Interactive Proofs for Logic Programs

Fred Mesnard

LIM, université de La Réunion, France

September 2025

1/46

Plan
Introduction
LPTP by Robert Stark
Who is Robert Stark?
What is LPTP?
A LPTP primer
The two languages of LPTP
The object language
The specification language
The LPTP proof format
Derivations
Examples
Recent research works involving LPTP
ATP for Prolog Verification - ICLP'25
Auto. Certification of LP Groundness Analysis - LOPSTR'25
Conclusion
Project ideas
Summary

2/46

Intro: which implemented tool for Prolog verification?

» Type system for Prolog
Many papers, a book (Frank Pfenning), which tool today?
A Hindley-Milner SWI add-on written by Tom Schrijvers et al.
Towards Typed Prolog, ICLP 2008

P> Automated program properties by abstract interpretation
Many papers, which tool today?
Ciao Prolog & CiaoPP

> Automated termination analysis
Many papers, which tool today?
E.g., ours for pure Prolog
NTI+cTI ranked 1st at TermComp since 2022

» Partial correctness
A few papers, which tool today?
’LPTP: Logic Program Theorem Prover
Robert Stark, mid-1990's

3/46

Plan

LPTP by Robert Stark
Who is Robert Stark?

4/46

Robert Stark:

v

A\

Swiss citizen
Master in mathematics, ETH Zurich

PhD in logic, Univ. Bern (92):
The Proof Theory of Logic Programs with Negation

Post-docs: Munich, Stanford, Pennsylvania
Senior assistant, Univ. Fribourg (96-99)
Assistant professor, ETH Zurich (99-05)

5/46

Plan
LPTP by Robert Stark

What is LPTP?

6/46

Summary!: LPTP — A Logic Program Theorem Prover

» LPTP is an interactive theorem prover for the formal
verification of pure Prolog programs

» Designed and implemented (1994/1999) by Robert Stark

> Programs may contain negation, if-then-else and built-in
predicates like is/2, integer/1, call/n+1, arg/3

» Non-logical predicates and control operators like cut (!),
assert /1, retract/1, var/1 are forbidden

» Hypothesis: occurs check during unification at runtime
SWI-Prolog: ?- set_prolog flag(occurs_check,true).

horrowed from Robert Stirk
7/46

Summary: LPTP — A Logic Program Theorem Prover

» Provable properties of programs:

P universal left-termination

» equivalence of predicates

» existence of solutions, uniqueness of solutions
» functional correctness, types, ...

» LPTP's notion of termination includes non-floundering:
» negative goals are ground when called
» built-in predicates are instantiated the right way when called
» each user-defined predicate defines its own induction scheme,
automatically generated by LPTP

» The proof format of LPTP is natural deduction (ND)

» Proofs are written in a text editor and LPTP checks the
correctness of the proofs

8/46

The distribution of LPTP? includes the source code, a user manual
(130 pages) and 47 klop? including:

> the verification of various sorting algorithms

» the correctness of a tautology checker

> the verification of algorithms for AVL trees

» the correctness of alpha-beta pruning with respect to min-max

P the correctness of a fast union-find based unification algorithm
» the correctness of a deterministic parser for ISO Prolog

The parser with its specification is 635 lines long. The correctness
proof of the ISO standard parser is 13 klop (3 weeks). Hence:

» Proof size >~ 20 x Prolog code size

» ~ 4 klop/week for the expert

2e.g., https://github.com/FredMesnard/1ptp
3klop = kilo lines of proof

9/46

https://github.com/FredMesnard/lptp

So LPTP is both a research project ...

