
Sequential Programs Verification and Analysis

Amir Pnueli
Course: G22.3033-014

Wednesdays, 5-7 PM

Copies of presentations and Lecture Notes will be
available at

http://www.cs.nyu.edu/courses/spring03/G22.3033-014/index.htm

Recommended textbooks:

• Program Verification by N. Francez, Addison-Wesley, 1992.

• Verification of Sequential and Concurrent Programs, by K.R. Apt and E.-R.
Olderog, Spinger-Verlag, 1991.

Sequential Program Analysis, NYU, Spring, 2003

Lecture 1 A. Pnueli

Verification of Sequential Programs

In this course we will study methods for the formal verification of sequential
programs. What is the interest in sequential verification?

• Historically, formal verification started with the study of sequential programs.
Floyd’s seminal paper [Flo67] defined the problem, and outlined the main
principles of its solution: using invariants for proving partial correctness, and
well-founded ranking functions to establish termination.

• These basic principles underly all subsequent developments in formal verification,
including their extensions to reactive and parallel verification, methods of
simulation and abstraction, and verification of functional programs.

• We use these principles in our work on translator validation.

• Recently, there has been a revival of interest in sequential verification, through
encouragement of the use of assertions within programs, and intense activity in
program analysis.

Sequential Program Analysis, NYU, Spring, 2003 1

Lecture 1 A. Pnueli

Partial List of Topics that Will be covered

• Programs and their specification.

• Various notions of correctness: partial correctness, termination, absence of
failures.

• Using invariants for proving partial correctness.

• Using ranking functions for proving termination.

• Programs with procedures.

• Functional programs and their verification.

• Structured proof systems: Hoare logic, weakest precondition.

• Dealing with abstract data types and pointer structures.

• Abstract interpretation and program analysis.

Sequential Program Analysis, NYU, Spring, 2003 2

Lecture 1 A. Pnueli

The Verification Framework

The subject deals with relations of objects in two description languages on different
levels:

• A programming language P. Can be compiled and executed on conventional
computing systems.

• A specification language S. A higher level non-procedural language which offers
a natural vehicle for humans to represent requirements and specification of
computing tasks.

Sequential Program Analysis, NYU, Spring, 2003 3

Lecture 1 A. Pnueli

Questions which can be Asked

Given a verification framework, there are several questions one could ask about
relationship between object in these two languages:

• The Synthesis Problem: Given a specification S ∈ S, construct a program
P ∈ P which satisfies the specification.

• The Analysis Problem: Given a program P ∈ P, find its corresponding
description S ∈ S.

• The Verification Problem: Given a specification S ∈ S and a program P ∈ P,
check whether they are compatible, i.e. whether P satisfies S.

• The Debugging Problem: Given a specification S ∈ S and a program P ∈ P
known not to satisfy S, find a program P ′ ∈ P “close” to P , i.e., transform P

into P ′, such that P ′ satisfies S.

• The Optimization Problem: Given a specification S ∈ S and a program P ∈ P
satisfying S. Among all programs P ′ “close” to P and satisfying S, find the
“best” program (i.e. maximizing some performance metric).

A central notion which appears in all of these questions is that of a program P ∈ P
satisfying a specification S ∈ S. For that reason, we should study the verification
problem first.

In general, all of these problems are difficult, undecidable, and at best, intractable.
However, if S and P are close enough, they may admit algorithmic solutions. For
example, compilation can be viewed as a special case of synthesis.

Sequential Program Analysis, NYU, Spring, 2003 4

Lecture 1 A. Pnueli

Program Represented by Transition Graphs

Our first programming language will be based on transition graphs. We assume a
set of typed program variables V .

A transition graph is a labeled directed graph such that:

• All nodes are labeled by locations `i.

• There is one initial node, usually labeled by `0, and having no incoming edges.

• There is one terminal node, labeled `t with no outgoing edges.

• Nodes are connected by directed edges labeled by an instruction of the form

c→ [~y := ~e]

where c is a boolean expression over V , ~y ⊆ V is a list of variables, and ~e is
a list of expressions over V . In cases the assignment part is empty, we can
abbreviate the label to a pure condition c?.

• Every node is on a path from `0 to `t.

Sequential Program Analysis, NYU, Spring, 2003 5

Lecture 1 A. Pnueli

Example: Integer Square Root Program

The following program int-square computes in y1 the integer square root of the
input variable x ≥ 0.

