
Lecture 2 A. Pnueli

Additional Examples
Consider the following program, based on Euclid’s algorithm, for finding the
greatest common divisor (gcd) of two positive integers:

y1 < y2 → y2 := y2 − y1 y1 > y2 → y1 := y1 − y2

y1 = y2?

(y1, y2) := (x1, x2)

`2

`1

`0

The specification for this program is given by

p : x1 > 0 ∧ x2 > 0 q : y1 = gcd(x1, x2)

As a cut-set we take `0, `1, `2. For the assertion network, we take

ϕ0 : p, ϕ1 : y1 > 0 ∧ y2 > 0 ∧ gcd(y1, y2) = gcd(x1, x2), ϕ2 : q

The verification conditions are given by:

VC 01 : x1 > 0 ∧ x2 > 0 → x1 > 0 ∧ x2 > 0 ∧ gcd(x1, x2) = gcd(x1, x2)
VC 1l1 :y1 > 0 ∧ y2 > 0 ∧ gcd(y1, y2) = gcd(x1, x2) ∧ y1 > y2 →

y1 − y2 > 0 ∧ y2 > 0 ∧ gcd(y1 − y2, y2) = gcd(x1, x2)
VC 1r1 :y1 > 0 ∧ y2 > 0 ∧ gcd(y1, y2) = gcd(x1, x2) ∧ y1 < y2 →

y1 > 0 ∧ y2 − y1 > 0 ∧ gcd(y1, y2 − y1) = gcd(x1, x2)
VC 12 : y1 > 0 ∧ y2 > 0 ∧ gcd(y1, y2) = gcd(x1, x2) ∧ y1 = y2 →

y1 = gcd(x1, x2)

Sequential Program Analysis, NYU, Spring, 2003 20



Lecture 2 A. Pnueli

Basic Properties

The proof is based on the following basic properties of the gcd function:

P1. y1 6= y2 → gcd(y1 − y2, y2) = gcd(y1, y2 − y1) = gcd(y1, y2)
P2. y > 0 → gcd(y, y) = y

Sequential Program Analysis, NYU, Spring, 2003 21



Lecture 2 A. Pnueli

Raising a to Integer Power b

As additional example, we consider a program for computing integer powers of
an arbitrary real number. The algorithm is based on the binary representation of
integers as follows:
Let b =

∑k

i=0 bi2
i be the binary representation of the natural number b. Then,

ab = a
∑k

i=0 bi2
i

=
k

Π
i=0

a(2ibi)

The sequence of a2i

, i = 0, . . . , k can be obtained by starting with a and then
successively squaring the previous element:

a, a2, a4, a8, . . . , a2i

Also, since bi is either 0 or 1, the product above can be interpreted as multiply all

a2i
for which bi = 1. This leads to the following program:

odd(y2) → y3 := y3 · y1

y2 = 0?

(y1, y2) := (y2
1, y2 ÷ 2) even(y2)?

`4

`3

y2 6= 0?

(y1, y2, y3) := (a, b, 1)

`2

`1

`0

Sequential Program Analysis, NYU, Spring, 2003 22



Lecture 2 A. Pnueli

Verifying ab

odd(y2) → y3 := y3 · y1

y2 = 0?

(y1, y2) := (y2
1, y2 ÷ 2) even(y2)?

`4

`3

y2 6= 0?

(y1, y2, y3) := (a, b, 1)

`2

`1

`0

The specification for this program is given by:

p : b ≥ 0 q : y3 = ab

As the cut-set, we choose `0, `1, `4. For the assertion network, we take ϕ0 = p,
ϕ4 = q, and ϕ1 : y2 ≥ 0 ∧ y3 · y

y2
1 = ab.

Forming the verification conditions,we obtain:

VC 01 : b ≥ 0 → b ≥ 0 ∧ 1 · ab = ab

VC 1l1 : y2 ≥ 0 ∧ y3 · y
y2
1 = ab ∧ y2 6= 0 ∧ even(y2) →

y2 ÷ 2 ≥ 0 ∧ y3 · (y2
1)

y2÷2 = ab

VC 1r1 : y2 ≥ 0 ∧ y3 · y
y2
1 = ab ∧ y2 6= 0 ∧ odd(y2) →

y2 ÷ 2 ≥ 0 ∧ (y3 · y1) · (y2
1)

y2÷2 = ab

VC 14 : y2 ≥ 0 ∧ y3 · y
y2
1 = ab ∧ y2 = 0 → y3 = ab

Sequential Program Analysis, NYU, Spring, 2003 23



Lecture 2 A. Pnueli

Dependence on the Cut-Set

Interested in exploring the limitations of the inductive assertion method, we first
check whether the method is sensitive to the choice of the cut-set C. A special
case is that of a full cut-set C = L in which the cut-set includes all the locations
in the program.

