
NESSY: AN OBJECT-ORIENTED NETWORK SIMULATION TOOL

Michel Soto and Pascal Anelli
Laboratoire MASI - CNRS UA 818

University Pierre et Marie Curie
F75252 Paris, FRANCE
E-mail: soto@masi.ibp.fr

ABSTRACT

This paper describes NESSY (NEtwork Simulation
SYstem). This software tool aims to deal with the main
problems in the area of performance evaluation simulation tool
for communication networks.  The tool provides an object
oriented methodology in order to represent network
components.  The assembly of these components is then used
for building a network model.  Furthermore, the tool relies on a
formal model to describe these basic components.  They are
described with a dedicated language derived from the ESTELLE
FDT (Formal Description Technique).  These descriptions form
objects which have good properties to model all kinds of
network components, to be reusable and modular.  The final
simulation model is made by composition of instances of
various object classes.  One peculiarity of this tool is the full
flexibility between the simulation and the model to reduce the
prototyping time.  This is of great interest for example when
transient phenomena are under study.

1.          INTRODUCTION

Digital transmission systems and communication
networks are complex and varied.  It is a long and difficult task
to develop a model for performance evaluation purpose of such
systems.  This task needs a tool that makes easier for the
analyst the modeling and the understanding of the system
behavior.  Such a tool must neither be dedicated to a specialized
area nor solve a particular class of problems: this should be
opposite to the growing diversity of communication networks.
In addition, due to the high cost and long realization time of
this tool, it is compulsory to design it on efficient basis with
evolution capabilities in middle and long term.  A performance
evaluation tool for communication network must therefore
exhibit general purpose properties.  Basically, in simulation,
model writing demands a programming expertise.  This restricts
the population potentially able to lead such a study.
Consequently, hiding the writing stage of the models to the
final user is a requirement for the tool.  The amount of time
needed for development and analysis of a model must also be
taken into account.  This may be very important given the tight
time constraints in many projects.  Then, performance
evaluation stage can be planed in the design cycle because its
duration becomes shorter and more easily predictable.  However,
there is a problem using the digital simulation as a solving
method: the model correctness.  Without formal proving
software, a partial solution is in code reusability.  Modularity is
the key concept of code reusability.  As a consequence, a
simulation model must be constructed in modular manner using

 SIMTEC'93, Proceedings of 1993 International Simulation
Technology Multiconference, SCS, San Francisco, CA,
November 07-10, 1993

composition from other models already validated by previous
studies.  The model reusability is also a strongly recommended
feature to satisfy the rapid prototyping constraint.

Dahl and Nygaard designed the Simula language 27 years
ago (Dahl and Nygaard 1966).  They introduced many concepts
taken up again by every contemporary object-based and object-
oriented programming language.  The aim of Simula language is
to describe directly the systems with a simulation point of view.
Since the definition of Simula, the link between object oriented
techniques and simulation is obvious.  Both they derive their
principles from the real world.  The advantages and drawbacks of
Object Oriented Simulation (OOS) are discussed in (Roberts and
Heim 1988).  Nowadays, it is obvious that a simulation software
must be designed with object oriented concepts.  In fact, the
current simulation tools use, like many other softwares, an
Object-Oriented (OO) approach.  This process has important
advantages.  It allows the modeling by hierarchical and modular
composition: a model is an object made up by a set of other
objects only seen through their interfaces (Zeigler 1987).
When hiding internal details of a model, a high level of
abstraction is reached.  So, this modeling technique helps
handling large models.  The OO approach increases also re-
utilization of models in different studies and makes easier the
constitution of "ready to use" library of models.  Moreover, the
hierarchical structure of real systems can be translated in the
model.  An object may be composed with simpler objects easier
to understand even by a user without any notion in modeling.
On the other hand, a skilled user in modeling will access to the
methods of the models and will create new components.  The
limit of utilization of the tool closely depends on the basic
object used for building of the network models.  This object
must allow the modeling of a wide range of real network
components and must be used in any combination of objects.  In
this way, the utilization of the tool is neither limited by the
diversity and individual complexity of network components nor
limited by the arbitrary composition of objects.  Finally, OO
approach promotes high quality user interface: objects and
methods are well fitted to icon representation and interrogation
by dialogue boxes.  Thus the network model can be described
according a visual representation.  In this way, the user has no
need to translate from his/her perception of the communication
network into a syntax of a textual language. The modeling
technique appears therefore more 'natural'.

