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Intro: which implemented tool for Prolog verification?

▶ Type system for Prolog
Many papers, a book (Frank Pfenning), which tool today?
A Hindley-Milner SWI add-on written by Tom Schrijvers et al.
Towards Typed Prolog, ICLP 2008

▶ Automated program properties by abstract interpretation
Many papers, which tool today?
Ciao Prolog & CiaoPP

▶ Automated termination analysis
Many papers, which tool today?
E.g., ours for pure Prolog
NTI+cTI ranked 1st at TermComp since 2022

▶ Partial correctness
A few papers, which tool today?
LPTP: Logic Program Theorem Prover
Robert Stärk, mid-1990’s
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Robert Stärk:

▶ Swiss citizen

▶ Master in mathematics, ETH Zurich

▶ PhD in logic, Univ. Bern (92):
The Proof Theory of Logic Programs with Negation

▶ Post-docs: Munich, Stanford, Pennsylvania

▶ Senior assistant, Univ. Fribourg (96-99)

▶ Assistant professor, ETH Zurich (99-05)
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Summary1: LPTP – A Logic Program Theorem Prover

▶ LPTP is an interactive theorem prover for the formal
verification of pure Prolog programs

▶ Designed and implemented (1994/1999) by Robert Stärk

▶ Programs may contain negation, if-then-else and built-in
predicates like is/2, integer/1, call/n+1, arg/3

▶ Non-logical predicates and control operators like cut (!),
assert /1, retract/1, var/1 are forbidden

▶ Hypothesis: occurs check during unification at runtime
SWI-Prolog: ?- set prolog flag(occurs check,true).

1borrowed from Robert Stärk
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Summary: LPTP – A Logic Program Theorem Prover

▶ Provable properties of programs:
▶ universal left-termination
▶ equivalence of predicates
▶ existence of solutions, uniqueness of solutions
▶ functional correctness, types, ...

▶ LPTP’s notion of termination includes non-floundering:
▶ negative goals are ground when called
▶ built-in predicates are instantiated the right way when called

▶ each user-defined predicate defines its own induction scheme,
automatically generated by LPTP

▶ The proof format of LPTP is natural deduction (ND)

▶ Proofs are written in a text editor and LPTP checks the
correctness of the proofs
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The distribution of LPTP2 includes the source code, a user manual
(130 pages) and 47 klop3 including:

▶ the verification of various sorting algorithms

▶ the correctness of a tautology checker

▶ the verification of algorithms for AVL trees

▶ the correctness of alpha-beta pruning with respect to min-max

▶ the correctness of a fast union-find based unification algorithm

▶ the correctness of a deterministic parser for ISO Prolog

The parser with its specification is 635 lines long. The correctness
proof of the ISO standard parser is 13 klop (3 weeks). Hence:

▶ Proof size ≃ 20 x Prolog code size

▶ ∼ 4 klop/week for the expert

2e.g., https://github.com/FredMesnard/lptp
3klop = kilo lines of proof
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So LPTP is both a research project ...

R. F. Stärk
First-order theories for pure Prolog programs with negation
Arch. Math. Log., 34(2):113–144, 1995

R. F. Stärk
Total correctness of logic programs: A formal approach
ELP’96, LNCS 1050, 237–254. Springer, 1996

R. F. Stärk
Formal Verification of Logic Programs: Foundations and
Implementation
LFCS’97, LNCS 1234, 354–368. Springer, 1997

R. F. Stärk
The theoretical foundations of LPTP
(a logic program theorem prover)
Journal of Logic Programming (JLP), 36(3):241–269, 1998
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... and an interactive theorem prover (ITP)
▶ An Emacs user-interface

▶ ND tactic-based ITP

▶ A limited auto tactic

▶ A proof checker written in ISO-Prolog

▶ A library for usual relations on natural numbers, lists, ...

▶ A proof manager based on TEX and HTML

Runs out of the box 25 years later:
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A LPTP primer

▶ Object language
▶ Pure Prolog, finite terms, negation as failure
▶ Operational semantics: ISO-Prolog with the occurs check4

▶ Specification language
▶ Classical first order logic
▶ gr/1, a constraint defined as gr(x) ↔ x is ground
▶ For each user-defined atom G

▶ SG means G succeeds
The breadth-first evaluation of G succeeds
One or more infinite branches may exist

▶ FG means G fails
The breadth-first evaluation of G fails
One or more infinite branches may exist

▶ TG means G terminates
The ISO-Prolog evaluation produces a finite number (≥ 0) of
answers then stops without floundering
No infinite branch

4SWI-Prolog:
?- set prolog flag(occurs check,true).
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A LPTP primer: an example

nat(0). add(0,Y,Y).

nat(s(X)) :- nat(X). add(s(X),Y,s(Z)) :- add(X,Y,Z).