The following claim shows that any inductive assertions which is not full, can be
extended to a bigger inductive network.

Claim 4. [Inductive networks can be extended] Let N = 〈C, {ϕ` | ` ∈ C}〉 be

an inductive assertion network, and ˜̀ 6∈ C a location not in C. There exists an

inductive assertion network over the extended cut-set C̃ = C ∪ {˜̀} which agrees

with N on the assertions ϕ` for all ` ∈ C.

Proof: The extended network has the form Ñ = 〈C̃, {ψ` | ` ∈ C̃}〉, where

C̃ = C ∪ {˜̀}. For all ` ∈ C, we take ψ` = ϕ`. We will present two different
constructions for the computation of ψ˜̀, one based on backwards propagation
while the other is based on forward propagation.

Sequential Program Analysis, NYU, Spring, 2003 24



Lecture 2 A. Pnueli

Backwards Propagation

Let Π˜̀,C be the set of paths connecting ˜̀ to a location in C without passing

through any other cut-point. For each path π ∈ Π˜̀,C, let dest(π), cπ, and fπ

denote, respectively, the cut-point at the end of path π, the summary traversal
condition, and data transformation associated with π. We define the pre-condition
for N at ˜̀which is given by:

pre(˜̀,N ) :
∧

π∈Π˜̀,C

(
cπ(V ) → ϕdest (π)(fπ(V ))

)

Formula pre(˜̀,N ) is the condition at ˜̀which guarantees that if execution continues
to reach a location ` ∈ C, then it will reach it with a data state satisfying ϕ`.

We will now show that, under the assumption that N is inductive, the extended
network obtained by taking ψ˜̀ = pre(˜̀,N ) is also inductive. Clearly we only have

to consider new verification paths, i.e. verification paths which appear in Ñ but did
not exist in N . There are two such classes of paths, which we consider separately.

Sequential Program Analysis, NYU, Spring, 2003 25



Lecture 2 A. Pnueli

Backwards Propagation: Paths from ˜̀ to ` ∈ C

Let π be a Ñ -path connecting ˜̀ to some cut-point `2 ∈ C. The verification
condition for such a path is given by:

ψ˜̀(V ) ∧ cπ(V ) → ϕ`2(fπ(V ))

which is equivalent to

ψ˜̀(V ) → (cπ(V ) → ϕ`2(fπ(V )))

As π connects ˜̀ to a location in C, this path is one of the members of the set
Π˜̀,C over which the conjunction defining ψ˜̀ = pre(˜̀,N ) is taken. Therefore,

cπ(V ) → ϕ`2(fπ(V )) is one of these conjuncts and is implied by ψ˜̀(V ).

Sequential Program Analysis, NYU, Spring, 2003 26



Lecture 2 A. Pnueli

Backwards Propagation: Paths from ` ∈ C to ˜̀

Next, consider a path π1 connecting some location `1 ∈ C to ˜̀ and not passing
through any other cut-point.

Let π2 ∈ Π˜̀,C be an arbitrary verification path connecting ˜̀ to some location

`2 = dest(π2). Let π = π1 ◦π2 be the path obtained by following π1 first and then
continuing along π2 (fusion of π1 and π2). Path π was a verification path for the
network N . Since N was inductive, we know that the verification condition

ϕ1(V ) ∧ cπ(V ) → ϕ2(fπ(V )) (1)

is valid. It is not difficult to relate the traversal condition and data transformation
of π to these of its constituents. These are given by

cπ(V ) = cπ1(V ) ∧ cπ2(fπ1(V )) and fπ(V ) = fπ2(fπ1(V )) (2)

