
A GENERAL PURPOSE NETWORK SIMULATION TOOL
Pascal ANELLI and Michel SOTO
Laboratoire MASI - CNRS UA 818

University Pierre et Marie Curie,
F75252 PARIS, FRANCE.

ABSTRACT:
This paper presents NESSY (NEtwork Simulation

SYstem): a whole environment for performance evaluation of
communication networks. The modeling methodology
proposed by NESSY is mainly based upon the OO (Object-
Oriented) techniques and the FDT (Formal Description
Technique). With OO approach the network model is a
collection of objects. FDT is used to describe the objects that
model the network components. These objects are elementary
models named ESO (Elementary Simulation Object). These two
techniques are used separately through two phases: the modeling
phase, where ESOs of a given domain of communication
networks are written, and the building phase, where the
complete model is built with instances of ESO. The main feature
of ESO is to be reusable in different studies. The description of
ESO is done according to ECFSM (Extended Communicating
Finite State Machine) and with the dedicated LASSY modeling
language. This language is derived from the ESTELLE FDT.
During the building phase, the model is build by modular and
hierarchical composition. The simulation model is not a
compiled program but a run-time program. So, full flexibility
and interactivity are achieved to control the simulation and to
tune the network model.

1. INTRODUCTION

Communication networks significantly increase the
processing capacities of computers. Distributed applications,
like FTP (File Transfer Protocol), are being used in the
administrations of most companies. The main requirement of
these applications is that they must be reliable. As a
consequence, computer networks must offer the highest QOS
(Quality Of Service). To achieve and to maintain the required
QOS, the network's managers must attend to the performance of
the communication system.

Three general approaches (Kurose and Mouftah 1988) to
evaluate the performances of a system are identified:
measurement tools, analytical techniques and simulation
techniques. Measurement consists of evaluating directly the
network behavior, with the help of measurement tools or
monitors (Terplan 1987). These tools support the activities of
data collection, data reduction, and statistical analysis. The last
two techniques are not performed on the real-system but on a
model of the system. They are often called performance
prediction techniques, as they reveal the performance of a new
and non-operational system. Analytical techniques employ a
system of equations; the mathematical resolution of these
equations yields exact quantitative results. Simulation consists
to use a computer to evaluate a model numerically, and data are
gathered to estimate the desired true characteristics of the model
(Law and Kelton 1991). The analytical techniques cover a very
narrow range of utilization. As the model must stay simple,
many details of the system are neglected and it becomes no

realistic. Simulation allows to deal with a complex model. In
communication networks, the models are often complex and
require a long and tedious task owing to the size, diversity and
complexity of communication systems. To set a new
configuration or to detect design errors early, the network
manager or system designer need tools for performance
prediction that bring them an assistance in the way to master
the complexity of his/her task. These tools are based upon the
discrete event simulation (Leroudier and Parent 1976).

The constraints that evaluation performance tools must
take into account, are classified in several categories. First, due
to the high cost and long realization time of such tools, it is
compulsory to use them on a wide range of communication
networks and a wide range of problems. A performance
evaluation tool must therefore exhibit general purpose
properties. Second, they must offer a modeling methodology
that be simple, natural and rapid. Classically in simulation,
writing a model requires a programming expertise. This
restricts the population potentially able to lead such a study.
Simple modeling means the tool must hide the writing stage of
the models to the final user. The modeling appears more
"natural", if the network model is described according a visual
representation. In this way, the analyst has not to translate
from his/her perception of the communication network into a
syntax of a textual language. The amount of time needed for
development and analysis of a model must also be taken into
account. This may be very important given the tight time
constraints in many projects. If the duration of the performance
evaluation stage is shorter and easy to predict, then it can be
planed in the design cycle. Third, the problem of the model
correctness increases when the complexity of the model grows.
Fourth, the tool must be easy to use for the various steps that
compose a typical, sound simulation study (Law and McComas
1991). Lastly, it is desirable the tool provides the analyst with
a good interactivity during the simulation execution to make
easy the understanding of some phenomena which can occur.
Otherwise they would be lost in steady-state statistics.