Tools like OPNET (MIL 3 Inc 1991), RESQME (Gordon et
al. 1991), TOPNET (Marsan et al. 1990) and BONeS (LaRue et
al. 1990) mainly differ from each other in the formal methods
and the way used to describe the internal operations of this basic
object.  OPNET is based on graphic description of extended
finite state machine and C language.  RESQME has been
designed for performance evaluation of resource contention
systems such as communication networks.  The model is
graphically specified according to the queueing network
paradigm developed in RESQ.  With TOPNET, the basic object is



Modeling
Phase

Building 
Phase

Modeler

Final User

NESSY

Fig. 1.  The two phases of NESSY.

described graphically by a class of timed Petri nets named PROT
nets.  The script associated with the Petri nets transitions is
written in Ada.  BONeS has developed a block oriented paradigm
with the aim to be more general than the previous ones.  The
blocks are graphically assembled and primitives written in C at
the lowest level of abstraction.

The problem is how to use OO concepts to provide a
general purpose tool, a descriptive modeling process and a
flexible simulation model? This paper briefly describes the
NEtwork Simulation SYstem (NESSY): an environment for
building a communication network model solved by simulation.
In this paper, we will focus on the modeling methodology and
the application of the object oriented techniques used to get a
general purpose performance evaluation tool for communication
networks.  The objectives assigned to NESSY are: (1) to save
the final user from the modeling phase; (2) to provide a tool not
limited to a specific field of the communication networks; (3) to
keep the prototyping time as short as possible; (4) to maintain
the correctness of the models.

2.          OVERVIEW OF NESSY

The utilization of NESSY is two-phased: the modeling
phase where models called atomic models are designed and
written, and the building phase where simulation model is
constructed and resolved.  These two phases are clearly separated
in time and can be carried out by two distinct people: the
modeler and the final user (only named user in the following), as
shown in Fig. 1.  The modeler is a specialist in modeling
techniques related to computer networks.  To improve the
writing time, NESSY provides a language specially designed to
write atomic model that namely integrates communication
capability, extended finite state machine paradigm and time
consumption.  The user has a good knowledge in computer
networks but none in modeling and programming techniques.
The absence of programming during the building phase makes
easier to the user the utilization of the tool and increases the
variety of potential users.  This two-phased working permits to
save the final user from the modeling phase: the remaining task
of the user is to select graphically atomic models and describes
the existing links between them.  High interactivity is given to
the user.  During the simulation stage, the user can interfere at
any moment to change parameters of the model or to add/remove
measurements.  No compiling of the models is required after
these changes.  This capability is useful when the user is
working in a learning mode or when he/she is tuning his/her
model.

One basic idea of NESSY is to find a unit to construct the
model which be stable and highly reusable.  Stability means

independence between the code of this unit and the conditions of
its use (i.e. the specification of the study objective ).  The
experience has shown that the evaluation studies, specially in
simulation, are always in evolution by essence.  A study can
often lead to another study.  So, the objective of the study must
be separated from the network modeling.  To help the user to
handle huge network model, the model unit must also integrate
abstraction and hierarchical notions in order to map the network
model on the user's conceptual model (i.e. the mental
representation) of the real network.  This unit (e.g. network
component like protocol, link and node) is atomic or
composable.  Thus NESSY offers an atomic unit: the Elementary
Simulation Object (ESO), and another composable one: the
Composable Simulation Object (CSO).  The detailed description
of ESO and CSO is given in next sections.