With these relation, Formula (1) can be rewritten as

ϕ1(V ) ∧ cπ1(V ) → (cπ2(fπ1(V )) → ϕ2(fπ2(fπ1(V ))))

or, equivalently, as

ϕ1(V ) ∧ cπ1(V ) → let V = fπ1(V ) in
(
cπ2(V ) → ϕ2(fπ2(V ))

)

Taking the conjunction of this implication over all paths π2 ∈ Π˜̀,C, we obtain

ϕ1(V ) ∧ cπ1(V ) → let V = fπ1(V ) in
∧

π2∈Π˜̀,C

(
cπ2(V ) → ϕ2(fπ2(V ))

)

or, equivalently,

ϕ1(V ) ∧ cπ1(V ) → ψ˜̀(fπ1(V ))

Sequential Program Analysis, NYU, Spring, 2003 27



Lecture 2 A. Pnueli

Forward Propagation

An alternate definition of ψ˜̀ is based on the consideration of paths from C to ˜̀.

Let Π
C,˜̀ be the set of paths connecting a location in C to ˜̀ without passing

through any other cut-point. For each path π ∈ Π
C,˜̀, let srce(π), cπ, and

fπ denote, respectively, the cut-point at the beginning of path π, the summary
traversal condition, and data transformation associated with π. We define the
post-condition for N at ˜̀which is given by:

post(N , ˜̀) : ∃V0

∨

π∈Π
C,˜̀

(
ϕsrce(π)(V0) ∧ cπ(V0) ∧ V = fπ(V0)

)

Formula post(N , ˜̀) characterize the states which can be reached at location ˜̀
by an execution whose previous visit to a location ` ∈ C was with a data state
satisfying ϕ`.

We will now show that, under the assumption that N is inductive, the extended
network obtained by taking ψ˜̀ = post(N , ˜̀) is also inductive. Clearly we only

have to consider new verification paths, i.e. verification paths which appear in Ñ
but did not exist in N . As before, there are two such classes of paths, which we
consider separately.

Sequential Program Analysis, NYU, Spring, 2003 28



Lecture 2 A. Pnueli

Forward Propagation: Paths from ` ∈ C to ˜̀

Let π be a Ñ -path connecting a location `1 ∈ C to ˜̀. The verification condition
for such a path is given by:

ϕ`1(V0) ∧ cπ(V0) → ψ˜̀(fπ(V0))

which is validity-equivalent to

ϕsrce(π)(V0) ∧ cπ(V0) ∧ V = fπ(V0) → ψ˜̀(V )

As π connects a location in C to ˜̀ , this path is one of the members of the set
Π

C,˜̀ over which the disjunction defining ψ˜̀ = post(N , ˜̀) is taken. Therefore,
ϕsrce(π)(V0) ∧ cπ(V0) ∧ V = fπ(V0) is one of these disjuntcs and hence implies
ψ˜̀(V ).

Sequential Program Analysis, NYU, Spring, 2003 29



Lecture 2 A. Pnueli

Forward Propagation: Paths from ˜̀ to ` ∈ C

Next, consider a path π2 connecting ˜̀ to some location `2 ∈ C and not passing
through any other cut-point.

Let π1 ∈ Π˜̀,C be an arbitrary verification path connecting some location

`1 = srce(π1) to ˜̀. Let π = π1 ◦ π2 be the fusion of paths π1 and π2. Path π was
a verification path for the network N . Since N was inductive, we know that the
verification condition

ϕ1(V ) ∧ cπ(V ) → ϕ2(fπ(V )) (3)

is valid. Using the relations between the traversal condition and data transformation
of π to these of its constituents, Formula (3) can be rewritten as

ϕ1(V ) ∧ cπ1(V ) → (cπ2(fπ1(V )) → ϕ2(fπ2(fπ1(V ))))

which is validity equivalent to

(∃V0 : ϕ1(V0) ∧ cπ1(V0) ∧ V = fπ1(V0)) → (cπ2(V ) → ϕ2(fπ2(V )))

Taking the conjunction of this implication over all paths π1 ∈ Π
C,˜̀, we obtain




∨

π1∈Π
C,˜̀

∃V0 : ϕ1(V0) ∧ cπ1(V0) ∧ V = fπ1(V0)


 → (cπ2(V ) → ϕ2(fπ2(V )))

or, equivalently,
ψ˜̀(V ) ∧ cπ2(V ) → ϕ2(fπ2(V ))

Sequential Program Analysis, NYU, Spring, 2003 30



Lecture 2 A. Pnueli

Removing Cut-Points

In the previous discussion we have shown that it is always possible to add more
cut-points to an inductive network, while maintaining inductivity. We will now
show that it is also possible to remove cut-points, provided the remaining set is
still a cut-set.