@ R.F. Stirk
First-order theories for pure Prolog programs with negation
Arch. Math. Log., 34(2):113-144, 1995

8 R.F. Stirk
Total correctness of logic programs: A formal approach
ELP'96, LNCS 1050, 237-254. Springer, 1996

[d R.F. Stirk
Formal Verification of Logic Programs: Foundations and
Implementation
LFCS'97, LNCS 1234, 354-368. Springer, 1997

[d R.F.Stirk
The theoretical foundations of LPTP
(a logic program theorem prover)
Journal of Logic Programming (JLP), 36(3):241-269, 1998

10/46

and an interactive theorem prover (ITP)
» An Emacs user-interface
> ND tactic-based ITP
> A limited auto tactic
» A proof checker written in ISO-Prolog
» A library for usual relations on natural numbers, lists, ...
» A proof manager based on TEX and HTML

Runs out of the box 25 years later:

o>
3

11/46

Plan

LPTP by Robert Stark

A LPTP primer

12/ 46

A LPTP primer

» Object language
» Pure Prolog, finite terms, negation as failure
» Operational semantics: 1ISO-Prolog with the occurs check?
» Specification language
» Classical first order logic
> gr/1, a constraint defined as gr(x) <> x is ground
» For each user-defined atom G
» SG means G succeeds
The breadth-first evaluation of G succeeds
One or more infinite branches may exist
> FG means G fails
The breadth-first evaluation of G fails
One or more infinite branches may exist
» TG means G terminates
The 1SO-Prolog evaluation produces a finite number (> 0) of
answers then stops without floundering
No infinite branch

*SWI-Prolog:

?7- set_prolog_-flag(occurs_check,true).
13/46

A LPTP primer: an example

nat (0) . add(0,Y,Y).
nat(s(X)) :- nat(X). add(s(X),Y,s(Z)) :- add(X,Y,Z).

Lemma [nat:ground] Vx (Snat(x) — gr(x)).

Lemma [add:term:1] Vx,y, z (Snat(x) — Tadd(x,y, z)).
Lemma [add:term:3] Vx,y,z (Snat(z) — T add(x, y, z)).
Lemma [add:existence] Vx,y (Snat(x) — 3z Sadd(x, y, z)).

Lemma [add:uniqueness|
VX,_)/, 21, 22 (s add(X?y> Z]_) NS add(vav 22) — 1= 22)'

Theorem [add:commutative]
Vx,y,z (Snat(x) A Snat(y) A Sadd(x, y,z) — Sadd(y, x, z)).

14 /46

A LPTP primer: a proof, source and PDF

:- lemmaCadd:exist,
all [x,y]: succeeds nat(?x) => (ex z: succeeds add(?x,?y,?z)),
induction(
[all x: succeeds nat(?x) => (all y: ex z: succeeds add(?x,?y,?z))],
[stepCd,
0,
[succeeds add(@,?y,?y),
ex z: succeeds add(@,?y,?z)],
all y: ex z: succeeds add(@,?y,?z)),
step([x],
[all y: ex z: succeeds add(?x,?y,?z),
succeeds nat(?x)],
[ex z: succeeds add(?x,?y,?z),
exist(z@, succeeds add(?x,?y,?z0),
[succeeds add(s(?x),?y,s(?z@)) by sld],
ex zl: succeeds add(s(?x),?y,?z1))],
all y: ex z: succeeds add(s(?x),?y,?z))1)).

Lemma 1 [add:ezist] Vz,y (Snat(z) — 3z S add(z,y, 2)).
Proof.
Induction: Vz (Snat(z) — Yy 3z Sadd(z, y, 2))-

Hypothesis, : none. Sadd(0,y,y). 3z Sadd(0,y, z).

Conclusion : Yy3z Sadd(0,y, 2).

Hypothesis,: Yy 3z S add(z,y,2) and Snat(z). Iz Sadd(z,y, 2).
Let, 2o with Sadd(z,y, 20). Sadd(s(x),y,s(2)) by sld.
Thus,: 32 Sadd(s(z),y, 21)-

Conclusion : ¥y 3z Sadd(s(z),y,2). O

15/46

A LPTP primer: let's play!

» the Ciao Prolog Playground for LPTP
https://ciao-lang.org/playground/lptp.html

» Work in progress!