The current simulation tools of communication networks
follow, like many other softwares, an OO (Object-Oriented)
approach. The model is constructed graphically by an object
aggregation as presented by (Zeigler 1987). These objects are
pulled out from a library that holds their description. The way
used to describe these objects and the formal methods used
constitute the main differences from these tools. For example,
OPNET (MIL 3 Inc 1991) is based on graphic description of
extended finite state machine and C language. RESQME
(Gordon et al. 1991) has been designed for performance
evaluation of resource contention systems such as
communication networks. The model is graphically specified
according to the queueing network paradigm developed in RESQ.
With TOPNET (Marsan et al. 1990), the basic object is described
graphically by a class of timed Petri nets named PROT nets. The
script associated with the Petri nets transitions are written in

Ada. BONeS (LaRue et al. 1990) has developed a block oriented
paradigm with the aim to be more general than the previous
ones. The blocks are graphically assembled and primitives
written in C language at the lowest level of abstraction.

This paper presents the simulation tool, NESSY (NEtwork
Simulation SYstem), designed for performance evaluation of
communication networks that takes into account the previously
mentioned problems. This tool provides a modeling
methodology so that network manager or system designer does
not need to be experts on performance evaluation techniques.
NESSY follows the trend taken by the current simulation tools
in adopting an OO approach and in combining some concepts
directly inspired from FDT (Formal Description Technique).
However, NESSY goes further in the use of OO approach. All
the aspects of the simulation model are represented by a
collection of different object types and these objects do not
confine themselves only to the modeling network.

This paper is organized as follows. An overview of
NESSY is presented in Section 2. This section describes how
the modeling methodology of NESSY is carried into effect. The
main concepts of NESSY are discussed. Section 3 reviews the
general architecture of NESSY and Section 4 presents a short
description of the implementation of the tool.

2. OVERVIEW OF NESSY

2.1. Major Concepts of NESSY

NESSY is designed to analyze the performance of
communication networks. It is a prediction tool based on the
simulation of the communication system under study. It can be
used in the different stages of the life cycle of a network: design,
prototyping, enhancement and tuning. NESSY is easy to learn
and user-friendly. An elaborate interface permits the control of
the main functions of the tool and the network as well as the
results are graphically displayed.

The use of NESSY is clearly separated into two phases,
namely the modeling and the building phases. These phases
may be led by different people. The first user is called the
modeler and the second the final user (afterwards named user).
The modeler is assumed to be a specialist both in the network
and the performance evaluation techniques. The modeler is able
to understand the exact behavior of a network component and is
able to isolate the main characteristics of each component for
modeling purpose. This empirical process is based on the
experience and the practice of the modeler. He/she writes the
atomic models and stores them in a library the second type of
user can include in network models. The second user of NESSY
is assumed to be unskilled and to have little knowledge of
performance evaluation techniques, he/she is just interested in
the program results but not the way they are obtained. This user
is typically a network architect, a network manager, or a
student. These types of users share one common characteristic:
they have a good knowledge of the network. So, NESSY uses
the most common concepts in communication networks area to
offer well-understood objects to the user and to help him in
building the network model. These objects are provided by the
library of models written by the modeler. Therefore, a network
model is easily constructed without requiring neither detailed

modeling nor programming skills. The user of NESSY does not
build the library; he/she only focuses on problems.

NESSY uses the network concepts and related functional
structures to model the main components of the network. The
structure of a network is vertically characterized by its
architecture (e.g. OSI layers stacks) and horizontally by its
topology (e.g. bus, point-to-point and ring). The topology is
the description of elements at the same level of abstraction and
the architecture is the hierarchy of the elements (i.e. the
aggregation between simple elements to make a more complex
element in the topology). The basic components are protocol
layers and communication devices or media. These components
are featured by exchanging information with each other. Data
packets, service primitives, signals or software interrupts are
many types of information which are exchanged. In NESSY, all
the basic network components become atomic models named
Elementary Simulation Object (ESO). The definition of an ESO
defines a class stored in the aforementioned library. The
network model built by the user is a collection of instances of
these classes. Providing reusable ESOs permits a great variety
of network models to be built with the same set of ESOs.

2.2. Modeling objects in NESSY

In this section, we present the basic objects used in our
modeling methodology. We firsts focus on the framework of
the ESO and then we focus on objects used to specify under what
conditions a network model has to be studied.

2.2.1. Key element: ESO

The structure of the ESO has been designed to make ESOs
reusable and homogenous. The ESO is composed of two parts:
interface and behavior (i.e. code). The whole ESO structure is
represented in figure 1. In this section, we only describe the
interface part. The behavior part of the ESO is described in
Section 2.3.