(y1, y2, y3) := (0, 0, 1)

y2 ≤ x→ [(y1, y3) := (y1 + 1, y3 + 2)

y2 > x?

y2 := y2 + y3

`3`2

`1 `0

Sequential Program Analysis, NYU, Spring, 2003 6

Lecture 1 A. Pnueli

States and Computations

For simplicity, we assume that all program variables range over the same domain D.
For example, for program int-square, D is the domain of integers. We denote
by d = (d1, . . . , dn) a sequence of D-values, which represent an interpretation (i.e.,
an assignment of values) of the program variables V .

A state of program P is a pair 〈`, d〉 consisting of a label ` and a data-interpretation
d. A computation of program P is a maximal sequence

σ : 〈`0, d0〉, 〈`1, d1〉, . . . , 〈`k, d
k〉 . . .,

such that

• `0 = `0.

• For each i = 0, 1, . . . , there exists an edge connecting `i to `i+1 and labeled by
the instruction c→ [~y := ~e], such that di |= c and di+1 = di with ~y := ~e(di).

We denote by Comp(P, d) the set of computations of program P starting at
data-state d.

Sequential Program Analysis, NYU, Spring, 2003 7

Lecture 1 A. Pnueli

An Example of a Computation

Reconsider program int-square.

(y1, y2, y3) := (0, 0, 1)

y2 ≤ x→ [(y1, y3) := (y1 + 1, y3 + 2)]

y2 > x?

y2 := y2 + y3

`3`2

`1 `0

Following is a computation generated for x = 5:

〈`0; (−,−,−)〉,
〈`1; (0, 0, 1)〉, 〈`2; (0, 1, 1)〉, 〈`1; (1, 1, 3)〉, 〈`2; (1, 4, 3)〉,
〈`1; (2, 4, 5)〉, 〈`2; (2, 9, 5)〉, 〈`3; (2, 9, 5)〉

Sequential Program Analysis, NYU, Spring, 2003 8

Lecture 1 A. Pnueli

Results of Computations

Let σ be computation. We define the result of the computation σ, denoted val(σ),
according to the following cases:

• If the computation is finite, and the last state is 〈`t; d〉, then val(σ) = d. We
refer to such a computation as a terminating computation.

• If the computation is finite, and the last state is 〈`; d〉 for some ` 6= `t, we say
that the computation fails and write val(σ) = fail . This is possible if all guards
on edges departing from location ` are false on d. In particular if there are no
edges departing from `.

• If the computation is infinite, we say that the computation diverges, and write
val(σ) = ⊥.

For a program P and initial data-state d, we define the meaning of the program P

as a function:

M(P, d) = {val(σ) | σ ∈ Comp(P, d)}

It is customary to write M(P, d) as M [P](d) to emphasize that M is a mapping
which, for each program P yields a function M [P] of the type:

M [P] : Dn 7→ 2Dn∪{fail ,⊥}

Sequential Program Analysis, NYU, Spring, 2003 9

Lecture 1 A. Pnueli

Specifications

A specification for a sequential program is given by a pair (ϕ,ψ) of first-order
formulas, where

• The pre-condition ϕ imposes constraints on the initial data state by which
proper computations could start.

• The post-condition ψ specifies the properties the terminal data state of a proper
computation should satisfy.

For example, a specification for program int-square can be given by the pair

(x ≥ 0, y2
1 ≤ x < (y1 + 1)2)

According to this specification, on initiation x should have a non-negative value
while, on termination y1 should be such that its square does not exceed x, but the
square of y1 + 1 should exceed x.

A computation whose initial state satisfies ϕ is called a ϕ-computation.

Sequential Program Analysis, NYU, Spring, 2003 10

Lecture 1 A. Pnueli

Correctness Statements

Given a specification (ϕ, ψ), we can formulate several notions of correctness.

• Partial Correctness. Program P is partially correct with respect to the
specification (ϕ,ψ) if every terminating ϕ-computation ends in a ψ-state,
i.e.

ϕ(d0) ∧ d ∈M [P](d0) → ψ(d)

• Success. A program is successful under ϕ (ϕ-successful) if there are no failing
ϕ-computations. That is,

ϕ(d0) → fail 6∈M [P](d0)

• Convergence. A program is convergent under ϕ (ϕ-convergent, ϕ-terminating)
if there are no divergent ϕ-computations. That is,

ϕ(d0) → ⊥ 6∈M [P](d0)

• Total Correctness. Program P is totally correct with respect to (ϕ,ψ) if it is
partially correct, successful, and convergent under (ϕ,ψ).

