Inferring Left-terminating Classes
of Queries for Constraint Logic
Programs

Fred Mesnard

Iremia, Université de la Réunion

15, avenue René Cassin - BP 7151 -

97715 Saint-Denis Messag. Cedex 9 France

fred@Quniv-reunion.fr
Abstract

This paper presents an approach for universal left-termination of constraint
logic programs, based on approximations. An approximation is basically
an algebraic morphism between two constraint structures. By moving from
the original domain to natural numbers, we compute inter-argument rela-
tions and some control information about a program. By moving from the
natural numbers to the booleans, we compute a boolean term called a ter-
mination condition such that if the boolean approximation of a goal entails
the termination condition, then the Prolog computation tree for that goal is
finite.

Keywords: termination, analysis, constraint logic programming.

1 Introduction

Suppose that we want to write a constraint logic procedure som3(a,b,c)
where its third argument ¢ = [ag + bg,...,a; + b;,...] is the sum of its
two first arguments ¢ = [ag,...,a;,...] and b = [bg,...,b;,...] and then
som4(a,b,c,d) where the fourth argument is the sum of its three first argu-
ments.

Example 1.1 Here are a solution for som3 and two possibilities for som4:

som3([], B, B).
som3([A1|A],], [A1]A]).
som3([A1|A], [B1|B],[Al + B1|C]) : —som3(A, B,C).

somdl(A, B,C, D) : —som3(A, B,), som3(E,C, D).
somd2(A, B,C, D) : —som3(FE,C, D), som3(A, B, E).

After compiling this declarative knowledge on our favorite constraint
logic programming (CLP) system, we would like to use it. As we know that
CLP can prove theorems of the form 3z [c A p(Z)], the following sample of
goals does make sense:

- —som3([1,2], B, [3,4,5|B]). : —som3(A, B, [3,4,5|C]).
:—somd1(A, B,C,[1,2,3,4]). : —som41([0, 0], [0, 0, 0], C, C).
: —somd2(A, B, A, [1,2,3,4]). - —somd2([0,1],[2, 3], C, D).

Programming with a high level language, we do not want to be involved
in low-level details about the computation. Unfortunately, some disappoint-
ment will quickly happen ...

We propose an approach which allows the CLP system to compute for
each predicate p a boolean term 7T'C, s.t. if the boolean approximation of
the goal G entails T'C),, then universal termination of G under the Prolog
left-to-right computation rule is guaranteed (we say that G left-terminates).

We organize the paper as follows. After a few preliminaries, section 3
introduces what we called an approximation: it is essentially an algebraic
morphism between two constraint structures associated to a corresponding
syntactical mapping. Sections 4 and 5 present known techniques to stati-
cally infer information from a given program which help to control a proof.
Then we compound all the gathered information in section 6 to show how
to compute boolean termination conditions. Finally, section 7 discussed the
results and related works.

Due to space restriction, we omit the proofs (see [12]) but present instead
numerous examples which may help to lay down the intuitions.

2 Preliminaries

We try to stick to the notations and the conventions introduced in [10]. We
only consider structures without limit element and ideal CLP systems. &
denotes a sequence of distinct variables. Let o be a CLP(x) object. The set
of variables of o is denoted var(o) and o(Z) means o where wvar(o) = Z.
We say that 6 is a solution of the constraint ¢ if 8 is a valuation s.t. x |= 6.
Let ¢; and ¢, be two constraints. We write ¢; — ¢, as a shorthand for
X EV[er — el

For sake of simplicity, we disallow mutually recursive procedures (i.e. we
assume that the transitive closure of the dependency graph of the program is
anti-symmetric). However, the results presented in the paper can be lifted to
mutual recursivity. A recursive rule is a rule of the form p(Z) — ..., p(9),.. ..
A predicate p is recursive if there is at least one recursive rule defining p.