The interface is the visible part of the ESO (i.e. public to
the user or the system). It gathers the communication
capabilities of the ESO in direction of the user, from the user and
with other ESOs. To communicate with the outside of the ESO,
there are three types of objects in the interface: (1) the
observation points and (2) the action points (3) communication
gates. They are detailed in the following.

• Observation points

Observations of the system play an important role in
performance evaluation. In a network model some phenomena
represented by quantitative values have to be observed to
elaborate performance results. Observation points are
associated to typical phenomena which can be exhibited from
the ESO. For example, assume an ESO which models the
"CSMA/CD access technique" (ISO 1985) used on Ethernet-like
networks. Interesting phenomena are number of attempts of
transmission, successful transmissions, collisions of
transmissions, failed transmissions and delay before a
transmission to be successful. Observation points make these
phenomena visible. They enable to user to compute results like
response time or throughput. The way proposed by NESSY to
user for computing performance results from observation points
is given in Section 2.2.2.

Action
Point

Observation
Point

Communication
Gate

Behavior

Interface

ESO

Fig. 1: ESO structure.

• Action points

ESOs have to fit exactly the user's requirements for a
given network model. However, to be reusable, the ESO must
own the property to be tailored for any network model.
Tailoring an ESO is equivalent to set parameters of the ESO to
adapt its behavior to a given network model. This is achieved
in NESSY by action points which enable the user to set
parameters of the ESO. For facilitating understanding, action
points may be assimilated to parameters. For example, in the
aforementioned ESO modeling the "CSMA/CD access
technique", the action points are attempt-limit, backoff-limit,
frame size the raw throughput, etc (i.e. all the standard
parameters initialized with the default values from the standard).
It is also interesting in some studies to modify the parameters'
values throughout the simulation (e.g. frame size obeys a
general distribution). This is also achieved by using action
points.

• communications gates

The major feature of communication networks is
information exchange. In the network model, two (or several)
ESOs are connected for communication purpose if the
corresponding real network components exchange information.
In NESSY, the ESOs communicate Exchanged Simulation Data
Units (ESDUs) to each other. ESDUs are objects that model the
exchanged information between network components. Every
ESO has at least one communication gate and ESOs are
connected to each other by way of theirs communication gates.
A full duplex channel of communication results from the
connection of two communication gates. Several channels may
exist between two ESOs. Instances of ESDUs are sent and
received on a channel through communication gates.

2.2.2. Measurements and Scenarios

Experience in performance evaluation demonstrates the
aims of a study are variable by essence. So, meeting the model's
reusability requirement is an important matter. The
specification of a study is derived from its aims. The questions
to answer are: under what conditions the network model has to
be simulated, what are the measurements to perform? As
mentioned in the precedent section, ESOs can be tailored. This
is not sufficient to make ESOs highly reusable. They must also
be independent of the specification of any study. The meaning

of independence is two-fold: when the objectives of the study
change, no modification of the used ESOs is necessary; the way
to specify a study is the same whatever the classes of ESO used
in the network model. NESSY achieves this independence by
clearly separating the network model and the specification of
the study. Two classes of objects are involved in this
specification: measurement and scenario. Utilization of these
two object classes is given below.

• Measurement

A measurement is an object which produces an elementary
calculation (e.g. sum, average, maximum, minimum, delay,
observed value, count and throughput) from a sequence of
sampled values. It enables the user to obtain a performance
result. In order to be computed, a measurement must be clearly
linked up to one or several observation points. In the same
way, several measurements can be linked up to one observation
point. This linking is under the control of the user who
indicates to NESSY what are the measurements and the
observation points to be linked.

In the behavior part of the ESO, every time a value is
sampled, it is propagated to all the current measurements linked
up to the proper observation point. Through this point,
distinctive samples are supplied to the measurement.

• Scenario

A scenario is an object which provides the user with two
types of action on the ESO: alteration of parameters' values and
generation of ESDUs (e.g. for traffic generation purpose) on
communication gates. This object enables the user to adjust
precisely the ESO to his/her real needs and to submit it to the
environmental conditions required by the study. To be
effective, a scenario must be linked up to one action point or
communication gate (i.e. communication gates are implicit
action points). As for measurements, this linking is under the
control of the user who indicates to NESSY what are the
scenarios and the action points to be linked. A scenario is
triggered on date or on event. So, conditional scenarios can
thus be defined with event triggering.