2.1.      Modeling phase

A network component may be viewed at different
abstraction levels.  For example, a data link may be viewed as
an elementary component or may be seen as a more complex
component made of one medium and two modems.  The modeler
designs a model at the lowest useful abstraction level for each
component that may be encountered in computer networks.
Such a model is call atomic model because it represents the
lowest abstraction level of a network component.  Once an
atomic model is written with the dedicated LASSY (LAnguage for
the Simulation SYstem) language it becomes in NESSY a ESO
definition.

It is important to distinguish the ESO definition from the
ESO instance.  In term OO, one ESO definition describes one
ESO class (Khoshafian and Abnous 1990).  One ESO instance is
an invocation of its corresponding ESO class.  Only ESO
instances exist in the network model.  For example, the ESO
definition of "send and wait" protocol describes the ESO class
"send and wait".  A "send and wait" protocol in the real network
is modeled into the network model by an instance with suitable
parameters of the ESO class of "send and wait".  The approach of
NESSY is object-oriented in sense each object definition
describes a class.  To simplify the presentation, the term class
will be omitted.  ESO has the property to be a module that may
be used in a large number of network model due to a multitude of
schemes.  It is a shielded and encapsulated entity like a "black
box".  An ESO is a concurrently executable object into the
network model.  To respect the principle of the hidden
information, ESO has two parts: a public interface part and a
private behavior part (i.e. invisible out of the ESO).  The
interface part specifies the communication features of an ESO.
Two types of communication are used: communication with
others ESOs and with the "outside" of the network model.

An ESO communicates with others by data units exchanges
as a real component network does.  An exchanged data between
ESOs is called Exchanged Simulation Data Unit (ESDU) and can
include some fields of the real data unit that it models.  ESDUs
can go out and can come in through input-output port named
communication gate.  Communication gate is the "socket" used
to connect the ESO and to enable it to communicate with other
ESOs.  The definition of a communication gate specifies what
types of ESDU are send and received.  In the real network, a
functional link stands for a flow of data units.  This is
constructed in the model by a connection of communication



STATE S1
�  TO S2
�   WHEN Gate1.ESDU1
�     BEGIN
�          send Gate2.(Gate1.ESDU1);
�     END
END S1;

Condition

Current state
Next state

A
ct

io
n

T
ra

ns
iti

on

Fig. 2.  ECFSM in LASSY.

gate.  Thus, the network model is a set of concurrent objects that
communicate between them.

The communication with the "outside" defines what it is
possible to observe, what information can be get from the ESO
and what parameters can be set.  This communication is based
upon the two types of objects: action point and observation
point.  An action point defines external parameter of the ESO.
Thus, it permits to the user to customize the ESO and to specify
under what conditions he wants to use the model.  It may be
modified from the outside and consequently modifies the
behavior of the ESO.  An observation point allows to observe
from the outside how the ESO behaves in the network and
especially how it reacts under the working conditions it is
submitted (i.e. with the chosen parameters).  More precisely,
the observation point shows a value or the sequence of values
which reflects in meaningful way the characteristic behavior or
the state of the ESO.  This object class is essential to get
results.  The choice of the number and of the usefulness of the
action and observation points is made when the ESO is written
during the modeling phase.  By separating formally and clearly
all the aspects of the ESO communication, the interface part is
explicit and well-defined.  Basically, an ESO is an integral and
autonomous entity.  Thanks to that and with the possibility to
be parametrized the ESO has the property to be reusable.

The behavior part describes how the ESO reacts when
events occur (i.e. when a timer expires or when an ESDU
arrives).  The description of the behavior is an Extended
Communicating Finite State Machine (ECFSM).  The choice of
ECFSM is two-fold: in a distributed system, components obey
the stimuli/reaction principle and communicate between them
(e.g. protocol entity or physical unit when receiving stimuli
performs one action which may stimulate in turn another entity
and so on).  The use of ECFSM paradigm leads to homogeneity
in the development of different classes of ESO and allows to
model any kind of network component.