3 From CLP(y) to CLP(B) via CLP(\)

Let A denote the structure (IN;{0,1,+};{=,>}) where IN is the set of
natural numbers. The first step in the approach we propose is to switch
from y to N by using an approximation AQ/ which consists in an algebraic
morphism A,,, associated to a syntactic transformation A,,, capturing a
notion of size for the elements of y.

More formally, let x = (D,; F\; {=,} U C,) where D, is the domain of
X, F is a set of functions and ', a set of relations, be a solution-compact
structure. Let ¢ = (Dy; Fy; {=y}UCy) be another solution-compact struc-
ture.

Definition 3.1 An approximation Ai from x to 1 consists in a pair of
functions (Agy, Agm) where:

1. A,, is a mapping from F, U{=,}UC, to F, U{=,}UC\y such that:

(a) for every function or relation symbol s, arity(s) = arity(A.(s));
(b) Asx(Fx) C Fy;

(c) Ase(=y) ==y;
(d) As(Cy) € Cy.

2. A, is a mapping from D, to Dy such that for every e, € 5;:

(a) for every function f, Asn(fi(€)) =y Asal f)(Asm(€0));
(b) for every relation c,, if x |= ¢, (€y) then ¥ |= Ay (¢,)(Asm(€y))-

We note that we can naturally generalize the above definition to many-
sorted structures, define the identity element and the composition of approx-
imations. We now present three approximations.

Example 3.1 A data structure SD is often related to IN by means of a
mapping stze from Dgp to IN, which may generate a particular approxima-
tion. In the case of lists, let L(x) = (D, {[1} UU.ep {lel} U {1 {=c00)})
where the constant | | denotes the empty list, the constants [e] denote the
lists [e] and the dot operator ”-” is the concatenation of lists. We define the
approximation AJX(X) from L(x) to N: A ([]) =0, A.([e]) =1, A, (-) =+
and A ([er,...,e,]) =n.

Example 3.2 For trees, let 7(x) = (Tp;{empty} U U.cp {t-}i{=100})
where the constant empty denotes the empty tree and the binary function
symbols 7. denote the applications (I,7) — tree(l,e,r). The usual size
function defined by size(empty) = 0 and size(tree(l,z,r)) = 1 4 size(l) +
size(r) leads naturally to an approximation from 7(y) to M. But more
"exotic” norms (where the size of a term is defined by a linear combination
of the size of its components) can give rise to approximations, too. From the
function size defined by size(empty) = 0 and size(tree(l,z,r)) = 1+size(r),
we construct the approximation Aé\—f(x) from 7 (x) to N Ag.(empty) = 0,
A (t.) = f and Ay, (t) = size(t) where f is the function symbol associated
to the function f:(n,p)— 14 p. At first sight, condition 1.b is not verified.
We can however simplify any "pseudo-arithmetical” term t containing the
symbol function f to an equivalent arithmetical term s (e.g. f(0, f(1,z))1 +
(1+2).

Remark 3.1 From now on, we assume that to each structure SD is associ-
ated the structure A" with a function size noted | |sp, mapping elements of
Dsp to their sizes. When we approximate SD to N wrt size, the function
| |sp becomes the identity function n — n.

Example 3.3 Let B = ({true, false} ; {0,1,-,A, V.=, <} ; {=,=5})
where the symbols have their usual interpretation. We define the approxi-
mation AF from NV to B: A,,(0) =1, A, (1) =1, A (+) = A, 4. (>) ==
and A, (n) = true.

Now we would like to apply the approximation Ai to CLP(x) entities
like terms, programs, goals. Let V' be a denumerable set of variables and 11
be a finite set of predicate symbols. The set of terms, constraints, atoms,
facts, rules, programs, goals are defined as usual. If we extend A,, on
V Ul with A, (z) = 2 (resp. A,.(p) = p) for every variable z (resp. for
every predicate symbol p), then Ai may be naturally extended on terms,
constraints, atoms, sets of atoms, facts, sets of facts, rules, programs and
goals.

