
Lecture 3 A. Pnueli

Verifying Success

We consider now methods by which we can verify the property of success, i.e.
deadlock-freedom. As in the case of partial correctness, the method starts by
identifying a cut-set C and an associated assertion network.

First, consider the case that the cut-set if full, i.e. contains all locations in the
program.

Consider a node ` ∈ L in the program. Let c1, . . . , ck be the guards on all edges
departing from node `. We define the exit condition for ` to be

E` : c1 ∨ · · · ∨ ck

The following claim summarizes the first version of a rule for proving success.

Claim 8. In order to prove that program P is p-successful (i.e., no p-computation
ever deadlocks), it is sufficient to find a full network N : {ϕ` | ` ∈ L}, satisfying
the following requirements:

1. The network N is inductive.
2. p → ϕ`0

3. ϕ` → E` for every ` ∈ L

Proof Let σ : 〈`0, d0〉, . . . , 〈`, dm〉 be a p-computation segment reaching location
`. By premise 2, σ is also a ϕ`0-computation. By Claim 1 and premise 1, dk |= E`.
By premise 3, dm |= E` which implies that at least one of the edges departing
from location ` is enabled. Thus, σ cannot deadlock at `.

Sequential Program Analysis, NYU, Spring, 2003 37



Lecture 3 A. Pnueli

Extensions to Non-Full Networks

We now extend the method to apply also in the case that the network N is not
necessarily complete. Consider a partial network N : 〈C, {ϕ` | ` ∈ C}〉.

Let ˜̀ 6∈ C be a location not in C. As previously introduced, let Π
C,˜̀ be the

set of paths connecting a location in C to ˜̀ without passing through any other
cut-point. For each path π ∈ Π

C,˜̀, let srce(π), cπ, and fπ denote, respectively,
the cut-point at the beginning of path π, the summary traversal condition, and
data transformation associated with π.

The following claim summarizes the general rule for proving success, using an
arbitrary network.

Claim 9. In order to prove that program P is p-successful (i.e., no p-computation
ever deadlocks), it is sufficient to find a network N : 〈C, {ϕ` | ` ∈ C}, satisfying
the following requirements:

1. The network N is inductive.
2. p → ϕ`0

3. ϕ` → E` for every ` ∈ C
4. ϕsrce(π)(V ) ∧ cπ(V ) → E˜̀(fπ(V ))

for every ˜̀ 6∈ C and path π ∈ Π
C,˜̀

Sequential Program Analysis, NYU, Spring, 2003 38



Lecture 3 A. Pnueli

Proof of the Claim

Assume that there exists a network N : 〈C, {ϕ` | ` ∈ C} which satisfies the four
requirements of Claim 9 but program P is not p-successful.

In that case, there exists a p-computation segment σ reaching some location ˜̀
with data state d such that d 6|= E˜̀. We consider two cases:

Case ˜̀∈ C
Since N is inductive, data state d must satisfy ϕ˜̀. However, this contradicts
requirement 3 of the claim and the assumption d 6|= E˜̀. Therefore, this case is
impossible.

Case ˜̀ 6∈ C
In this case we consider the last cut-point location visited by the execution σ.
Assume that this is location `, and since then σ followed the path π ∈ Π

C,˜̀

on its way to ˜̀. Let d0 be the data state with which σ last visited location `.
Since σ followed the path π, we know that d0 |= cπ and d = fπ(d0). Due to
the inductiveness of N , we also know that d0 |= ϕ`. Substituting these facts
in requirement 4 of the claim, we conclude that d |= E˜̀ which contradicts the
assumption d 6|= E˜̀.

We thus conclude that programs P is p-successful.

