Université de la Réunion. Licence 2^e année. Mathématiques. Année 2017/2018.

Contrôle continu nº 1 d'analyse 4

Mercredi 11 avril 2018 Durée : 2 heures

Question de cours 1.

Énoncer la définition de l'expression "converger vers".

Question de cours 2.

Énoncer le théorème du "pincement".

Exercice 1.

- 1) Justifier que $\forall a, b \in \mathbb{R} \ a^2 + b^2 \ge 2ab$.
- 2) Soient $x, y, z, t \in \mathbb{R}$. On suppose que $x^2 + y^2 \le 1$ et que $z^2 + t^2 \le 1$. Montrer que $xz + yt \le 1$.

Exercice 2.

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} . Soit X un ensemble.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications de X dans K. On suppose que $(f_n)_{n\in\mathbb{N}}$ converge simplement.

Soit $g \colon \mathbb{K} \to \mathbb{K}$. On suppose que g est continue.

Montrer que $(g \circ f_n)_{n \in \mathbb{N}}$ converge simplement.

Exercice 3.

Pour tout $n \in \mathbb{N}$ on définit $f_n \colon \mathbb{R}_+ \to \mathbb{R}$ par $\forall x \in \mathbb{R}_+$ $f_n(x) = \exp(-x^n)$.

Montrer que $(f_n)_{n\in\mathbb{N}}$ converge simplement et expliciter sa limite simple.

Exercice 4.

On définit
$$u: \mathbb{N}^* \to \mathbb{R}$$
 par $\forall n \in \mathbb{N}^*$ $u_n = \frac{\sum_{k=1}^n k!}{(n+1)!}$.

Montrer que u tend vers 0.

Exercice 5.

On définit $u: \mathbb{N} \to \mathbb{R}$ par $\forall n \in \mathbb{N}$ $u_n = \sqrt{n^2 + 1} - n$.

On définit $v \colon \mathbb{N} \to \mathbb{R}$ par $\forall n \in \mathbb{N}$ $v_n = \cos(2\pi\sqrt{n^2 + 1})$.

- 1) Montrer que u est convergente et préciser sa limite.
- 2) Montrer que v est convergente et préciser sa limite.

Exercice 6.

Soit $a \in \mathbb{C}$. On suppose $|a| \ge 1$.

Montrer que les assertions suivantes sont équivalentes :

i) a = 1, ii) $(a^{n^2})_{n \in \mathbb{N}}$ est convergente.