Pﬁ(x)

som3

Example 3.4 For the program

of example 1.1, here are PV . = Aﬁf(x)
(Pioma) and P85 = A% (Plo)

som3 s0

som3(0, B, B). som3(1, B, B).

som3(1+ A,0,14+ A). som3(1 AA 1, 1A A).

som3(14+ A 14+ B,1+C): — som3(1ANA,IABIAC): —
som3(A, B, (). som3(A, B, ().

We present some properties of approximations. Let Ai be an approxi-
mation from x to ¢ and P a CLP(x) program. From a (s-)semantical point
of view [8], the image of the semantics of P is included in the semantics of
the image of P:

Theorem 3.1 AY (Ifp(55)) C lfp(Sj;?(P))
Example 3.5 In N, we have: V[som3(z,y,z) < z = max(z,y)] and for
instance som3(2,3,3) is true wrt PV .. In B, we have: V[som3(z,y,2) <
(z & xAy)A(zVy)] and we verify that A% (som3(2,3,3)) = som3(1,1,1)
is true wrt P2 ..
But the information we get is richer. Intuitively, we may add oo to IN
and extend the operations and relations accordingly. Call A" the resulting
structure. The image of oo in B would be 0 and the reader can verify
that we still have an approximation. Now, for every natural number n,
som3(n,00,00) is true wrt P and its approximation som3(1,0,0)is true.
Moreover, it is often difficult to compute the semantics of a program
PX in its original structure y. But if the domain of 1 is finite, then the

semantics of Ai(P) is computable, which may help to estimate the meaning

of PX. Suppose we wonder whether som3(o0, 00, 0) is true wrt PN . As
som3(0,0,0) is false wrt P2 . we conclude, with the help of theorem 3.1
that som3(co,00,00) is false wrt PV .. Indeed the meaning of PV . is

V(z,y,2) € (INU{oo})? [som3(x,y,z) < z = maz(z,y)\(z € N vy € IN)].

The approximation A%, enjoys the following property: if the boolean
image of a numeric constraint ¢ implies that a variable z is set to 1, then
the set of possible values for 2 in ¢ has a least upper bound (we say that z
is bounded in c).

Proposition 3.1 Let ¢! be a numeric constraint with ¢® = A% (¢V) and

t = Vjes[Ner,z;] a boolean term. If ¢¥ — t then 35 € J, Vi € I, x; is
bounded in V.

Let us go back to our main subject: termination. The following result
justifies the switch to AN: left-termination in A implies left-termination in
x. More generally, let Ai be an approximation from x to ¢, PX a CLP(y)
program and GX a CLP(x) goal. Computation trees are constructed using
the Prolog left-to-right computation rule.

Theorem 3.2 If the Ai (PX)-computation tree for Ai (GX) is finite, then
the PX-computation tree for GX is finite.

We note that because of condition 2 of definition 3.1, a branch of the PX-
computation tree for GX may lead to a failure node, though its corresponding
branch in CLP(%) may be longer and lead to a success node. So the length
of each branch of PX-computation tree for GX is ”"smaller or equal” than its
corresponding branch in CLP(1).

For the structures N and B, we have a result which establishes a link
between derivations in CLP(A') and computations in CLP(B).

Remark 3.2 TFirst, we observe that for any program P? of CLP(B) and
without loss of generality, we can assume that the least fixpoint [fp(S%)

contains exactly one fact p(#) — ¢,() for each predicate symbol p of
PE.

Proposition 3.2 Let PV be a CLP(N) program and «— ¢y the answer
constraint of any derivation of the goal «— cjlv,p(i). Let & be a boolean
constraint and p(&) — ¢ ooees € lfp(Sf‘f[(PN)). If AB(cV) — B then
AR () — 5 A ep

p,success”

Before we give an example, we point out that proposition 3.2 holds from

CLP(x) to CLP(%) as soon as CLP (%) fulfills the condition of remark 3.2.

Example 3.6 Let n be a natural number and consider the classes of goals
GA defined by «— n > z,s0m3(z,y,2). We have: A% (n > 2) =1 = 2.

