THÉORÈME DE STONE-WEIERSTRASS

Contents

1. Sous-algèbres fermées de $C^*_{\mathbb{R}}(X)$

1 1

2. Stone-Weierstrass réel

1. Sous-algèbres fermées de $C^*_{\mathbb{R}}(X)$

Proposition 1. On considère la suite récurrente $(P_n)_{n\in\mathbb{N}}$ de fonctions polynomiales de \mathbb{R} dans \mathbb{R} ainsi définie :

$$\begin{cases} P_0 = 0 \\ P_{n+1} = P_n + \frac{1}{2}(x - P_n^2) \end{cases}$$

Alors $(P_n)_{n\in\mathbb{N}}$ converge uniformément sur [0,1] vers la fonction $\sqrt{.}: x\mapsto \sqrt{x}$. Mieux (i.e. plus constructif): pour tout $x\in[0,1],\ 0\leq\sqrt{x}-P_n(x)\leq\frac{2}{n+1}$.

Proof. On peut utiliser le théorème de Dini (valable dans **ZF**) ou, de manière plus constructive, établir par récurrence sur n que pour tout $x \in [0,1], 0 \le \sqrt{x} - P_n(x) \le \frac{2\sqrt{x}}{2 + n\sqrt{x}}$.

Ainsi, si X est un espace topologique, si $M \in \mathbb{R}_+^*$ et si $f: X \to [0, M]$, alors la suite $(\sqrt{M}(P_n \circ \frac{f}{M}))_n$ converge uniformément vers \sqrt{f} . En particulier :

Corollary 1. Soit X un espace topologique. Toute sous-algèbre fermée de $C^*_{\mathbb{R}}(X)$ (algèbre des applications continues bornées de X dans \mathbb{R}) est stable sous les fonctions $\sqrt{\cdot}$, $|\cdot|$ et sous les opérations \vee et \wedge .

Proof.

2. Stone-Weierstrass réel

Etant donné un ensemble X, une partie A de \mathbb{R}^X est séparatrice lorsque pour tous éléments x, y distincts de X, il existe $u \in A$ tel que $u(x) \neq u(y)$. Si A est un sous-espace vectoriel de \mathbb{R}^X , séparateur et contenant la fonction constante 1_X , alors pour tous éléments x, y distincts de X, et tous réels α, β , il existe $u \in A$ tel que $u(x) = \alpha$ et $u(y) = \beta$.

Theorem 1. Soit K un espace topologique compact (i.e. quasicompact et séparé). Toute sous-algèbre unitaire et séparatrice de $C_{\mathbb{R}}(K)$ (algèbre des applications continues de K dans \mathbb{R} munie de la norme uniforme) est dense dans $C_{\mathbb{R}}(K)$.

Date: januar 21, 2004; april 3, 2008.

This paper is named mar/ens/04/lic/topo/stone-w.tex.

Proof. Soit A l'adhérence dans $C_{\mathbb{R}}(K)$ d'une telle algèbre. On va montrer que A est dense dans $C_{\mathbb{R}}(K)$ (donc égale à $C_{\mathbb{R}}(K)$). Soit $f \in C_{\mathbb{R}}(K)$ et $\varepsilon > 0$. Pour tout élément $x \in K$, notons A_x le sous-ensemble $\{u \in A : u(x) = f(x)\}$. Pour tous élements $x, y \in K$, on note $A_{x,y}$ l'ensemble $A_x \cap A_y$. La preuve "usuelle" semble utiliser l'axiome du choix car on commence par "choisir" pour chaque couple $(x,y) \in K^2$, une fonction arbitraire $u_{x,y} \in A_{x,y}$. Mais on peut éviter le recours à \mathbf{AC} en considérant toutes les fonctions $u \in A_{x,y}$ (au lieu d'en choisir une).

Etape 1 : Pour tout $z \in K$, il existe $g \in A_z$ tel que $f - \varepsilon \leq g$. Soit $z \in K$. On considère le recouvrement ouvert suivant du compact K:

$$K \subseteq \bigcup_{y \in K, \ u \in A_{y,z}} \{ x \in K : \ f(x) - \varepsilon < u(x) \}$$

De ce recouvrement ouvert, on extrait un sous-recouvrement fini : il existe donc une partie finie F de K, et pour chaque $y \in F$, une partie finie G_y de $A_{y,z}$ telles que :

$$K \subseteq \bigcup_{y \in F} \bigcup_{u \in G_y} \{x \in K : f(x) - \varepsilon < u(x)\}$$

Alors la fonction $g := \sup_{y \in F, u \in G_y} u$ appartient à A (car la sous-algèbre fermée A est close par "sup fini") et $g \in A_z$. De plus, si $x \in K$, soit $y \in F$ et $u \in A_{y,z}$ tels que $f(x) - \varepsilon < u(x)$. Alors $g(x) \ge u(x) > f(x) - \varepsilon$.

Etape 2 : il existe $g \in A$ tel que $f - \varepsilon \leq g \leq f + \varepsilon$. On considère maintenant le recouvrement ouvert suivant de K:

$$K \subseteq \bigcup_{u \in A, \ f - \varepsilon \le u} \{x \in K: \ u(x) < f(x) + \varepsilon\}$$

On en extrait un sous-recouvrement fini : soit F une partie finie de $\{u \in A: f - \varepsilon \leq u\}$ telle que

$$K \subseteq \bigcup_{x \in F} \{x \in K : u(x) < f(x) + \varepsilon\}$$

Alors la fonction $g := \inf_F$ appartient à A et $f - \varepsilon \leq g$. De plus, si $x \in K$, soit $u \in F$ tel que $u(x) < f(x) + \varepsilon$. Alors $g(x) \leq u(x) < f(x) + \varepsilon$.