LASSY modeling language

No existing general purpose or simulation language can
be directly applied to the development of an ESO (Vèque 1988).
Indeed, the FDT (Formal Description Technique) is most adapted
to the description of an ESO, since they contain mechanisms to
express communication, and some are based on similar formal
models.  However, they are not designed for performance
evaluation.  This is why LASSY is inspired by the FDT and in
particular by ESTELLE (ISO 1988).  ESTELLE is standardized by

ISO and aims at specifying distributed, concurrent information
processing systems like communication protocols and services.
It also removes ambiguities from ISO protocol specifications in
natural language.  ESTELLE is a Pascal-like language, with in
addition, the notions related to ECFSM (e.g. state, condition
and transition).

Though LASSY takes from ESTELLE the structure to
describe a ECFSM as shown in Fig. 2, it is both a
simplification and an extension.  LASSY does not need the
semantics of parallel execution (asynchronous, synchronous).
Conversely, the language must permit to specify quantitative
time description as, for instance, time consumption.  LASSY
also adopts the syntax of the Modula-2 programming language
(Wirth 1985) (successor of Pascal programming language) in
order to possess features of a high-level programming language:
structured types of data, control structures, functions and
procedures.  The LASSY language is used to facilitate and
quicken the ESO's and ESDU's definition.  The advantages
brought by LASSY in the modeling process fits into its
adaptation to describe the network component.  Its structure
expresses the encapsulation and its syntax is easy to master
because it is well-known.

To write an ESO definition, the modeler has to study the
accurate behavior of the corresponding network component.
For example, for a communication protocol, it consists in
studying the standard and then, to read the papers which describe
performance studies on this particular protocol.  It allows
especially the definition of the interesting action points, and
what kinds of results are to be computed from this ESO.  Then
the modeler has to describe the model in the form of an ECFSM
and to translate it into the LASSY language.  The next step
consists in compiling the ESO.  When the ESO is completely
tested, the modeler stores it in the ESO definition library.

2.2.      Building phase

The building phase enables the user to construct the
simulation model from network model and to specify the study.
Then this model must be solved by simulation.  The modeling
methodology strongly separates the construction of the
network model from the specification of the study objective.
This point is essential to make the network model reusable in
different studies.

The modeling of network is performed by the user in a
descriptive way.  The user does not need to program.  He/she
does a simple stocktaking of network components and
relationships between them.  This stage comes to draw the
graph symbolizing the organization of the studied network.
The network model is build by invoking ESO definition from
the ESO definition library and by connecting the ESO instances.
In fact, ESO definition is a template which must be instantiated.
Thus, there is as many instances as invocations.  As in a real
network, a network model must cover two sights, the topology
and the architecture.  The network topology represents the
nodes and the communication links.  The network architecture
describes the nodes structure such as protocol stacks.  This latter
sight permits to take into account the notion of the hierarchy.
In order to let the user construct his/her network model
hierarchically.  NESSY offers a second unit: the CSO.  This
object represents a network component which is not elementary



for a given level of abstraction.  The CSO is mainly used to
describe the architecture of a network component which the
model is not in the library.  It is composed by aggregation of
ESO and others CSO with a lower level of abstraction.  Actually,
this form of aggregation is made by the connection of
communication gates.  The result gives a new object enables to
be handled as one entity.  As ESO, the CSO has an interface part
makes up by the set of the interfaces of the aggregated objects
and a hidden part but which the structure is visible only when
the user decreases of one level of abstraction.  Finally, this unit
allows to help the user to manage the complexity of the model
of large network by changing the level of abstraction and
creating new network component model with those which
already exist.  A model of network component can be either an
ESO or a CSO.  In the latter case, it is build up from one or more
simulation object (i.e. ESO or CSO).  This modeling form is
called hierarchical, modular composition whose concepts are
described in (Zeigler 1987).

In order to observe the behavior of the simulation network
during the simulation stage, some results have to be computed.
This computing mechanism both uses a build-in object class
named measurement and the observation point.  A measurement
is an elementary computation like, for instance, sum, average,
delay, observed value, throughput, etc.  To be active, a
measurement must be linked with one or several observation
points.  The values appearing on the observation point are
samples feeding the measurement computation.  Sampling is
asynchronous; indeed, it is done every time state of the
observed object changes.