Sequential Program Analysis, NYU, Spring, 2003 11

Lecture 1 A. Pnueli

Proving Partial Correctness

We now present a proof method for proving partial correctness of a program. This
proof method is called the method of inductive assertions [Flo67].

Step 1: Identifying a Cut-point Set

A cut-point set is a subset of locations C ⊆ L such that `0, `t ∈ C and every cycle
in the program’s graph contains at least one cut-point (a member of C).

For example, for program int-square, we can choose the cut-point set
C = {`0, `2, `3}.

y2 ≤ x→ [(y1, y3) := (y1 + 1, y3 + 2)]

`0
(y1, y2, y3) := (0, 0, 1)

y2 > x?

y2 := y2 + y3

`3`2

`1

Sequential Program Analysis, NYU, Spring, 2003 12

Lecture 1 A. Pnueli

Step 2: Verification Paths

A verification path is a path from one cut-point to another cut-point, which does
not pass through any other cut-point.

For example, in program int-square, we have 3 verification paths.

y2 ≤ x→ [(y1, y3) := (y1 + 1, y3 + 2)]

`0
(y1, y2, y3) := (0, 0, 1)

y2 > x?

y2 := y2 + y3

`3`2

`1

The verification paths for this program are given by

π02 : `0, `1, `2
π22 : `2, `1, `2
π23 : `2, `3

Sequential Program Analysis, NYU, Spring, 2003 13

Lecture 1 A. Pnueli

Summary Guarded Commands

Consider a verification path π where, for simplicity, all assignments are made to
the full set of program variables V .

`k+1`k
ck → [V := fk(V)]c1 → [V := f1(V)]

`2`1

For such a path we can compute a traversal condition cπ and a data transformation
fπ. Condition cπ when satisfied at `1 guarantees that it is possible to traverse the
path π. The transformation fπ specifies the values of V at the end of an execution
of π as a function of the values of V in the beginning of such execution. They are
respective given by:

cπ : c1(V) ∧ c2(f1(V)) ∧ · · · ∧ ck(fk−1(· · · f1(V) · · ·))
fπ : fk(fk−1(· · · f2(f1(V)) · · ·))

Given these constructs we can summarize the effect of executing the path π by the
summary guarded command Gπ : cπ → [V := fπ(V)].

Sequential Program Analysis, NYU, Spring, 2003 14

Lecture 1 A. Pnueli

Application to int-square

Apply this procedure to program int-square.

y2 ≤ x→ [(y1, y3) := (y1 + 1, y3 + 2)]

`0
(y1, y2, y3) := (0, 0, 1)

y2 > x?

y2 := y2 + y3

`3`2

`1

The summary guarded commands for the 3 verification paths are given by:

G02 : (y1, y2, y3) := (0, 1, 1)
G22 : y2 ≤ x→ [(y1, y2, y3) := (y1 + 1, y2 + y3 + 2, y3 + 2)]
G23 : y2 > x→ [(y1, y2, y3) := (y1, y2, y3)]

Once we derive these summary guarded commands, it is possible to construct the
following reduced version of the original program.

y2 ≤ x→ [(y1, y2, y3) := (y1 + 1, y2 + y3 + 2, y3 + 2)]

`0
(y1, y2, y3) := (0, 1, 1)

y2 > x?
`3`2

This reduced program is weakly equivalent to the original program in the sense that
it preserves all successful terminating computations and all divergent computations.
However, it may lose some failing computations of the original program.

Sequential Program Analysis, NYU, Spring, 2003 15

Lecture 1 A. Pnueli

Step 3: Devise an Assertion Network

With each cut-point `i ∈ C associate an assertion ϕi (first-order formula) over V .