In the previous sections we have defined the modeling
objects of NESSY. The next section shows briefly how they are
used by the modeler to design the interface of a class of ESO and
focuses on description of the behavior part.

2.3. Modeling Phase

The modeler is able to understand the exact behavior of a
network component and is able to isolate the main
characteristics of each component for modeling purpose. Once,
these characteristics are isolated, the modeler expresses them as
observation points, action points and communication gates.
Then, the behavior of the network component is modeled in the
behavior part of the ESO.

We chose Extended Communicating Finite States Machine
(ECFSM) to describe the behavior of the ESO. The reason of
this choice is two-fold: components of distributed systems obey
the stimuli/reactions principle and they communicate between
them (i.e. protocol layer or physical unit when receiving
external stimuli performs one action which may stimulate in
turn another entity, and so on). This kind of model is widely
used and it has a wide range of modeling capabilities.

Study
Specification
Description

Simulation Tool
NESSY

Network
Model

Description

Simulation
Stage

Results
Processing

➊

Fig. 2: The building phase.

ESO Edition

LASSY
Compiler

ESO
Definition

Simulation
Kernel

User

Executing
Code

Generator

User
Interface

Simulator

ESO
Definition

Library

Modeler

Simulation Tool

Fig. 3: NESSY environment.

LAnguage for Simulation SYstem (LASSY) has been
developed for NESSY to implement ECFSM. LASSY is derived
of the basic principles of ESTELLE, a FDT standardized by ISO
based on ECFSM (ISO 1988). ESTELLE aims at specifying
distributed, concurrent information processing systems like
communication protocols and services, and removing
ambiguities from ISO protocol specifications in natural
language. LASSY is both a simplification and an extension of
ESTELLE. The reasons for designing a specific language rather
than using ESTELLE are developed in (Vèque 1988). For
performance evaluation purpose, the language enables the
modeler to specify quantitative description. For example, it
provides primitives for time consumption and primitives for
defining service time (e.g. constant or based on a pseudo-
random number generator). LASSY has also the features of every
high-level programming language. When the writing of the
ESO is completed, it is compiled and store in the library of ESO
classes. The next section presents the process followed by the
user to carry out a study

2.4. Building Phase - How to Carry out a Study.

A network model has first to be constructed by the user
with instances of the ESO classes. An instance is created by
invocation of an ESO definition contained in the library. The
user manipulates and assembles these instances to specify the
network model. To achieve this task, the user's guidelines are
the topology and the architecture of the network to be modeled.
So, the description of the network model aims to copy the
studied network. Such a description can be compared to the
drawing process performed with a drawing software.
Nevertheless, this drawing process may be inadequate for very
large networks. A hierarchical approach is proposed by NESSY
with the Composable Simulation Object (CSO). The CSO is
mainly used to describe non elementary network components at
a chosen level of abstraction. A CSO is an aggregation of ESOs

and CSOs with a lower level of abstraction. This aggregation is
then handled as a single entity.

When the network model is complete, the user specifies
the objectives of the study with measurements and scenarios
linked, respectively, to observation points and action points.
The network model with the study specification is called the
simulation model. Figure 2 illustrates the different stages of
the building phase.

Finally, the user starts the simulation stage. This stage is
not a '"tunnel process" where the model is put at one extremity
and get back, solved, at the other extremity: it is an interactive
process. At any time, the user can change, add or remove any
measurement or scenario. In the same way, current values of
measurement can be displayed at any moment. This is useful to
feel how the model behaves before solving it in the steady state
or when studying transient phenomena. Then, the performance
results can be processed to satisfy different presentations (e.g.
histogram and graph).

We have presented the modeling methodology provided
by NESSY. In the next section, we present the architecture of
NESSY to support this methodology.

3. NESSY ARCHITECTURE

NESSY is a complete environment dedicated to the
performance evaluation. It is composed of several functional
modules: the ESO definition library, the LASSY compiler, the
simulation kernel, the executing code generator, the simulator
and the user-interface. The figure 3 shows the NESSY
environment with the different modules and the user duality.
The composition of the simulation tool for the user also appears
on this figure.

