGRAMMING 16

THE METHOD OF MESNARD-SEREBRENIK: INTRODUCTION

Ü The method is applicable when c[x,x′] is a conjunction of linear
inequalities.

Ü It allows the automatic synthesis of affine (and linear) ranking functions,
that is, of the form

f(x) = µ0 + µTx = µ0 +

nX
i=1

µixi,

where x1, . . . xn are rational-valued and µi ∈ Z for i = 0, . . . , n.
Ü The method is complete in the sense that it decides the following

problem:

do µ0, µ1, . . . , µn ∈ Z and ε > 0 exist such that
1. ∀x,x′ ∈ Qn : c[x,x′] =⇒ f(x′) <ε f(x),
2. ∀x,x′ ∈ Qn : c[x,x′] =⇒ f(x′), f(x) ∈ Q+?

Ü The method is an extension of a method due to Sohn and Van Gelder
(1991).

THE METHOD OF MESNARD-SEREBRENIK: INTRODUCTION 17

THE METHOD OF MESNARD-SEREBRENIK: OVERVIEW

Ü Suppose for a moment that the problem is not to find values µ0, . . . , µn
such that f is a ranking function.

Ü Suppose that someone gives to us n+ 1 numbers µ0, . . . , µn, and that
we have to check they are such that f is a ranking function.

Ü We can do so by solving two linear problems, exploiting the fact that
c[x,x′] can be expressed as (x,x′)TAc ≥ bTc , for suitable Ac and bc.

Ü The first problem expresses that f is ε-decreasing for ε = 1:

minimize (x,x′)T(µ,−µ)

subject to (x,x′)TAc ≥ bTc

and further verify that the minimum is at least 1.
Ü If that is the case,

f(x)− f(x′) = µ0 + µTx− µ0 − µTx′ = (x,x′)T(µ,−µ) ≥ 1,

so that f(x′) <1 f(x).

THE METHOD OF MESNARD-SEREBRENIK: OVERVIEW 18

THE METHOD OF MESNARD-SEREBRENIK: OVERVIEW (CONT.)
Ü The other linear problem expresses that, subject to c[x,x′], f is

bounded from below by 0, that is,

f(x′) = µ0 + µTx′ ≥ 0.

Ü Note that the choice of the numbers 1, for ε, and 0, for f ’s lower bound,
is not restrictive.

Ü So far so good. . . but we have cheated. No one will give us µ0, . . . , µn:
we have to find them somehow!

THE METHOD OF MESNARD-SEREBRENIK: OVERVIEW (CONT.) 19

THE METHOD OF MESNARD-SEREBRENIK: OVERVIEW (CONT.)
Ü Sohn and Van Gelder made the crucial observation that the duality

theorem would save the day.

Ü Consider the problem that corresponds to ensuring ε-decrease:

minimize (x,x′)T(µ,−µ)

subject to (x,x′)TAc ≥ bTc

Ü Its dual, obtained with the suitable variant of the Duality Theorem, is

maximize bTc y

subject to Acy = (µ,−µ)

y ≥ 0

Ü Here, the unknown parameters µ occur linearly, whereas in the primal
they are multiplied by x.

THE METHOD OF MESNARD-SEREBRENIK: OVERVIEW (CONT.) 20

THE METHOD OF MESNARD-SEREBRENIK: OVERVIEW (CONT.)
Ü Because µ occurs linearly in

maximize bTc y

subject to Acy = (µ,−µ)

y ≥ 0

we can treat the µ’s as variables, instead of given constants.

Ü The boundedness condition, that is f(x′) = µ0 + µTx′ ≥ 0 subject to
c[x,x′], is treated in a similar way: a suitable LP problem is set and its
dual is considered.

THE METHOD OF MESNARD-SEREBRENIK: OVERVIEW (CONT.) 21

THE METHOD OF MESNARD-SEREBRENIK: OVERVIEW (CONT.)
Ü Letting µ̃ def

= (µ, µ0), Ãc
def
=
`

Ac 0 0
0 1 −1

´
and b̃c

def
= (bc, 1,−1), the method

boils down to considering the following LP problems:

maximize bTc y

subject to Acy = (µ,−µ)

y ≥ 0

bTc y ≥ 1

maximize b̃Tc z

subject to Ãcz = (0, µ̃)

z ≥ 0

b̃Tc z ≥ 0

Ü Notice that the requirements on the optima (≥ 1 for the strict decrease
and ≥ 0 for boundedness) have been incorporated into the constraints.

Ü Hence the objective functions are now superfluous (they could be
replaced by 0) and only satisfiability of the constraints is meaningful.

Ü The two sets of constraints can be merged and a single invocation to
the simplex can be used to decide satisfiability.

Ü And satisfiability implies the termination of the original loop.