» Best user experience with Google Chrome

16 /46

https://ciao-lang.org/playground/lptp.html
https://ciao-lang.org/playground/lptp.html

Plan

The two languages of LPTP
The object language

17/46

The object language

’Pure Prolog, finite terms, negation as failure

> Let P be a pure logic program with negation and L the
first-order language associated to P

» The goals of L are:
G,H ::=true|fail |s=t|A|\+ G| (G,H) | (G;H) | some x G

s and t are terms, x is a variable and A is an atomic goal

> ’Operational semantics: 1SO-Prolog with the occurs check‘

SWI-Prolog: 7- set_prolog flag(occurs_check,true).

18/46

Plan

The two languages of LPTP

The specification language

19/46

The specification language

’Classical first order logic ‘

> L is the specification language of LPTP

» For each user-defined predicate symbol R, £ contains three
predicate symbols R, R, Rt of the same arity as R which
respectively express success, failure and termination of R

» The formulas of £ are:

gV u=T|Lls=t|R(T)| = | oAU | SV | — | Vxo|Ixg

where T is a sequence of n terms and R denotes a n-ary
predicate symbol of L

> The semantics of £ is classical first order logic (FOL)

» LPTP reasons with the Clark’s if-and-only-if completed
definition of RS, Rf, R for each user-defined predicate R

20/46

The specification language

For defining the declarative semantics of LP, three syntactic
operators S, F and T which map goals of £ into L-formulas

Intuitively:
» SG means G succeeds

The breadth-first evaluation of G succeeds
One or more infinite branches may exist

» FG means G fails
The breadth-first evaluation of G fails
One or more infinite branches may exist®

» TG means G terminates
The 1SO-Prolog evaluation produces a finite number of
answers then stops without floundering
No infinite branch

®As F\+G := SG, see next slide.
21/46

The specification language

Formally:
SR(7T) := R5(7) S true:=T S fail:= 1
S\+G :=FG S(G,H):=SGASH S(G;H):=SGVSH
S(s=t):=(s=t) S(some x G):=3IxSG
FR(T) := Rf(?) F true .= L F fail:=T
F\+G :=SG F(G,H):=FGVFH F(G;H):=FGAFH
F(s=t):=-(s=1t) F(some x G):=VYxFG
TR(T) := R(7) T true =T
T fail =T T(s=t):=T

T\+G:=TGAgr(G) T(G,H):=TGA(FGV TH)
T(G;H):=TGATH T(some x G):=VxTG

gr(true) = T ¢r((G, H)) = gr(G) A gr(H)
gr(fail) =T gr((G; H)) := gr(G) A gr(H)
gr(s = t) == gr(s) A gr(t) gr(\+G) := gr(G)

gr(R(t1, ..., ty)) :=gr(ti) A... Agr(t,) gr(some x G):=3x gr(G)

22/46

IND(P)

Given a logic program P, IND(P) is the following set of nine first
order axioms that models the operational semantics of P.

The axioms of Clark’s equality theory

1 f(xty.eoyxn) =F(v1,...,¥n) = xi =y [if fis n-ary
and 1 </ < nj

2. f(x1, ..y xn) 81, ¥m) [if n#£ mor f £ g]
3. t # x [if x occurs in t and t # x]

The first two axioms specify the usual properties of the trees built
from the function symbols extracted from P.

The third axiom forbids infinite trees. It is an axiom schema, i.e.,
an infinite set of first order axioms.

23/46

The predefined constraint gr/1

The specification language of LPTP includes a predefined
constraint gr/1, similar to ground/1.

Axioms for gr/1

4. gr(c) [if c is a constant]
5. gr(x1) A ... Agr(xm) <> gr(f(x1,...,xm)) [f is m-ary]

Axiom 6 says that for any tuple of (possibly non-ground) terms, we
cannot have at the same time success and failure of R.
Axiom 7 states that given termination, we have success or failure

Uniqueness axioms and totality axioms

6. ~(R°(X) A Rf(X)) [if R is a user-defined predicate]
7. RY(X) — (R%(X) V Rf(X)) [if R is a user-defined
predicate]

24 /46

Let DE(X) denote the definition of the completion of the
user-defined procedure R(X) in the logic program P. We know

how to apply the operator S, F and T to formulas. So for instance,

the first equivalence R5(X) <» SDE(X) defines RS(X).