Sequential Program Analysis, NYU, Spring, 2003 39



Lecture 3 A. Pnueli

Example: Binary Search

The following program is expected to identify the precise range in which an
input number x falls. We are given a sorted array of numbers a[1..n] such that
a[1] < x < a[n] and x 6= a[i] for all i ∈ [1..n].

x > a[m] → L := m x < a[m] → H := m

H − L = 1?
`3

H − L > 1 → [m := (H + L) ÷ 2]

(L,H) := (1, n)

`2

`1

`0

The specification is given by 〈p, q〉, where

p : n > 1 ∧ (a[1] < x < a[n]) ∧ sorted(a, 1, n) ∧ ∀i : [1..n] : x 6= a[i]
q : (1 ≤ L < n) ∧ (a[L] < x < a[L+ 1])

In order to prove success for this program, we consider locations `1 and `2. Their
exit conditions are respectively given by

E`1 : H − L ≥ 1 and E`2 : x 6= a[m]

Sequential Program Analysis, NYU, Spring, 2003 40



Lecture 3 A. Pnueli

Binary Search Continued

As the cut-set, we take C = {`0, `1, `3}. The assertion network is given by

ϕ0 : p
ϕ1 : (1 ≤ L < H ≤ n) ∧ ∀i : [1..n] : x 6= a[i]
ϕ3 : 1

Inductiveness of the network follows from the following property:

H − L > 1 → L < (H + L) ÷ 2 < H

Absence of deadlock at locations `1 and `2 follows, respectively, from requirements
3 and 4 as follows:

3 for `1 : · · · ∧ L < H ∧ · · ·︸ ︷︷ ︸
ϕ1

→ H − L ≥ 1︸ ︷︷ ︸
E`1

4 for `2 : (1 ≤ L < H ≤ n) ∧ ∀i : [1..n] : x 6= a[i]︸ ︷︷ ︸
ϕ1

∧ H − L > 1︸ ︷︷ ︸
cπ

→

x 6= a[(H + L) ÷ 2]︸ ︷︷ ︸
E`2

(fπ(V ))

Sequential Program Analysis, NYU, Spring, 2003 41



Lecture 3 A. Pnueli

Freedom from Faults

The correctness criterion and proof method for deadlock absence can be extended
to guarantee absence of faults. Examples of faults during execution are: accessing
a variable which has not been assigned a value, an array access with an out-of-
range subscript, division by 0, arithmetic overflow, extracting the square root of a
negative argument, etc.

An execution which does not generate any faults is called a fault-free execution. A
program whose p-computations are all fault-free is called p-fault-free.

For an assignment α : V := f(V ), it is possible to formulate a safety condition
Γα which guarantees fault freedom in the execution of α. For example, the safety
condition for the assignment α : A[i] := sqrt(A[j]/k) is given by

Γα : i ∈ range(A) ∧ j ∈ range(A) ∧ k 6= 0 ∧ A[j]/k ≥ 0

For a guarded command γ : c → [V := f(V )], we define the safety condition as
Γγ = Γc ∧ (c→ ΓV :=f(V )).

Let ` be a location in a program, and let γ1, . . . , γk be the guarded commands
labeling the edges departing from `. Then, we define the safety condition for ` to
be the conjunction Γ` : Γγ1 ∧ · · · ∧ Γγk

.

To prove that a program is p-fault free, we can use the proof method of Claim 9
where we replace the exit condition E` by the safety condition Γ`.

Sequential Program Analysis, NYU, Spring, 2003 42



Lecture 3 A. Pnueli

Example: Binary Search

Reconsider the binary search program.

x > a[m] → L := m x < a[m] → H := m

H − L = 1?
`3

H − L > 1 → [m := (H + L) ÷ 2]

(L,H) := (1, n)

`2

`1

`0

The only non-trivial safety condition is Γ`2 : 1 ≤ m ≤ n. To prove p-fault-freedom
for this program, we take the same assertion network as before. The verification
condition for location `2 is given by

(1 ≤ L < H ≤ n) ∧ · · ·︸ ︷︷ ︸
ϕ1

∧ H − L > 1︸ ︷︷ ︸
cπ

→ 1 ≤ (H + L) ÷ 2 ≤ n︸ ︷︷ ︸
Γ`2

(fπ(V ))

which is obviously valid.

Sequential Program Analysis, NYU, Spring, 2003 43



Lecture 3 A. Pnueli

Finding Inductive Assertions

The most difficult task in the application of the inductive assertion method is
the design of a set of inductive assertions. Due to theoretical considerations of
undecidability and incompleteness, we know that there can be no algorithm for
finding inductive assertions.

At best, we can present a set of useful heuristics which will work in some of the
cases.

It is useful to partition the assertion construction heuristics into two classes:
bottom-up techniques and top-down heuristics.