THE METHOD OF MESNARD-SEREBRENIK: OVERVIEW (CONT.) 22

THE METHOD OF MESNARD-SEREBRENIK: OVERVIEW (CONT.)

maximize bTc y

subject to Acy = (µ,−µ)

y ≥ 0

bTc y ≥ 1

maximize b̃Tc z

subject to Ãcz = (0, µ̃)

z ≥ 0

b̃Tc z ≥ 0

Ü Alternatively, we can project the first set of constraints on µ:
Ü we will obtain the conditions that µ must satisfy to induce a function

f that is 1-decreasing under c[x,x′].
Ü Then, we can project the second set of constraints on µ̃:

Ü we will obtain the conditions that µ̃ must satisfy to induce a function
f that is bounded (actually, nonnegative) under c[x,x′].

Ü Taking the conjunction of these conditions we will obtain a description of
all functions f that are normalized (i.e., 1-decreasing and nonnegative)
ranking functions under c[x,x′].

THE METHOD OF MESNARD-SEREBRENIK: OVERVIEW (CONT.) 23

THE METHOD OF MESNARD-SEREBRENIK: OVERVIEW (CONT.)
Ü Notice that obtaining the space of all normalized ranking functions is

more expensive (due to the projection operations) than simply testing
(using one invocation to the simplex) that at least one ranking function
exists.

THE METHOD OF MESNARD-SEREBRENIK: OVERVIEW (CONT.) 24

THE METHOD OF PODELSKI-RYBALCHENKO: INTRODUCTION

Ü Another complete method for the automatic synthesis of affine (and
linear) ranking functions, i.e., of the form

f(x1, . . . , xn) = µ0 +

nX
i=1

µixi,

where x1, . . . xn are rational-valued and µi ∈ Z for i = 0, . . . , n.

Ü It can be applied, like the method of Mesnard and Serebrenik, when
c[x,x′] can be expressed as a conjunction of linear inequalities.

Ü Indeed, it can be proved to be equivalent to the method of Mesnard and
Serebrenik: if one of the two methods can prove termination of a given
approximated loop c[x,x′], or prove that no affine ranking function
exists for that loop, then the other method can do the same.

THE METHOD OF PODELSKI-RYBALCHENKO: INTRODUCTION 25

THE METHOD OF PODELSKI-RYBALCHENKO: OVERVIEW

Ü Condition c[x,x′] is rewritten as`
AA′´` x

x′
´
≤ b

Ü Termination is proved to be equivalent to the existence of two
nonnegative rational vectors λ1 and λ2 satisfying the following four
conditions:

λ1A
′ = 0, (λ1 − λ2)A = 0,

λ2(A+A′) = 0, λ2b < 0.

Ü If two such vectors exist, a ranking function is then defined by

f(x)
def
= λ2A

′x.

THE METHOD OF PODELSKI-RYBALCHENKO: OVERVIEW 26

THE METHOD OF PODELSKI-RYBALCHENKO: EXAMPLE

For example, the condition abstracting our example loop,

c[x, y, x′, y′] = (x ≥ 2 ∧ y ≥ 0 ∧ 0 ≤ x− 2x′ ≤ 1 ∧ y′ = y + 1)

can be expressed by

−1 0 0 0

0 −1 0 0

−1 0 2 0

1 0 −2 0

0 1 0 −1

0 −1 0 1




x

y

x′

y′

 ≤



−2

0

0

1

−1

1


.

THE METHOD OF PODELSKI-RYBALCHENKO: EXAMPLE 27

THE METHOD OF PODELSKI-RYBALCHENKO: EXAMPLE (CONT.)
Ü We look for two nonnegative rational vectors
λi = (λi1, λi2, λi3, λi4, λi5, λi6), for i = 1, 2, satisfying:

λ1A
′ = 0 ⇐⇒

8<:0 = λ13 − λ14

0 = λ15 − λ16

(λ1 − λ2)A = 0 ⇐⇒

8<:0 = −(λ11 − λ21)− (λ13 − λ23) + (λ14 − λ24)

0 = −(λ12 − λ22) + (λ15 − λ25)− (λ16 − λ26)

λ2(A+A′) = 0 ⇐⇒

8<:0 = −λ21 + λ23 − λ24

0 = −λ22

λ2b < 0 ⇐⇒
n
−2λ21 + λ24 − λ25 + λ26 < 0

Ü A solution is λ1 = (1, 0, 0, 0, 0, 0), λ2 = (1
2
, 0, 1

2
, 0, 0, 0);

Ü This induces the ranking function f(x, y) = x.

THE METHOD OF PODELSKI-RYBALCHENKO: EXAMPLE (CONT.) 28

REMINDER: EIGENVALUES AND EIGENVECTORS

Ü Given a square matrix A, we say that a non-zero vector v of the same
size is an eigenvector for A relative to the eigenvalue λ ∈ C if

Av = λv.

Ü Eigenvalues satisfy the characteristic equation det(A− λI) = 0, where
I is the identity matrix.

Ü Eigenvectors can be computed from eigenvalues.

Ü Intuitively, eigenvectors with real eigenvalues are directions where A

behaves as the multiplication by a fixed constant; eigenvectors with
complex eigenvalues correspond to planes that rotate under the action
of A.