Fixed point axioms for user-defined predicates R

8. [for any user-defined predicate R]
RS(X) «» SDE(X)
R(X) « FDE(X)
RY(X) <> TDE(X)

25 /46

Finally, for any property of the form VX[R(X) — ¢(X)], where
R(X) is a user-defined procedure and ¢(X) an £ -formula, we
have a specific induction schema. We examine the simple case of
directly recursive user-defined predicate.

A simplified induction schema for a user-defined predicate R

Let R be a directly recursive user-defined predicate and let
#(X) be an L-formula such that the length of X is equal to
the arity of R. Let sub(¢(X)/R) be the formula to be proven
VX(R5(X) — ¢(X)). Let closed(4(X)/R) be the formula
obtained from VX (SDE(X) — R*(X)) by replacing

> R5(X) by ¢(X) on the right of —,

> all occurrences of R(t) appearing on the left of — by
O(t)ANR(L).
Then the induction axiom is the following formula:

9. closed(#(X)/R) — sub(¢(X)/R)

26 /46

Main theoretical results from the JLP paper

7

Adequacy of IND(.)

The inductive extension IND(.) is always consistent, and
is a sound and complete axiomatization of the operational
semantics of pure Prolog.

Let
>
>
>

v

NB:

Q be a query (Gy, ..., Gpt1):
If IND(P) - TQ then Q terminates
If Q terminates then IND(P) - TQ

If IND(P) - TQ A SQo then Q terminates and one of its
answers includes o

If Q breadth-first succeeds with answer o then IND(P) - SQo
If IND(P) - TQ A FQ then Q finitely fails
If Q finitely fails then IND(P) - TQ AFQ

Termination is ubiquitous

27 /46

Plan

The LPTP proof format
Derivations

28 /46

A LPTP-derivation is a finite list of derivation steps:

derivation_step — formula
| formula by tag
| assume(formula, derivation, formula)
| cases(formula, derivation, formula, derivation, formula)
| cases([case(formula, derivation) , . ..1,formula)
| exist(name, formula, derivation, formula)
|
|

exist([name,...],formula, derivation, formula)
induction([formula, .. .1,
[step([name,...]1, [formula, .. .1, deriwation, formula) , . ..1)

| contra(formula, derivation)
| indirect (" formula, derivation)

29/46

The LPTP-proof format is based on natural deduction (1)

The basic rules of natural deduction:

introduction elimination
A & w/\i sAY Aer ¢/\wl\92
dNAY 13 i U ’
- LemaCdnpropscons:intro, p & a o> (p & @y, [y, 1" \STCPrOpiconiielinid, G & @ > p, -
| [
:- lemma(dnprop:disj:intro:1, p => (p \/ @), [1). . :
v ¢ L svy X
oV PV X

:- lemmaCdnprop:impl:
p=>0p,
assume(p, [p], P)).

—

:- lemma(dnprop:nega:
(p => ff) => ~ p,

assume(p => ff,contra(p,ff),~ p)).

- lemmaCdnprop:disj:elim, (Cp \/ @) & (p => r) & (g => r)) =>
assume((p \/ @) & (p => r) & (q =>),
[p \/ q, cases(p,r,q,r,r], r)).

intro,
¢ ¢
—i Tae
:- lemma(dnprop:impl:elim, (p & (p => q)) => q, [1.
intro,

:- lemma(dnprop:nega:elim, (p & ~ p) => ff, [1).