Lemma [nat:ground] ∀x (S nat(x) → gr(x)).

Lemma [add:term:1] ∀x , y , z (S nat(x) → T add(x , y , z)).

Lemma [add:term:3] ∀x , y , z (S nat(z) → T add(x , y , z)).

Lemma [add:existence] ∀x , y (S nat(x) → ∃z S add(x , y , z)).

Lemma [add:uniqueness]
∀x , y , z1, z2 (S add(x , y , z1) ∧ S add(x , y , z2) → z1 = z2).

Theorem [add:commutative]
∀x , y , z (S nat(x) ∧ S nat(y) ∧ S add(x , y , z) → S add(y , x , z)).
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A LPTP primer: a proof, source and PDF
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A LPTP primer: let’s play!

▶ the Ciao Prolog Playground for LPTP
https://ciao-lang.org/playground/lptp.html

▶ Work in progress!

▶ Best user experience with Google Chrome
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The object language

Pure Prolog, finite terms, negation as failure

▶ Let P be a pure logic program with negation and L the
first-order language associated to P

▶ The goals of L are:

G ,H ::= true |fail | s = t | A | \+ G | (G ,H) | (G ;H) | some x G

s and t are terms, x is a variable and A is an atomic goal

▶ Operational semantics: ISO-Prolog with the occurs check

SWI-Prolog: ?- set prolog flag(occurs check,true).
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The specification language

Classical first order logic

▶ L̂ is the specification language of LPTP

▶ For each user-defined predicate symbol R, L̂ contains three
predicate symbols Rs , R f , Rt of the same arity as R which
respectively express success, failure and termination of R

▶ The formulas of L̂ are:

ϕ, ψ ::= ⊤ | ⊥ | s = t | R( #»
t ) | ¬ϕ | ϕ∧ψ | ϕ∨ψ | ϕ→ ψ | ∀xϕ | ∃xϕ

where
#»
t is a sequence of n terms and R denotes a n-ary

predicate symbol of L̂
▶ The semantics of L̂ is classical first order logic (FOL)

▶ LPTP reasons with the Clark’s if-and-only-if completed
definition of Rs , R f , Rt for each user-defined predicate R
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The specification language

For defining the declarative semantics of LP, three syntactic
operators S, F and T which map goals of L into L̂-formulas

Intuitively:

▶ SG means G succeeds
The breadth-first evaluation of G succeeds
One or more infinite branches may exist

▶ FG means G fails
The breadth-first evaluation of G fails
One or more infinite branches may exist5

▶ TG means G terminates
The ISO-Prolog evaluation produces a finite number of
answers then stops without floundering
No infinite branch

5As F\+G := SG , see next slide.
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The specification language
Formally:

SR(
#»
t ) := Rs(

#»
t ) S true := ⊤ S fail := ⊥

S\+G := FG S(G ,H) := SG ∧ SH S(G ;H) := SG ∨ SH
S(s = t) := (s = t) S(some x G ) := ∃xSG

FR(
#»
t ) := R f (

#»
t ) F true := ⊥ F fail := ⊤

F\+G := SG F(G ,H) := FG ∨ FH F(G ;H) := FG ∧ FH
F(s = t) := ¬(s = t) F(some x G ) := ∀xFG

TR(
#»
t ) := R t(

#»
t ) T true := ⊤

T fail := ⊤ T(s = t) := ⊤
T\+G := TG ∧ gr(G ) T(G ,H) := TG ∧ (FG ∨ TH)
T(G ;H) := TG ∧ TH T(some x G ) := ∀xTG

gr(true) := ⊤ gr((G ,H)) := gr(G ) ∧ gr(H)
gr(fail) := ⊤ gr((G ;H)) := gr(G ) ∧ gr(H)
gr(s = t) := gr(s) ∧ gr(t) gr(\+G ) := gr(G )
gr(R(t1, . . . , tn)) := gr(t1) ∧ . . . ∧ gr(tn) gr(some x G ) := ∃x gr(G )
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IND(P)

Given a logic program P, IND(P) is the following set of nine first
order axioms that models the operational semantics of P.

The axioms of Clark’s equality theory

1. f (x1, . . . , xn) = f (y1, . . . , yn) → xi = yi [if f is n-ary
and 1 ≤ i ≤ n]

2. f (x1, . . . , xn) ̸= g(y1, . . . , ym) [if n ̸= m or f ̸≡ g ]

3. t ̸= x [if x occurs in t and t ̸≡ x ]

The first two axioms specify the usual properties of the trees built
from the function symbols extracted from P.
The third axiom forbids infinite trees. It is an axiom schema, i.e.,
an infinite set of first order axioms.
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The predefined constraint gr/1
The specification language of LPTP includes a predefined
constraint gr/1, similar to ground/1.