The observation points are located on the ESO, as
previously stated, on the ESDU and on the measurement.  The
ESDUs model information which travels into the network, they
are information source of first importance and it is for that,
which ESDUs have build-in observation points already defined
by NESSY.  A measurement can be associated with a single
instance of ESDU or with all the instances of a class of ESDU
(i.e. the measurement is related to one class of ESDU).  Thus, the
measurement allows to study the ESDU individually and
collectively.  The measurement's observation point gives it the
property of composability.  With elementary measurement
provided by NESSY, by composition, it is possible to make up
it more complex.  The measurement composable takes again the
idea of the modular composability applied at the network
modeling.  This idea consists of reusing objects to form other
ones objects more complex and adapted to a particular need.

It is up to the user to add, to delete, or to modify the
measurements wherever he wishes in the network model.  The
user does not explicitly code the measurements, but just chooses
one measurement class among those proposed by NESSY in
order to create one instance by invocation.  The modeler
specifies in the ESO code the sampling times of the observation
point within a call to a sampling primitive.  This primitive
permits to apply a value to the sample.  The sampling time for
observation point on the ESDU and measurement are defined by
NESSY.  In short, the modeler has the role in deciding the
observation points of ESO and theirs sampling times.  The end
user just has to choose and link measurements with observation
points.

A network model and the description of the results
extracted are not enough to lead a performance evaluation, the

working constraints must also be set.  This assumes two sights:
(1) modeling or, more exactly, characterizing environment of
network (e.g. the bursty traffic, rate of transfer errors.) and (2)
acting on the ESO behavior during the simulation stage (e. g.
size of anticipating window flux control, execution time and
throughput) or, simply, adapting the ESO working parameters
compared to the network component modeled.  This work is
carried out by the scenario.  A scenario is an object which
specifies an action on an ESO.  Two kinds of actions are
possible: setting parameters, and creating ESDU.  The first
action allows to adjust the parameter values of ESO.  The second
action is used to generate traffic.  Scenario interventions are
triggered off on date or on event.  In this latter case, the
scenario becomes conditional in the sense its action is
synchronized with an event captured on an observation point.
Actions triggered off on date permits to schedule the scenario
interventions during the simulation unfolding.  The time ∆ ,
between each intervention, can be a constant or can follow a
specific probability distribution.  The scenario can intervene at
a given instant (one-off) or periodically.  Like the measurement,
the scenario acts on the ESO's interface.  A setting parameter
action act on the action point and creating ESDU action sends
ESDU to the communication gate.  To act, a scenario must be
clearly attached, by the user, with ESO interface part.  In the
simulation, scenarios are concurrent with each other and with
ESO.  The scenario is a built-in class, which one of its instance
is created by invocation.  The role of the user is to specify the
working condition with scenarios, to attach them on the ESO
interfaces and to put their suitable parameters.

The set of all the measurements and scenarios are named
study objective.  The simulation model is both the network
model and the study objective.  A complete example of use of
NESSY can be found in (Vèque et al. 1991).

3.          TOOL STRUCTURE

NESSY is made up of several modules which appear in Fig
3.  An ESO definition is written with any text editor, compiled
by the LASSY compiler and the result is stored in the ESO
definition library.  This module is the link between the
modeling and building phase.  Without it, NESSY is like an
"empty shell".  The separation between the library and the
simulation kernel give a high flexibility at each other.  The
library enables NESSY to be customized for domain-specific
modeling without any changes of the simulation kernel.  The
executing code generator makes a simulation program from the
ESO definition library and from the simulation kernel.  This
module includes the measurement and scenario classes and
necessary structures to lead a simulation phase.  Then the
building phase can be carried out.  The user performs the
different stages of his evaluation performance task through a
graphical interface in order to make NESSY an easy to use tool.
The detailed interface specification and simulator architecture
are describes in (Anelli 1992).



ESO Edition

LASSY 
Compiler

ESO
Definition

Simulation
Kernel

User

Executing 
Code

Generator

User
Interface

Simulator

ESO
Definition
Library

Modeler

Fig. 3.  Environment of NESSY.