• ESO Definition Library

The library of ESO definitions is one essential module of
the tool. It forms the database of NESSY to construct a network
model. It gathers all the models written by the modeler and used
by the user. It is the transcription of the modeler's knowledge
about the modeling of network components. The library is the
link between the modeler and the user. Thanks to this module
the aim, to provide a tool for an unskilled user in modeling, is
achieved. Without it, the simulation tool is as an "empty shell"
and the modeling phase consists in filling up that shell. The
library contents will influence directly the modeling
capabilities of tool. So, a particular attention must be given it
to its accomplishment.

• LASSY Compiler

A peculiar module realizes the compilation of the ESO
written in LASSY. In the code generation phase, the compiler
produces an object code in Modula-2 programing language. The
LASSY compiler is completely separate from the simulation
tool. It is not used by the same type of user; the compiler is
used by the modeler whereas the rest of NESSY is for the user.

• Simulation Kernel

The simulation kernel performs functions very similar to
those offered by a scheduler in an operating system; that is,
process activation, processor sharing, context switching,
interfacing with other modules of the system. In addition to
these functions, specific problems of simulation and of
performance evaluation are added: virtual time management,
event scheduling, measurements computation. And more, the
simulation kernel has to implement the modeling object of
NESSY and to make the communications of ESO with the outside
possible. The separation between the ESO definition library
and the simulation kernel give a high flexibility at each other.
The library is a module that can be change according to a
domain-specific modeling whereas the simulation kernel is
more stable and changes only for new releases.

• Executing Code Generator - Simulator

The executing code generator has got job of generating
the simulator from a given library and from the simulation
kernel. This module does just a computer processing. It
compiles the library by the Modula-2 compiler and then links it
with the simulation kernel. The result is an executable program
named simulator. It is the actual application. After the user has
constructed his/her model, the simulator does not make a file
because the model is constructed dynamically on-line. Like
this, the simulation model is not frozen during its simulation.
It can be still modified.

• User Interface

The interface is used for performing the different tasks of a
study performance. It provides the user the means to interact
with the simulator, offers features which make the description of
simulation model easy and bring some "comfort" in the
utilization of NESSY. During the specification of the
simulation network, the user interface ensures the dialogue with
the user and the graphic displays of simulation model
abstractions. This dialog is made as easy as possible and user-
friendly. The interaction style is based upon the direct
manipulation (Shneiderman 1983) with the metaphor of the
communication networks area. Thanks to the interface, the user

is able to describe, in a graphic way, his/her real network by a
collection of icons representing the network components. Like
this, the visual representation of the user is mapped on his/her
mental representation. The scenarios and the measurements are
also displayed by icons. They are linked by the users with the
icons of the different network components. The interface
allows the user to control interactively the progress of the
simulation. However, its role does not stop here, it also
presents to the user the simulation results under a
comprehensible form.

The separation between specific functions about one
domain (i.e. application) and the mechanics of display (i.e.
interface) is a fundamental concept now accepted by everybody.
This separation is a criterion of a well-structured simulation tool
architecture. Each module can evolve to be adapted to new needs
without rethinking logic of the other module.

4. IMPLEMENTATION ISSUE

NESSY is implemented in a UNIX environment. The user
interface is based upon the X-Window system and has been
developed with the interface generator Aïda-Masaï (Ing 1991).
The compiler was implemented with the help of the YACC tool
(Johnson 1978) which permits the generation of a compiler
from a description of a LR1 grammar. The simulation kernel
was developed with the Modula-2 programming language (Wirth
1985). The aim of this choice is two-fold: the kernel of NESSY
must control the parallel execution of the ESOs (thus structure of
control for parallelism is needed) and the kernel must be
portable. This advanced language permits to achieve this
double aim. Transporting the kernel of NESSY is minimized
because it is sufficient to compile it on the target machine. The
Modula-2 language allows to create and to manage co-routines
in such a manner that we can control the execution in a pseudo-
parallel way. This choice was reinforced by (Ullrich and
Cummins 1990) who demonstrate coroutines are well adapted to
develop discrete-event simulation software. Moreover in
simulation, execution time is essential. Modula-2, to a
simulation language such as SIMSCRIPT, allows to decrease the
simulation time from 20 to 60 % depending on the models
(L'Ecuyer and Giroux 1987). Finally, the Modula-2 language is a
good support to apply the main notion of software engineering:
the modularity. This language also provides a facility to
program in an object-based style (Wegner 1989). This style fits
well to the kernel because it was designed with an OO technique.
The details of the implementation of the tool are described in
(Anelli 1992).