Axioms for gr/1

4. gr(c) [if c is a constant]

5. gr(x1) ∧ . . . ∧ gr(xm) ↔ gr(f (x1, . . . , xm)) [f is m-ary]

Axiom 6 says that for any tuple of (possibly non-ground) terms, we
cannot have at the same time success and failure of R.
Axiom 7 states that given termination, we have success or failure

Uniqueness axioms and totality axioms

6. ¬(Rs( #»x ) ∧ R f ( #»x )) [if R is a user-defined predicate]

7. Rt( #»x ) → (Rs( #»x ) ∨ R f ( #»x )) [if R is a user-defined
predicate]
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Let DP
R (

#»x ) denote the definition of the completion of the
user-defined procedure R( #»x ) in the logic program P. We know
how to apply the operator S, F and T to formulas. So for instance,
the first equivalence Rs( #»x ) ↔ SDP

R (
#»x ) defines Rs( #»x ).

Fixed point axioms for user-defined predicates R

8. [for any user-defined predicate R]
Rs( #»x ) ↔ SDP

R (
#»x )

R f ( #»x ) ↔ FDP
R (

#»x )
Rt( #»x ) ↔ TDP

R (
#»x )

25 / 46



Finally, for any property of the form ∀ #»x [Rs( #»x ) → ϕ( #»x )], where
R( #»x ) is a user-defined procedure and ϕ( #»x ) an L̂ -formula, we
have a specific induction schema. We examine the simple case of
directly recursive user-defined predicate.

A simplified induction schema for a user-defined predicate R

Let R be a directly recursive user-defined predicate and let
ϕ( #»x ) be an L̂-formula such that the length of #»x is equal to
the arity of R. Let sub(ϕ( #»x )/R) be the formula to be proven
∀ #»x (Rs( #»x ) → ϕ( #»x )). Let closed(ϕ( #»x )/R) be the formula
obtained from ∀ #»x (SDP

R (
#»x ) → Rs( #»x )) by replacing

▶ Rs( #»x ) by ϕ( #»x ) on the right of →,

▶ all occurrences of R(
#»
t ) appearing on the left of → by

ϕ(
#»
t ) ∧ R(

#»
t ).

Then the induction axiom is the following formula:

9. closed(ϕ( #»x )/R) → sub(ϕ( #»x )/R)
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Main theoretical results from the JLP paper

Adequacy of IND(.)

The inductive extension IND(.) is always consistent, and
is a sound and complete axiomatization of the operational
semantics of pure Prolog.

Let Q be a query (G1, . . . ,Gn+1):

▶ If IND(P) ⊢ TQ then Q terminates

▶ If Q terminates then IND(P) ⊢ TQ

▶ If IND(P) ⊢ TQ ∧ SQσ then Q terminates and one of its
answers includes σ

▶ If Q breadth-first succeeds with answer σ then IND(P) ⊢ SQσ

▶ If IND(P) ⊢ TQ ∧ FQ then Q finitely fails

▶ If Q finitely fails then IND(P) ⊢ TQ ∧ FQ

NB: Termination is ubiquitous
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A LPTP-derivation is a finite list of derivation steps:
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The LPTP-proof format is based on natural deduction (1)
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The LPTP-proof format is based on natural deduction (2)

Adapted from:
Logic in computer science - modelling and reasoning about systems
Huth & Ryan – Cambridge University Press 2000
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The LPTP-proof format is based on natural deduction (3)
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ATP for Prolog Verification

ICLP’25

Observation:

▶ Within LPTP, we prove properties of a Prolog program P
using a natural-deduction tactic-based ITP where the axioms
IND(P) of the theoretical framework are hardwired in the IDE

Idea:

▶ Go back to FOL by translating IND(P) in TPTP FOF (First
Order Form) and invoke any FOF-compatible ATP

▶ i.e.,
LPTP for Prolog verification
& ATP for automating LPTP

⇒ ATP for Prolog Verification

Experimentation:

▶ Try with E and Vampire on the LPTP lib
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Automated Certification of LP Groundness Analysis

LOPSTR’25

Observation:

▶ Abstract interpreters automatically generates invariants
E.g., ∀x(S nat(x) ⇒ gr(x))

▶ But abstract interpreters are complex pieces of software

▶ Bugs?