4.          OTHERS ASPECTS OF NESSY FRAMEWORK

The tool is written in the Modula-2 programming
language.  The advantages of this language for process-oriented
discrete event simulation can be found in (L'Ecuyer and Giroux
1987) (e.g the concurrent programming mechanism based on
the concept of coroutine).  The simulation kernel is constructed
in a message passing style as shown by (Ullrich and Cummins
1990).  This style is well adapted for process-oriented
simulation.  Each active object in the network (i.e. ESO) is
represented by a process and implemented as coroutine.  A
process holds its private data and describes the sequence of
actions it experiences throughout its life.  The process approach
of simulation is recognized as a natural way to model a system
(Law and Kelton 1991).  Moreover, the tool is developed with a
style based on objects (Wegner 1989).

The user handles objects to describe his simulation model.
The modeler represents a component network by an object.  The
tool is programmed in an object approach.  From utilization to
programming, NESSY uses the object techniques and a
symbiosis is get.  In this way, the simulation model becomes
highly interactive and flexible.  Once the simulation model (i.e.
both the network model and the study objective ) definition is
complete.  The model is ready for the simulation.  All the
components are created and consistency checking are made
on-line.  Indeed, the result of the building phase (i.e. the final
simulation model) is not a compiled program as in the other
tools but a run-time program which dynamically creates the
needed objects.  Thus, the user can stop the simulation, to
change his simulation model and to execute it again
immediately without losing the current state of its model.

5.          SUMMARY

NESSY is a tool for modeling and simulation of
communications networks.  It allows to design easily and to
handle large and complex network models.  ESO is the basic
object of NESSY for building a network model.  It is written
with to dedicated language LASSY.  This language, derived from
ESTELLE FDT, gives to the ESO a wide range modeling
capability in communication networks and distributed systems.
The proposed object-oriented and hierarchical modeling
methodology plus the wide range modeling capability of the
ESO provide a extensible and powerful tool not limited to any
specific field of the computer communication networks.

 The two separated parts inside the ESO: interface and
hidden behavior, make ESO reusable, easier to understand and to
set up.  Moreover, NESSY reinforces ESO reusability as
flexibility by fully separating measurements, scenario and ESO
definition.  The reusability of ESO and the high interactivity
provided to the user during the simulation improve the
prototyping time.  The reuse of ESOs already validated by
previous studies is also a partial solution to maintain the
correctness network models.

The library of "ready to use" models saves the final user
from the modeling phase and the proposed natural way of
building a network model makes NESSY usable by
non-specialist users in modeling.

Nevertheless the power of NESSY has some drawbacks
because network models are solved by simulation.  The main
drawback is the user can easily build too large and too detailed
network models which take a very long time to simulate.  As
ESOs are autonomous process, parallel or distributed simulation
may help to overcome this drawback.  However, overhead due to
communication between ESOs may occur.  So, the full benefit of
this solution relies on the assumption that network models are
build with loosly-coupled ESOs.  This is a very stringent
assumption in computer networks.  The currently planed
solution in NESSY to overcome this problem is to encourage
global modeling.  The library will provide the user with ESOs
modeling as a whole set of different network components.  For
example, one ESO will model a data link (i.e. the two modems
and the medium) as single unit.  For further study, a
complementary solution is to provide several ESOs modeling
the same network component but with different levels of detail.
In turn, the problem is to help the user to choose the
appropriate ESOs.

6.          ACKNOWLEDGMENTS

We would like to thank Eric Horlait for his help and
Veronique Vèque for her design work of LASSI.

7.          REFERENCES

Anelli, P. 1992. "Computer Network Performance: Toward an
User Interface for NESSY Simulator into an Object-Oriented
Environment." Ph.D. Paris VI (In French). 4, Place Jussieu.
75252 Paris Cedex 05. FRANCE. (Jun.).



Dahl, O.; and K. Nygaard. 1966. "SIMULA - An Algol-based
Simulation Language." Communications of the ACM 9, no. 9
(Sept.): 671-678.