Claim 5. Let N = 〈C, {ϕ` | ` ∈ C}〉 be an inductive network. Let ˜̀ ∈ C

be a location in C such that C = C − {˜̀} is a cut-set. Then the network

N = 〈C, {ϕ` | ` ∈ C}〉, obtained by removing ˜̀ and ϕ˜̀ from N , is also inductive.

Proof: We only need to consider “new” verification paths, i.e. paths which
exist in N but not in N . Such a path π connecting `1 ∈ C to `2 ∈ C must be the
fusion π = π1 ◦π2 of two paths, where path π1 connects `1 to ˜̀, while π2 connects
˜̀ to `2.

Since both π1 and π2 are verification paths in the inductive network N , we know
that the following implications are valid:

ϕ`1(V1) ∧ cπ1(V1) → ϕ˜̀ (fπ1(V1))
ϕ˜̀ (V2) ∧ cπ2(V2) → ϕ`2(fπ2(V2))

Substituting fπ1(V1) for V2 in the second implication, and combining the two
together yields

ϕ`1(V ) ∧ cπ1(V ) ∧ cπ2(fπ1(V )) → ϕ`2(fπ2(fπ1(V )))

which, using the relations in Formula (2), can be rewritten as

ϕ`1(V ) ∧ cπ(V ) → ϕ`2(fπ(V ))

Sequential Program Analysis, NYU, Spring, 2003 31



Lecture 2 A. Pnueli

Method is Independent of the Choice of the Cut-Set

The preceding discussions can be summarized by the statement that the success
or failure of an application of the inductive assertion method is independent of the
particular choice of the cut-set C.

Technically, this can be summatized by the following corollary:

Corollary 6. Let 〈p, q〉 be a specification for program P , and let C1 and C2 be

two cut-sets. Then, there exists an inductive network N1 based on C1 and entailing

〈p, q〉 iff there exists an inductive network N2 based on C2 and entailing 〈p, q〉.

The proof of this statement can be obtained by starting with a C1-based inductive
network N1 and incrementally adding missing locations, using Claim 4, until we
obtain a full network. Then we start removing locations which do not belong to C2,
relying on Claim 5, until we obtain a network N2 based on C2. Since both `0 and
`t belong to both N1 and N2, their associated assertions are preserved throughout
the entire procecss. Therefore, if N1 entails 〈p, q〉 then so does N2.

Sequential Program Analysis, NYU, Spring, 2003 32



Lecture 2 A. Pnueli

Completeness of the Method

An important question which arises whenever a proof method is introduced is that
of completeness. Namely, is it the case that, whenever a program is partially
correct w.r.t a specification 〈p, q〉, this fact can be proven, using the inductive
assertion method?

In our case, the answer is positive, and we will prepare the necessary constructs
for proving this fact.

Let `i and `j be two locations in the program which are connected by a direct edge,
labeled by the guaraded command cij → [V := fij(V )]. We define the formula

ρij(V1, V2) : cij(V1) ∧ V2 = fij(V1)

Obviously, ρij is satisfied by the two data states V1 = d1 and V2 = d2 iff there
exists a computation step 〈`i, d1〉 → 〈`j, d2〉 leading from the execution state
〈`i, d1〉 to the execution state 〈`j, d2〉.

Let E denote the set of direct edges in the program, i.e. set of pairs (`i, `j),
such that there is a direct edge from `i to `j. Assume that we consider a fixed
specification 〈p, q〉 for program P . For simplicity, we assume first that the program
has a single data variable (V ) which ranges over domain D.

Sequential Program Analysis, NYU, Spring, 2003 33



Lecture 2 A. Pnueli

The Minimal Predicate at Location `

For each location ` in the program, we define the minimal predicate M`(V ). It is
intended that a data state d satisfies M` iff

There exists a p-computation reaching the execution state 〈`, d〉.