Bottom-up techniques analyze the program without considerations of its
specification. We usually infer first some invariant for an innermost loop and
then use propagation techniques to export this invariant to other parts of the
program.

In top down technique, we assume some invariant to be known outside of a loop
(such as the post-condition part q of the specification) and proceed to infer an
invariant for a point inside the loop.

Sequential Program Analysis, NYU, Spring, 2003 44



Lecture 3 A. Pnueli

Propagation Techniques

Let S be a set of locations which have already been assigned assertions, {ϕ` | ` ∈

S}, and ˜̀ 6∈ S be an unassigned location. We can propagate assertions from S to
˜̀ either backwards or forwards.

Backwards propagation

Let Π˜̀,S be a set of paths connecting ˜̀to locations in S. The assertion propagated

backwards from S to ˜̀ is given by

pre(˜̀, S) :
∧

π∈Π˜̀,S

(
cπ(V ) → ϕdest (π)(fπ(V ))

)

Consider for example program int-square

(y1, y2, y3) := (0, 0, 1)

y2 ≤ x→ [(y1, y3) := (y1 + 1, y3 + 2)]

y2 > x?

y2 := y2 + y3

`3`2

`1 `0

in which ϕ2 = y2
1 ≤ x ∧ y2 = (y1 + 1)2 ∧ y3 = 2y1 + 1. We can propagate ϕ2

backwards towards `1 and obtain:

ϕ1 : y2
1 ≤ x ∧ y2 + y3 = (y1 + 1)2 ∧ y3 = 2y1 + 1

Sequential Program Analysis, NYU, Spring, 2003 45



Lecture 3 A. Pnueli

Forward Propagation

Let Π
S,˜̀ be a set of paths connecting locations in S to ˜̀. The assertion propagated

forwards from S to ˜̀ is given by

post(S, ˜̀) :
∨

π∈Π
S,˜̀

∃V :
(
ϕsrce(π)(V ) ∧ cπ(V ) ∧ V = fπ(V )

)

For the case that the function fπ is invertible, we can replace the disjunct
∃V :

(
ϕsrce(π)(V ) ∧ cπ(V ) ∧ V = fπ(V )

)
by ϕsrce(π)(f

−1
π (V )) ∧ cπ(f−1

π (V )).

Consider, for example program int-square

(y1, y2, y3) := (0, 0, 1)

y2 ≤ x→ [(y1, y3) := (y1 + 1, y3 + 2)]

y2 > x?

y2 := y2 + y3

`3`2

`1 `0

where ϕ0 : x ≥ 0 and ϕ2 : y2
1 ≤ x ∧ y2 = (y1 + 1)2 ∧ y3 = 2y1 + 1. Propagating

forwards from S = {`0, `2} to `1, we obtain

ϕ1 :


 x ≥ 0 ∧ (y1, y2, y3) = (0, 0, 1)
∨ y2 ≤ x ∧ (y1 − 1)2 ≤ x ∧ y2 = y2

1 ∧ y3 − 2 = 2(y1 − 1) + 1




which can be simplified to

ϕ1 : y2
1 ≤ x ∧ y2 = y2

1 ∧ y3 = 2y1 + 1

Sequential Program Analysis, NYU, Spring, 2003 46



Lecture 3 A. Pnueli

Recurrence Equations

A useful bottom-up technique forms recurrence equations for variables which are
modified regularly inside a loop. Consider again program int-square.

y2 ≤ x→ [(y1, y3) := (y1 + 1, y3 + 2)]

`0
(y1, y2, y3) := (0, 0, 1)

y2 > x?

y2 := y2 + y3

`3`2

`1

Let y1(n) denote the value of variable y1 at location `2 after the n’th iteration of
the `2 → `1 → `2 loop. Observing the way y1 is modified during execution of this
loop, we obtain the equation:

y1(n+ 1) = y1(n) + 1

which can be solved to obtain y1(n) = y1(0) + n. Since y1(0), the value of y1 on
the first visit to `2, is 0, we can conclude

y1(n) = n (4)

The recurrence equation for y3(n) is y3(n+ 1) = y3(n) + 2. Since y3(0) = 1, we
can conclude

y3(n) = 2n+ 1 (5)

Finally, the recurrence equation for y2 is y2(n + 1) = y2(n) + y3(n + 1). Since
y2(0) = 1, we can use Formula (3) to obtain

y2(n) = 1 +
∑n

i=1 y3(i) = 1 +
∑n

i=1(2i+ 1) = (n+ 1)2

Eliminating n between the expressions for y1(n), y2(n), and y3(n), we obtain

y3 = 2y1 + 1 ∧ y2 = (y1 + 1)2.