Idea:

▶ Certify the invariants a fortiori using LPTP instead of trying
to prove correctness of the abstract interpreter

Experimentation:

▶ Apply this to LP groundness analysis
Compare:
▶ the ATP for Prolog Verification approach
▶ the automatic construction of propositional LPTP proofs
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Project ideas:
▶ Exercises:

▶ Read the first chapter of the LPTP manual
▶ Prove in LPTP some of the P-99 Prolog Problems

▶ Intermediate problems:
▶ Prove in LPTP that

√
2 is irrational

▶ Prove in LPTP that the set of prime numbers is infinite
▶ Implement a LATEX output module for LPTP
▶ Implement a Markdown output module for LPTP
▶ Compile propositional resolution proofs to LPTP
▶ Instrument the LPTP source code with Ciao-PP declarations

▶ Advanced problems:
▶ Prove in LPTP the following case studies and compare the

Pedreschi & Ruggieri’s framework with the LPTP approach
▶ Experiment logic-based abstract interpretation with LPTP
▶ QuickCheck and counter model generation for LPTP
▶ Rewrite FOL Vampire/E proofs into LPTP proofs
▶ Prove LPTP in LPTP
▶ Add SMT-solvers to LPTP - Generalize the JLP paper in Rocq
▶ Adapt Curry-Howard to LPTP
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Summary:

▶ LPTP is a FOL ITP for pure Prolog

▶ LPTP has an Emacs-based IDE with TEX/HTML output
▶ LPTP now runs directly in any modern web browser:

▶ the Ciao Prolog Playground for LPTP

▶ LPTP provides a unified framework for natural deduction
proofs applied to propositional logic, FOL, and pure Prolog

▶ Blending LPTP with modern technologies opens research
opportunities

Please share your comments, bug reports and ideas about these
slides: frederic.mesnard@univ-reunion.fr

Thank you!
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Example 1
Let P1 be:

p :- p.

IND(P1) contains:

Sp ↔ Sp (1)

Fp ↔ Fp (2)

Tp ↔ Tp (3)

¬(Sp ∧ Fp) (4)

Tp → (Sp ∨ Fp) (5)

There are five models of IND(P1):

?- sat(~(S*F)*(T =< (S+F))),labeling([S,F,T]).

S = F, F = T, T = 0 ; % 0 0 0

S = T, T = 0, F = 1 ; % 0 1 0

S = 0, F = T, T = 1 ; % 0 1 1

S = 1, F = T, T = 0 ; % 1 0 0

S = T, T = 1, F = 0. % 1 0 1
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Example 2

Let P2 be:

p :- \+ p.

IND(P2) contains:

Sp ↔ Fp (6)

Tp ↔ Tp (7)

¬(Sp ∧ Fp) (8)

Tp → (Sp ∨ Fp) (9)

There is only one model of IND(P2):

?- sat((S =:= F)* ~(S*F)*(T =< (S+F))),labeling([S,F,T]).

S = F, F = T, T = 0. % 0 0 0

?-
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Example 2
Here are the proofs:

:- lemma(not_s_p, ~ succeeds p,

contra(succeeds p, [fails p, ff])).

:- lemma(not_f_p, ~ fails p,

contra(fails p, [succeeds p, ff])).

:- lemma(not_t_p, ~ terminates p,

contra(terminates p,

[succeeds p \/ fails p,

cases(succeeds p,

[~ succeeds p by lemma(not_s_p), ff],

fails p,

[~ fails p by lemma(not_f_p),ff],

ff),

ff])).
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Example 3

Let P3 be:

p :- q. p :- \+ q. q :- q.

IND(P3) contains:

Sp ↔ Sq ∨ Fq (10)

Fp ↔ Fq ∧ Sq (11)

Tp ↔ Tq ∧ Tq (12)

¬(Sp ∧ Fp),¬(Sq ∧ Fq) (13)

Tp → (Sp ∨ Fp),Tq → (Sq ∨ Fq) (14)
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Example 3

There are five models for IND(P3):

?- sat((Sp =:= Sq+Fq)*(Fp =:= Fq*Sq)*(Tp =:= Tq)*

~(Sp*Fp)* ~(Sq*Fq)*(Tp =< (Sp+Fp))*(Tq =< (Sq+Fq))),L=

[Sp,Fp,Tp,Sq,Fq,Tq],labeling(L),writeln(L),fail.

[0, 0, 0, 0, 0, 0]

[1, 0, 0, 0, 1, 0]

[1, 0, 1, 0, 1, 1]

[1, 0, 0, 1, 0, 0]

[1, 0, 1, 1, 0, 1]

false.

?-

Note that IND(P3) models ¬Fp and Tq → Sp.
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Example 3

Here are the proofs:

:- lemma(n_f_p, ~ fails p,

contra(fails p,[def fails p by completion,

fails q & succeeds q, ff])).

:- lemma(t_q_imp_s_p, terminates q => succeeds p,

assume(terminates q,

[succeeds q \/ fails q,

cases(succeeds q, succeeds p by sld,

fails q, succeeds p by sld,

succeeds p)],

succeeds p)).

:- lemma(t_q_imp_s_p:alt, terminates q => succeeds p, []).
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