¢ ¢

— =i

T— =

30/46

The LPTP-proof format is based on natural deduction (2)

. i 0
[
Lemma(dnprop:neganega:elim, (~ ~ p) => p,
Some useful derived rules: gesunels ~ pyindirectC=p, £0,p2).
¢ —p MT ¢ .
Inprop:modus_tollens, - g
((p ')<?3 f, ;)q) TP ;- lemmaCdnprop:neganega:intro,p => (~ ~ p,
a(p,[p => 4, q ".a, £~ p). | TP assume(p, contraC~ p,ff),~ ~ p)).
L
—— PBC ———LE
¢ oV g

Lemma(dnprop:proof _by_contradiction, (~ p => ff) => p, lemmaCdnprop: law_of__excluded_middle, p \/ ~p, [13
= £f,indirect(~p,FF),p)).

assume(~ p

Adapted from:
Logic in computer science - modelling and reasoning about systems

Huth & Ryan — Cambridge University Press 2000

31/46

The LPTP-proof format is based on natural deduction (3)

:- lemma(dnpred:forall:elim,(all x:p(?x)) => p(a),[1).

Zo

Pleo/]
Vz ¢

Vzi.

:- lemma(dnpred:forall:intro,(Call x:p(?x)) => (all y:p(?y)),
assume(all x:p(?x),[pC?y)],all y: p(?yd)).

:- lemma(dnpred:exist:intro,p(a) => (ex x:p(?x)),[1).

7o ¢[z0/2]

3z ¢ X
X

Je.

:- lemma(dnpred:exist:elim,(ex x:p(?x)) => (ex z:p(?2)),
assume(ex x:p(?x), exist(x@,p(?x@),[],ex z:p(?z)),
ex z:p(?2))).

32/46

Plan

Recent research works involving LPTP
ATP for Prolog Verification - ICLP'25

33/46

ATP for Prolog Verification
ICLP'25

Observation:

» Within LPTP, we prove properties of a Prolog program P
using a natural-deduction tactic-based ITP where the axioms
IND(P) of the theoretical framework are hardwired in the IDE

Idea:
» Go back to FOL by translating IND(P) in TPTP FOF (First
Order Form) and invoke any FOF-compatible ATP
> je,
LPTP for Prolog verification
& ATP for automating LPTP
= ATP for Prolog Verification

Experimentation:
» Try with E and Vampire on the LPTP lib

34/46

Plan

Recent research works involving LPTP

Auto. Certification of LP Groundness Analysis - LOPSTR'25

35/46

Automated Certification of LP Groundness Analysis
LOPSTR'25

Observation:

P Abstract interpreters automatically generates invariants
E.g., Vx(S nat(x) = gr(x))

> But abstract interpreters are complex pieces of software
> Bugs?
Idea:
» Certify the invariants a fortiori using LPTP instead of trying
to prove correctness of the abstract interpreter
Experimentation:

» Apply this to LP groundness analysis
Compare:

» the ATP for Prolog Verification approach
» the automatic construction of propositional LPTP proofs

3646

Plan

Conclusion
Project ideas

37/46

Project ideas:
P Exercises:

>
>

Read the first chapter of the LPTP manual
Prove in LPTP some of the P-99 Prolog Problems

» Intermediate problems:

4
>
>
>
>

>

Prove in LPTP that v/2 is irrational

Prove in LPTP that the set of prime numbers is infinite
Implement a IATEX output module for LPTP

Implement a Markdown output module for LPTP

Compile propositional resolution proofs to LPTP

Instrument the LPTP source code with Ciao-PP declarations

» Advanced problems:

v

VVyVYVYYVYY

Prove in LPTP the following case studies and compare the
Pedreschi & Ruggieri's framework with the LPTP approach
Experiment logic-based abstract interpretation with LPTP
QuickCheck and counter model generation for LPTP

Rewrite FOL Vampire/E proofs into LPTP proofs

Prove LPTP in LPTP

Add SMT-solvers to LPTP - Generalize the JLP paper in Rocq
Adapt Curry-Howard to LPTP

38/46

https://cliplab.org/logalg/doc/99problemsALD.html/
https://ciao-lang.org/ciao/build/doc/ciaopp_tutorials.html/tut_gentle_intro.html
https://pages.di.unipi.it/ruggieri/Verification/cases.html
https://pages.di.unipi.it/ruggieri/Papers/jlp99.zip

Plan

Conclusion

Summary
39/46

Summary:

» LPTP is a FOL ITP for pure Prolog

» LPTP has an Emacs-based IDE with TEX/HTML output
» LPTP now runs directly in any modern web browser:
» the Ciao Prolog Playground for LPTP

» LPTP provides a unified framework for natural deduction
proofs applied to propositional logic, FOL, and pure Prolog

» Blending LPTP with modern technologies opens research
opportunities

Please share your comments, bug reports and ideas about these
slides: frederic.mesnard@univ-reunion.fr

Thank you!