Moreover, we know (example 3.5) that [som3(z,y,2) — (2 & 2 Ay) A(2Vy)]
characterizes the meaning of P2 ..

So by proposition 3.2, for any answer constraint «— ¢V of GV, we have:
AB (V) = (1=)A(zeary A(zVy),ie AY (V) — 2 AyA 2
Applying proposition 3.1, it comes: for all answer constraint «— ¢V of GV,
I’ st N = n' > mazx(z,y, 2).

Now we note that the computation tree for G is finite as the third argu-
ment of som3(z,y, z), bounded by n, decreases at each recursive calls. Hence:
A", s.t. for all answer constraint — ¢V of GV, N — n’ > maz(z,y, 2).

4 Inference of Interargument Relations

Computing information about the relationship between the sizes of the ar-
guments of a predicate is essential for automatic termination analysis. In
the logic programming framework, the research devoted to the derivation of
interargument relations (IR) begun with [18] and is summarized in [6].

Remark 4.1 From a theoretical point of view, such IR’s should be com-
puted in CLP(N) in order to obtain precise results. However, from a prac-
tical point of view, CLP(Q%) often seems to be a best choice (where Q%
= (0*;{0,1,+};{=,>}) with Q" denoting the set of non-negative rational
numbers). First, many problems are much easier to solve in @t than in A
(e.g. linear programming). Second, if a property of the form V[p(Z) — ¢(Z)]
is true in CLP(Q™), then it is true in CLP(N).

Let us now mention some of the main results obtained so far. In [20],
the authors show how one may compute by abstract interpretation IR’s of
the form: V [p(xl, cer®n) = Niciam Dicicn T = kj].

In [7], the class of ”3-recursive” CLP(Z) logic procedures is defined as
follows:

p(z) — 0(z)

P(& 4 @) — ¢1(2), p(%)
p(& +b) — ¢2(F), p(2)
p(& +¢) — ¢3(%), p(2)

where @, b and ¢ are vectors of integers, (%) is a linear arithmetical
constraint, ¢;(#) for 1 < j < 3 are linear arithmetic constraints of the form
S cicsdiz; > €l Such aprocedure p can be ezactly characterized by a finite
arithmetic constraint. The authors have enumerated all the 512 (equivalent)
cases, and for each case, they have computed the characterization. As a
consequence, the computational cost of the inference of the meaning of a
3-recursive procedure is almost constant. Moreover, if a 3-recursive logic
procedure is detected in a CLP(AN) program, it can be deleted and replaced
by its characterization, except for 4 cases where the equivalent arithmetic
constraint is not linear.

Remark 4.2 From now on, we require that the inferred IR’s are added as
constraints (cf. remark 3.1) to the original program P, which leads to a
specialized version P’ of P. But as the IR’s are logical consequences of the
least model of P, such a specialization preserves the meaning of P.

Example 4.1 Hereis the reverse predicate, directly translated from Prolog

to CLP(L(x)) on the left, and its CLP(N') version on the right.

reverse(X,Y) : —rev(X,[],Y). reverse(X,Y) : —rev(X,0,Y).

rev([],Y,Y). rev(0,Y,Y).

rev([X1|X],Y,7) : — rev(l+ XY, Z): —
rev(X,[X1|Y], 7). rev(X,14+Y,7).

Specializing those programs wrt to the IR’s: V[rev(z,y,2) — z = 2 + y]
and V[reverse(z,y) — = = y|, we obtain :

reverse(X,Y): — reverse(X,Y): —
| X =Y, X =Y,
rev(X,[],Y). rev(X,0,Y).
rev([],Y,Y). rev(0,Y,Y).
rev([X1|X],Y,7) : — rev(l+ XY, Z): —
| Z |=| X | +14+ | Y |, Z=X+4+1+4Y,
rev(X,[X1|Y], 7). rev(X,14+Y,7).