Gordon, K.J.; J.F. Kurose; R.F. Gordon; and E.A. MacNair.
1991. "An Extensible Visual Environnement for Construction
and Analysis of Hierarchically-Structured Models of Resource
Contention Systems." Management Science 37, no. 6 (Jan.):
714-732.

ISO. 1988. ESTELLE: a Formal Description Technique Based on
an Extended State Transit ion Model . IS 9074.
ISO/TC97/SC21/WG16-1, (Nov.).

Khoshafian, S.; and R. Abnous. 1990. Object Orientation:
Concepts, Languages, Databases, User Interfaces. John Wiley,
New York, NY.

L'Ecuyer, P.; and N. Giroux. 1987. "A Process-Oriented
Simulation Package Based on Modula-2." In Proceedings of the
1987 Winter Simulation Conference (Atlanta, GA., Dec. 14-16).
IEEE, Piscataway, NJ, 165-173.

LaRue, W.W.; E. Komp; S. Schaffer; V.S. Frost; K.S.
Shanmugan; and D. Reznik. 1990. "A Block Oriented Paradigm
for Modeling Communications Networks." In MILCOM'90. A
New Era. IEEE Military Communications Conference.
(Monterey, CA, USA, 30 Sept.-3 Oct. 1990). IEEE; Armed
Forces Commun. Electron. Assoc.; U.S. Dept. Defense, 689-
695.

Law, A.M.; and W.D. Kelton. 1991. Simulation Modeling and
Analysis. McGraw Hill Book Company, New York, NY.

Marsan, A.M.; G. Balbo; G. Bruno; and F. Neri. 1990.
"TOPNET: A tool for the Visual Simulation of Communication
Networks." IEEE Journal on Selected Areas in Communications
8, no. 9 (Dec.): 1735-1747.

MIL 3 Inc. 1991. "OPNET: OPtimised Network Engineering
Tool." The INTELSAT Building. 3400 International Drive,
N.W., Washington, D.C. 20008.

Roberts, S.D.; and J. Heim. 1988. "A Perspective on Object-
Oriented Simulation." In Proceedings of the 1988 Winter
Simulation Conference (San Diego, CA, Dec. 12-14). IEEE,
Piscataway, NJ, 277-281.

Ullrich, J.R.; and D.E. Cummins. 1990. "Message passing,
Discrete Event Simulation Using Modula-2 Processes." In
Proceedings of the SCS Multiconference on Object Oriented
Simulation (San Diego, CA, Jan. 17-19). SCS, San Diego, CA,
109-112.

Vèque, V. 1988. "Networks Performance: a Tool Based on the
Simulation." Ph.D. Paris VI (In French). 4, Place Jussieu. 75252
Paris Cedex 05. France. (Dec.).

Vèque, V.; M. Soto; and E. Horlait. 1991. "NESSY: NEtwork
Simulation SYstem." In International Teletraffic Congress
(Copenhague, Danemark, Jun.). 109-115.

Wegner, P. 1989. "Learning the language." Byte 14, no. 3
(Mar.): 245-253.

Wirth, N. 1985. Programming in Modula-2. Springer-Verlag,
New York, NY.

Zeigler, B.P. 1987. "Hierarchical Modular Discret-Event
Modeling in an Object-Oriented Environment." Simulation 49,
no. 5 (Nov.): 219-230.

AUTHORS,  BIOGRAPHY

Pascal ANELLI was born in Paris, France in 1963. He
received the Ph.D specializing in computer science from the
University Pierre et Marie Curie (Paris 6), France in 1992. He is
currently Associate Professor at University of Pierre et Marie
Curie. Since 1989, he leads his research into the MASI
Laboratory (CNRS-UA 818). His research interests are in the
area of networks simulator for performance evaluation and the
modeling techniques.

Michel SOTO was born in Montpellier, France in 1962. He
received the Doctorat from Pierre et Marie Curie University
(PhD), Paris in 1990. He is currently Associate Professor at
University of Pierre et Marie Curie. His research is in the area of
networks, high speed protocols, and tool development for
performance evaluation of computer networks.