40/ 46

https://github.com/FredMesnard/lptp
https://ciao-lang.org/playground/lptp.html

Example 1

Let P; be:
P - Pp.
IND(P;) contains:
Sp < Sp (1)
Fp < Fp (2)
Tp+ Tp (3)
~(Sp A Fp) (4)
Tp— (SpV Fp) (5)

There are five models of IND(P;):

?7- sat (" (S*F)*(T =< (8+F))),labeling([S,F,T]).
S=F, F=T, T=0; %000
S=T, T=0, F=1; %010
S=0,F=T, T=1; %011
S=1, F=T, T=20; %100
S=T, T=1, F=0 %=1 051

b b

41/46

Example 2
Let P> be:

p :- \+ p.
IND(P>) contains:

Sp < Fp (6)
Tp« Tp (7)
~(Sp A Fp) (8)
Tp— (SpV Fp) (9)
There is only one model of IND(P5):
7- sat((S =:= F)* "(S*F)*(T =< (8+F))),labeling([S,F,T]).

S=F, F=T, T=0. %000
?_

42/46

Example 2

Here are the proofs:

:- lemma(not_s_p, succeeds p,

contra(succeeds p, [fails p, ff])).

:- lemma(not_f_p, ~ fails p,
contra(fails p, [succeeds p, ff])).

:= lemma(not_t_p, terminates p,

contra(terminates p,
[succeeds p \/ fails p,

cases(succeeds p,
[succeeds p by lemma(not_s_p), ff],

fails p,
[* fails p by lemma(not_f_p),ff],
££),

££1)).

43 /46

Example 3

Let P3 be:
P :-Qq. p - \+q. q:-q.
IND(Ps3) contains:

Sp <> SqV Fqg (10)
Fp < FqASq (11)
Tp< TqgATq (12)
—(SpAFp),~(Sq A Fq) (13)
Tp— (SpVFp), Tqg— (SqV Fq) (14)

44/ 46

Example 3

There are five models for IND(P3):

7- sat((Sp =:= Sq+FqQ)*(Fp =:= Fq*Sq)*(Tp =:= Tq)*
“(Sp*Fp)* ~(8g*Fq)*(Tp =< (Sp+Fp))*(Tq =< (Sg+Fq))),L=
[Sp,Fp,Tp,Sq,Fq,Tq],labeling(L) ,writeln(L),fail.

(o, o, o, o, 0, 0l

(1, 0, 0, 0, 1, O]

[1, 0, 1, 0, 1, 1]
(1, 0, 0, 1, 0, 0]
[1, 0, 1, 1, 0, 1]
false.

?-

Note that IND(P3) models =Fp and Tg — Sp.

45 /46

Example 3

Here are the proofs:

:- lemma(n_f_p, ~ fails p,
contra(fails p, [def fails p by completion,
fails q & succeeds q, ff])).

:- lemma(t_q_imp_s_p, terminates q => succeeds p,
assume (terminates q,
[succeeds q \/ fails q,
cases(succeeds q, succeeds p by sld,
fails q, succeeds p by sld,
succeeds p)],
succeeds p)).

:- lemma(t_q_imp_s_p:alt, terminates q => succeeds p, []).

46 / 46

	Introduction
	LPTP by Robert Stärk
	Who is Robert Stärk?
	What is LPTP?
	A LPTP primer

	The two languages of LPTP
	The object language
	The specification language

	The LPTP proof format
	Derivations

	Examples
	Recent research works involving LPTP
	ATP for Prolog Verification - ICLP'25
	Auto. Certification of LP Groundness Analysis - LOPSTR'25

	Conclusion
	Project ideas
	Summary