5. SUMMARY

NESSY is a new tool for modeling and simulating
communication networks. Due its architecture and the proposed
modeling methodology, this tool is general (i.e. modeling a
large range of communications networks), easy to use and
interactive. NESSY provides a modeling language especially
designed for the communication networks derived from the
ESTELLE FDT and a simulation model based on OO technique.
The modeling methodology is two-phased: modeling network
components and building simulation models. These two phases
are done to permit to have user of different level. The modeler
accesses methods for writing new models of network

components. The final user just uses these models to build a
complete simulation model.

The modeling phase is used to write the Elementary
Simulation Objects (ESO). These objects communicate by
messages and can model all kinds of network components.
They have the properties to be reusable and modular. The
reusability property is needed to use models that have produced
correct results in previous simulation studies. The ESO is
described with the ECFSM abstract model and written in LASSY.
With a such language the modeling work can be significantly
accelerated by deriving models from existing ESTELLE
specification. LASSY adopts the syntax of Modula-2 and
includes special primitives for simulation (i.e. quantitative
description of time and random generation number). Finally, the
ESO is compiled and stored in a library.

The building phase enables the user to construct the
simulation model by a simple and natural modeling
methodology that consists to describe the elements in the real-
world and to assemble them in a modular way. This
methodology appears natural because the user draws a model
corresponding to his/her mental representation of the
real-world. This drawing technique integrates the notion of
abstraction with respect to the human way of thinking. The
CSO provides abstraction levels in the network model to handle
many ESOs as single element. All the aspects of the simulation
model are separated. Each aspect is represented by an object and
not confined to the network model. The network model is a
collection of ESO and CSO and the study specification is set of
measurements and scenarios. The measurements are the object
classes for the computation of performance results. The
scenarios are object classes for the description of the conditions
of the study (e.g. traffic load) of network model. These two
kinds of object classes allow to perform any type of study. The
distinction between network model and the specification of the
study increases reusability of the network model. The same
network model may be used with different objectives. The
separation between measurement, scenario and ESO is a very
important feature. It makes the ESO independent of a particular
study and, thus, reusable. As an additional advantage, the
measurement and the scenario definition can be changed
interactively without modifying the ESO definition.

The result of the building phase (i.e. the final simulation
model) is not a compiled program as in the other tools but a run-
time program that dynamically creates the needed objects. This
feature gives to the model the capability to be flexible; that is,
it can still be modified during all the phases of evaluation
performance study. This feature increases also the feed-back
speed between the simulation and the description of the model
and reduces the tuning time.

ACKNOWLEDGEMENTS

The authors would like to thank the peoples that have
worked in the design of the tool especially Eric Horlait and
Veronique Vèque.

REFERENCES

Anelli, P. 1992. "Computer Network Performance: Toward an
User Interface for NESSY Simulator into an Object-Oriented

Environment." Ph.D. Paris VI (In French). 4, Place Jussieu.
75252 Paris Cedex 05. FRANCE. (Jun.).

Gordon, K.J.; J.F. Kurose; R.F. Gordon; and E.A. MacNair.
1991. "An Extensible Visual Environnement for Construction
and Analysis of Hierarchically-Structured Models of Resource
Contention Systems." Management Science 37, no. 6 (Jan.):
714-732.

Ing, B. 1991. "Aïda et Masaï: Deux Outils de Génie Logiciel
pour les Interfaces Graphiques." Génie Logiciel & Systèmes
Experts, no. 24 (Sept.): 82-88.

ISO. 1988. ESTELLE: a Formal Description Technique Based on
an Extended State Transit ion Model . IS 9074.
ISO/TC97/SC21/WG16-1, (Nov.).

ISO. 1985. Carrier Sense Multiple Access With Collision
Detection. DIS 8802.3.

Johnson, S.C. 1978. "Yacc: Yet Another Compiler-Compiler."
Bell Laboratories, Murray Hill, New Jersey 07974.