For example, for program int-square,

y2 ≤ x→ [(y1, y3) := (y1 + 1, y3 + 2)]

`0
(y1, y2, y3) := (0, 0, 1)

y2 > x?

y2 := y2 + y3

`3`2

`1

we can form the following assertion network:

ϕ0 : x ≥ 0
ϕ2 : y2

1 ≤ x ∧ y2 = (y1 + 1)2 ∧ y3 = 2y1 + 1
ϕ3 : y2

1 ≤ x < (y1 + 1)2

Sequential Program Analysis, NYU, Spring, 2003 16

Lecture 1 A. Pnueli

Step 4: Form Verification Conditions

For each verification path π connecting cut-point `i to cut-point `j, we form the
verification condition

VC π : ϕi(V) ∧ cπ → ϕj(fπ(V))

For example, for program int-square

y2 ≤ x→ [(y1, y2, y3) := (y1 + 1, y2 + y3 + 2, y3 + 2)]

`0
(y1, y2, y3) := (0, 1, 1)

y2 > x?
`3`2

and the assertion network

ϕ0 : x ≥ 0
ϕ2 : y2

1 ≤ x ∧ y2 = (y1 + 1)2 ∧ y3 = 2y1 + 1
ϕ3 : y2

1 ≤ x < (y1 + 1)2

we obtain the following set of verification conditions:

VC 02 : x ≥ 0 → 02 ≤ x ∧ 1 = (0 + 1)2 ∧ 1 = 2 · 0 + 1
VC 22 : y2

1 ≤ x ∧ y2 = (y1 + 1)2 ∧ y3 = 2y1 + 1 ∧ y2 ≤ x →
(y1 + 1)2 ≤ x ∧ y2 + y3 + 2 = ((y1 + 1) + 1)2 ∧ y3 + 2 = 2(y1 + 1) + 1

VC 23 : y2
1 ≤ x ∧ y2 = (y1 + 1)2 ∧ y3 = 2y1 + 1 ∧ y2 > x →

y2
1 ≤ x < (y1 + 1)2

Sequential Program Analysis, NYU, Spring, 2003 17

Lecture 1 A. Pnueli

Inductive and Invariant Networks

An assertion network N = {ϕ0, . . . , ϕt} for a program P is said to be inductive if
all the verification conditions VC π for all verification paths π in P are valid.

Network N is said to be invariant if for every execution state 〈`i, d〉 occurring in a
ϕ0-computation, where `i ∈ C, d |= ϕi. That is, on every visit of a ϕ0-computation
at a cut-point `i the visiting data state satisfies the corresponding assertion ϕi

associated with `i.

Claim 1. Every inductive network is invariant.

Proof Let N = {ϕ0, . . . , ϕt} be an inductive network. Let

σ : 〈`i0, d0〉
π0−→ 〈`i1, d1〉

π1−→ · · ·
πk−1
−→ 〈`ik, dk〉

πk−→ · · ·

be a ϕ0-computation where we explicitly display the sequence of cut-points
`0 = `i0, `i1, . . . visited by σ and the verification paths π0, π1, . . . connecting them.

We will prove by induction on j = 0, 1, . . . that dj |= ϕij. For j = 0, we consider
the cut-point `i0 = `0. Since σ is a ϕ0-computation, we have that d0 |= ϕ0.

Assume now that dj |= ϕij . We will show that dj+1 |= ϕij+1
. Since σ

proceeded from `ij to `ij+1
through verification path πj, we know that dj |= cπj

and dj+1 = fπj
(dj). We also have that the verification condition

VC πj
: ϕij(dj) ∧ cπj

(dj) → ϕij+1
(fπj

(dj))

holds. Since both ϕij(dj) and cπj
(dj) are true, we conclude that ϕij+1

(fπj
(dj)) =

ϕij+1
(dj+1) is also true. It follows that dj+1 |= ϕij+1

.

Sequential Program Analysis, NYU, Spring, 2003 18

Lecture 1 A. Pnueli

Consequences

From Claim 1 we conclude:

Corollary 2. If N = {ϕ0, . . . , ϕt} is an inductive network, then program P is

partially correct with respect to the specification (ϕ0, ϕt).

Let (p, q) be a specification. We say that the network N = {ϕ0, . . . , ϕt} entails
the specification (p, q) if the following two implications are valid:

p → ϕ0 ϕt → q

Corollary 3. If N = {ϕ0, . . . , ϕt} is an inductive network which entails the

specification (p, q), then program P is partially correct with respect to (p, q).

This leads to the final formulation of the inductive assertion proof method.

In order to prove that program P is partially correct w.r.t specification (p, q),
find an assertion network N = {ϕ0, . . . , ϕt} and prove that N is inductive
and that it entails the specification (p, q).

Sequential Program Analysis, NYU, Spring, 2003 19