Ü In a word, eigenvectors are “directions” where A behaves in the
simplest possible manner.

REMINDER: EIGENVALUES AND EIGENVECTORS 29

THE METHOD OF TIWARI: INTUITION

Ü Consider the simple loop

{ } while bTx > 0 do x := Ax

Ü If λ ∈ R+ \ {0} is an eigenvalue of A with eigenvector v, then Av = λv.

Ü Iterating, we have that, for each n ∈ N,

Anv = λnv

and

bT(Anv) = bT(λnv) = λn(bTv).

Ü Since λ > 0, this means that bT(Anv) has the same sign as bTv.

Ü In turn, this implies that if bTv > 0 (if the loop is entered), then the loop
does not terminate.

THE METHOD OF TIWARI: INTUITION 30

THE METHOD OF TIWARI: INTUITION (CONT.)
Ü We have seen that if the loop

{ } while bTx > 0 do x := Ax

is such that A has a positive eigenvalue λ admitting an associated
eigenvector v such that bTv > 0, then it will not terminate when initiated
with x = v.

Ü The interesting thing is that, if the loop does not terminate for at least
one initial value of x, then there necessarily exist λ and v enjoying the
properties above.

Ü By contraposition, if A and b do not admit such λ and v, then the loop
does terminate for all inputs.

THE METHOD OF TIWARI: INTUITION (CONT.) 31

THE METHOD OF TIWARI: INTUITION (CONT.)
Ü If the boolean clause contains two or more inequalities, it is not

sufficient to check termination on eigenvectors relative to positive
eigenvalues: linear combinations of such eigenvectors come into play.

Ü Let us consider the loop

{ } while (x > 0 ∧ y > 0) do y := 2y

Ü The corresponding matrix has the eigenvector v1 = (1, 0) relative to the
eigenvalue λ1 = 1, and the eigenvector v2 = (0, 1) relative to the
eigenvalue λ2 = 2.

Ü Since neither eigenvector (nor a negative multiple of it) satisfies the
clause, the body loop is not even entered if the input is any multiple of
an eigenvector.

Ü The loop does not terminate if the input is v = v1 + v2 = (1, 1), since v
satisfies the clause, and after n iterations its image is (1, 2n), so that the
loop is executed again.

THE METHOD OF TIWARI: INTUITION (CONT.) 32

TERMINATION OF LINEAR PROGRAMS (TIWARI)
Ü The method applies when the variables are R-valued and c[x,x′] has

the form

c[x,x′] = I ∧
m̂

i=1

“ nX
j=1

bijxj > 0
”
∧

n̂

i=1

“
x′i =

nX
j=1

aijxj
”
.

Ü Two cases depending on A = (aij)i,j=1,...,n:
Ü A has no positive real eigenvalues, then termination is ensured for

all possible inputs.
Ü Otherwise there is a non-deterministic algorithm that depends on an

asymptotic analysis of powers of A.
Ü One builds a set of linear constraints (both equalities and inequalities)

using the m inequalities in c above:
Ü if this set is satisfiable, any vector satisfying it is a witness for non

termination.
Ü if this set is unsatisfiable the constraints are mutually inconsistent,

and there is termination on any input.

TERMINATION OF LINEAR PROGRAMS (TIWARI) 33

TERMINATION OF LINEAR PROGRAMS (TIWARI)
Ü Consider the program { } while x > 0 do x := x+ y. Here

c[x, y, x′, y′] = (x > 0 ∧ x′ = x+ y ∧ y′ = y)

Ü The matrix A =
`

1 1
0 1

´
has the eigenvector vT = (1, 0) relative to the

eigenvalue λ = 1. The program does not terminate on input v.

Ü Consider the program { } while (x > 0 ∧ −y > 0) do x := x+ y. Here

c[x, y, x′, y′] = (x > 0 ∧ −y > 0 ∧ x′ = x+ y ∧ y′ = y)

and the program terminates on any input.

Ü In fact, assume that the input vector (x0, y0)
T satisfies

(x0 > 0) ∧ (−y0 > 0), so that the body loop is executed at least once.
After n iterations we have (xn, yn)T = (x0 + ny0, y0)

T.

Ü The first coordinate is a ranking function.

TERMINATION OF LINEAR PROGRAMS (TIWARI) 34

CONCLUSION

Ü Termination analysis is essential to prove that program components do
not get stuck.

Ü Developing termination proofs by hand is impossible to conduct reliably
on programs longer than a few dozens of lines.

Ü The authomatic synthesis of ranking functions allows, in a significant
number of cases, to prove termination without any human intervention.

Ü Computed ranking functions constitute termination certificates that can
be exhibited (in the spirit of proof-carrying code) to certify mobile code.

Ü The work described in this seminar is part of an ongoing effort at the
universities of Parma and La Réunion to sistematize and extend a
number of techniques on the automatic synthesis of ranking functions
for the purposes of termination, nontermination and complexity
analyses.

Ü A prototype implementation applying this techniques to the analysis of
imperative programs is being developed.

CONCLUSION 35