Kurose, J.F.; and H.T. Mouftah. 1988. "Computer-Aided
Modeling, Analysis, and Design of Communication Networks."
Journal on Selected Areas in Communications 6, no. 1 (Jan.):
130-145.

L'Ecuyer, P.; and N. Giroux. 1987. "A Process-Oriented
Simulation Package Based on Modula-2." In Proceedings of the
1987 Winter Simulation Conference (Atlanta, GA, Dec. 14-16).
IEEE, Piscataway, N.J., 165-173.

LaRue, W.W.; E. Komp; S. Schaffer; V.S. Frost; K.S.
Shanmugan; and D. Reznik. 1990. "A Block Oriented Paradigm
for Modeling Communications Networks." In MILCOM'90. A
New Era. IEEE Military Communications Conference.
(Monterey, CA, 30 Sept.-3 Oct.). IEEE, New York, N.Y.; Armed
Forces Commun. Electron. Assoc.; U.S. Dept. Defence, 689-
695.

Law, A.M.; and W.D. Kelton. 1991. Simulation Modeling and
Analysis. McGraw Hill Book Company, New York, N.Y.

Law, A.M.; and M.G. McComas. 1991. "Secrets of Successful
Simulation Studies." In Proceedings of the 1991 Winter
Simulation Conference (Phoenix, Arizona, Dec. 8-11). IEEE,
Piscataway, N.J., 21-27.

Marsan, A.M.; G. Balbo; G. Bruno; and F. Neri. 1990.
"TOPNET: A tool for the Visual Simulation of Communication
Networks." IEEE Journal on Selected Areas in Communications
8, no. 9 (Dec.): 1735-1747.

MIL 3 Inc. 1991. "OPNET: OPtimised Network Engineering
Tool." The INTELSAT Building. 3400 International Drive,
N.W., Washington, D.C. 20008.

Shneiderman, B. 1983. "Direct Manipulation: a Step Beyond
Programming Languages." Computer 16, no. 8 (Aug.): 57-69.

Terplan, K. 1987. Communication Networks Management.
Prentice Hall International, Englewood Cliffs, N.J.

Ullrich, J.R.; and D.E. Cummins. 1990. "Message passing,
Discrete Event Simulation Using Modula-2 Processes." In
Proceedings of the SCS Multiconference on Object Oriented
Simulation (San Diego, CA, Jan. 17-19). SCS, San Diego, C.A.,
109-112.

Vèque, V. 1988. "Networks Performance: a Tool Based on the
Simulation." Ph.D. Paris VI (In French). 4, Place Jussieu. 75252
Paris Cedex 05. France. (Dec.).

Wegner, P. 1989. "Learning the language." Byte 14, no. 3
(Mar.): 245-253.

Wirth, N. 1985. Programming in Modula-2. Springer-Verlag,
New York, N.Y.

Zeigler, B.P. 1987. "Hierarchical Modular Discret-Event
Modeling in an Object-Oriented Environment." Simulation 49,
no. 5 (Nov.): 219-230.

AUTHORS, BIOGRAPHY

Pascal ANELLI was born in Paris, France in 1963. He received the Ph.D specializing in computer

science from the University Pierre et Marie Curie (Paris 6), France in 1992. He is currently Assistant

Professor at University of Pierre et Marie Curie. Since 1989, he leads his research into the MASI

Laboratory (CNRS-UA 818). His research interests are in the area of networks simulator for performance

evaluation and the modeling techniques.

Michel SOTO was born in Montpellier, France in 1962. He received the Doctorat from Pierre et

Marie Curie University (PhD), Paris in 1990. He is currently Associte Professor at University of Pierre et

Marie Curie. His research is in the area of networks, high speed protocols, and tool development for

performance evaluation of computer networks.

AUTHORS, ADDRESS

Pascal Anelli

Laboratoire MASI
Université Pierre & Marie Curie

4, place Jussieu
75252 PARIS Cedex 05

FRANCE

Tel. : 33-1-44-27-71-29
Fax : 33-1-44-27-62-86
E-mail: anelli@masi.ibp.fr

Michel Soto

Laboratoire MASI
Université Pierre & Marie Curie

4, place Jussieu
75252 PARIS Cedex 05

FRANCE

Tel. : 33-1-44-27-71-29
Fax : 33-1-44-27-62-86
E-mail: soto@masi.ibp.fr