Sequential Program Analysis, NYU, Spring, 2003 47



Lecture 3 A. Pnueli

Simultaneous Incrementation

In some cases, we can identify two variables y1 and y2 such that the overall effect
of their modification within a loop can be summarized by the multiple assignment

(y1, y2) := (y1 + c1, y2 + c2)

It is obvious that we can form recurrence equations for such variables whose
solution will be given by

y1(n) = y1(0) + nc1 and y2(n) = y2(0) + nc2

From these, we can infer the invariant:

y1 − y1(0)

c1
=
y2 − y2(0)

c2

For example, in the case of program int-square, we can use this approach to
obtain the invariant

y1 − 0

1
=
y3 − 1

2

which leads to the assertion y3 = 2y1 + 1 at location `2.

Sequential Program Analysis, NYU, Spring, 2003 48



Lecture 3 A. Pnueli

Simultaneous Multiplication

In other cases, we can identify two variables y1 and y2 such that the overall effect
of their modification within a loop can be summarized by the multiple assignment

(y1, y2) := (c · y1, c · y2)

It is obvious that we can form recurrence equations for such variables whose
solution will be given by

y1(n) = y1(0) · c
n and y2(n) = y2(0) · c

n

From these, we can infer the invariant:

y1
y1(0)

=
y2
y2(0)

Sequential Program Analysis, NYU, Spring, 2003 49



Lecture 3 A. Pnueli

Example: Integer Division

The following program divides the natural number x ≥ 0 by the natural y > 0

d ≤ r → [(q, r) := (q + b, r − d)]

(q, r, d, b) := (0, x, y, 1)
2d ≤ x→ [(d, b) := (2d, 2b)]

`1

2d > x?

b = 0?

(d, b) := (d÷ 2, b÷ 2) d > r?

`5

`4

b 6= 0?

`3

`2

`0

The specification of this program is given by 〈ϕ,ψ〉, where

ϕ : x ≥ 0 ∧ y > 0
ψ : x = qy + r ∧ 0 ≤ r < y

We can apply the simultaneous multiplication heuristic to variables b and d in the
loop of `1. As b(0) = 1 and d(0) = y, we obtain the invariant:

d = b · y

A similar invariant holds at locations `3 and `4, but its proof is more involved due
to the integer division.

Sequential Program Analysis, NYU, Spring, 2003 50



Lecture 3 A. Pnueli

Top Down Techniques: Splitting Conjunctions

A useful top down technique is that of splitting conjunctions. It is often the
case that, on exit from a loop, we expect to satisfy a conjunction p ∧ q. A
valuable heuristic identifies one of the conjuncts (say p) as an assertion which will
be maintained as a loop invariant, while the other conjunct q will be established
by the exit condition.

For example, on exit from the int-square program, the required post-condition
is given by the conjunction y2

1 ≤ x ∧ x < (y1 + 1)2. It is feasible to split this
conjunction into the assertion y2

1 ≤ x which is maintained as an invariant of the
loop in this program, and the assertion x < (y1 + 1)2 which is established when
the exit condition becomes true.

Sequential Program Analysis, NYU, Spring, 2003 51



Lecture 3 A. Pnueli

Example: Array Summation

Consider the following program array-sum, which sums the elements of an array
A[1..n].

`0

`1 `2
i > n?

(i, S) := (1, 0)

i ≤ n→ [(i, S) := (i+ 1, S +A[i])]

The specification of this program is given by 〈p, q〉, where

p : n ≥ 0
q : S =

∑n
j=1A[j]

As it is given, the post-condition q is not a conjunction. However, it is possible to
rewrite it, adding some more information, as

q̃ : i = n+ 1 ∧ S =
∑

j<i

A[j]

In this form, we can split q̃ into the conjunct S =
∑

j<iA[j] which is maintained
throughout the loop of location `1, and the conjunct i = n+ 1 which is achieved
on exit.

Sequential Program Analysis, NYU, Spring, 2003 52