This can be formalized by the following extended predicate logic formula:

M`(V ) :




∃k ≥ 0 : ∃loc : [0..k] 7→ [0..t], A : [0..k] 7→ D :
loc[0] = 0 ∧ p(A[0]) ∧ `loc[k] = ` ∧ V = A[k] ∧

∀r : [0..k) :
∨

(i,j)∈E

loc[r] = i ∧ loc[r+1] = j ∧ ρij(A[r], A[r+1])




The formula states the existence of two arrays of size k + 1 for some k ≥ 0.
The array loc[0..k] encodes the indices of the locations traversed during the
computation from `0 to `, while the array A[0..k] encodes the sequence of data
states encoutered during this computation. The conjunction loc[0] = 0 ∧ p(A[0])
ensures that the exeuction state 〈`loc[0]

, A[0]〉 is an initial state. The conjunction

`loc[k] = ` ∧ V = A[k] ensure that the last exeuction state encoded by these two

arrays is of the form 〈`, d〉 where d equals the current value of V . The conjunction
under the ∀r quantification guarantees that the sequence evolve according to the
rules of the program P and is, therefore, a computation of P .

Sequential Program Analysis, NYU, Spring, 2003 34



Lecture 2 A. Pnueli

The Claim of Completeness

Claim 7. [Completeness of the inductive assertions method] Let P be a

program which is partially correct w.r.t the specification 〈p, q〉. Then there

exists an inductive assertion network which entails 〈p, q〉.

Proof: For the cut-set we take C = L, i.e. a full cut-set. As the aseertion
associated with location ` we take the minimal predicate M`. It remains to show
that this assertion network is inductive and that it entails 〈p, q〉.

To show inductiveness, let `i and `j be two locations which are connected by a
direct edge. We have to show that if a data state d satisfies ϕi ∧ cij, where
ϕi = Mi, then fij(d) satisfies ϕj = Mj. By definition of Mi, d |= Mi implies
that there exists a p-computation segment σi : s0, . . . , 〈`i, d〉 reaching location `i
with data state d. Since d |= cij, we can extend σi by one more step to obtain
the p-computation segment σj : s0, . . . , 〈`i, d〉, 〈`j, fij(d)〉, i.e., a computation
segment reaching location `j with data state fij(d). By the definition of Mj, it
follows that fij(d) |= Mj.

Next, we have to show that the defined network entails the specification 〈p, q〉.
Since location `0 has no incoming edges, the only computation segments reaching
`0 must be singleton sequences of the form 〈`0, d〉, where d |= p. It follows that
the minimal predicate M`0 equals p, and therefore is trivially implied by p.

For the terminal location, we have to show that M`t
→ q. Let d be a data

state satisfying M`t
. This implies that d is a possible final result of a terminating

p-computation. Since Claim 7 assumes that P is partially correct w.r.t 〈p, q〉, d
must satisfy q. It follows that M`t

implies q.

Sequential Program Analysis, NYU, Spring, 2003 35



Lecture 2 A. Pnueli

What we Have Not Proven

It is not very difficult to remove the restriction that V consists of a single data
variable. Assume, instead, that V = {y1, . . . , ym}. Then, the only difference is
that the array A will have to be a two-dimensional array of the form A[1..m, 0..k].

Also, allowing the formula for M` to quantify over arrays, is not a very significant
deviation from conventional first-order logic. If the data domain D is the naturals
or integers or, for that matter, any other recursive data structure, we can use Gödel
encoding, in order to reduce arrays of any dimension and sequences to natural
numbers.

On the other hand, the reader should notice that the ony thing we proved is the
existence of an assertion network whose verification conditions are valid. Nowhere
did we claim that these conditions are provable in any formal system. Rather, all
the available undecidability and imcompleteness results for first-order logic imply
that that there does not exist a single formal system in which these verification
conditions can always be proven.

Furthermore, the “construction” of inductive network as outlined in the
completeness proof, should not be interpreted to mean that such construction
is useful for any actual application. The main reason why this construction is not
useful is that its soundness relies on the a priori assumption that the program is
partially correct w.r.t 〈p, q〉. If we are already ensured of this fact, there is no
remaining motivation for applying the inductive assertion method.

Sequential Program Analysis, NYU, Spring, 2003 36