5 Inference of Control Information

A very basic idea for termination relies on associating to every recursive
predicate a weight which decreases at each recursive call. We formalize this
concept and adapt it to our approach.

Let (W, >) be a (partially) strictly ordered (i.e. > is a anti-reflexive,
anti-symmetric and transitive binary relation) well-founded (i.e. there is no
infinite sequence of elements wy, ws,...in W s.t. Vi > 1, w; > w4,) set. Let
p be a n-ary recursive predicate symbol of a CLP(N') program P and u be
a mapping from IN" to W (called a measure). Let ¢ be a linear arithmetic
constraint. We say that p(Z) is bounded in ¢ if there exists w € W s.t. for
each solution 6 of ¢, if u(#8) is defined then w > p(6).

In proposition 3.1, we have seen that we can check that some arithmetical
terms are bounded: we extend this idea on p. We also need a link between
p and p. Although possible (see [13] for a more involved discussion about
measures, including their use for the local control of partial deduction),
it would be too exacting to ask for a purely semantical link. We content
ourselves to the text of p. However, note that we are working (cf remark
4.2) with a specialized version of the original program.

Definition 5.1 A measure p is t-valid wrt p (¢ for textually) if there exists
a non-empty set I, C{1,...,n} s.t.

1. for each arithmetical constraint c,
Vi € 1,,2; is bounded in ¢]| — p(Z) is bounded in c.

2. for each recursive rule p(i) < ¢, B defining p in P,
for each solution 0 of ¢,

(a) u(z0) is defined,
(b) for each atom p(y) appearing in B, w(y9) is defined and p(z6) -
p(56).
Example 5.1 Consider the CLP(N) version of the Ackerman function (on

the left) and on the right its specialized version P,., wrt the IR: V[ack(z,y, z)
—z>x+y+1]

ack(0,Y,Y +1). ack(0,Y,Y 4+ 1).

ack(X +1,0,7): — ack(X +1,0,7): —
ack(X,1,7). 7> X +2ack(X,1,7).

ack(X +1,Y+1,2): — ack(X+1,Y+1,7): —
ack(X +1,Y,T), T>X4Y42,2>X+T+1,ack(X +1,Y,T),
ack(X,T, 7). ack(X,T, 7).

If we take (W,>) = (IN,>) then p'(2,y,2) = 2z — y with [, = {3} is
a t-valid measure for P,... First, we verify that condition 1 of definition
5.1 is fulfilled. Assume that z is bounded by a in ¢. Then it is clear that
for each solution 8 of ¢, 2a > 2268 > (2z — y)#. So either 0 > (2z — y)#b,
hence p'(z,y,2)8 is not defined or 2a > (2z — y)8 > 0. We conclude that
p'(z,y,z) is bounded in ¢. Second, we check condition 2 of definition 5.1.
For the second rule of P, let § be a solution of z > z 4+ 2. We verify that
226 and (2z — 1)0 > 3 are defined and 226 > (2z — 1)f. For the third rule
of Pl.., let 8 be a solution of t > a +y+2A2 > 2+ 1+ 1. We verify
that (22 —y — 1) > 3, (2t —y)0 > 4, (22 — t)0 > 2 are defined. At last,
(22 — 2t)8 > 2 implies (22 — (y + 1))8 > (2t — y)# and t0 > (y + 2)0 implies
(22— (y+1))8 > (22— 1)8.

If we take (W, =) = (IN?, >},) where >, denotes the lexicographic order
on IN?, then p?(z,y, 2) = (z,y) with I, = {1,2} is a t-valid measure for P/ , .
First, we check that condition 1 of definition 5.1 is fulfilled. Assume that z
(resp. y) is bounded by a (resp. b) in c. It is clear that (a,b) bounds (26, yf)
for each solution @ of ¢. Second, we check condition 2 of definition 5.1. For
the second rule of P, let § be a solution of z > 2 +2. We have ((z+1)8,0)
> (26, 1). For the third rule, let 6 be a solution t > a4+ y+2A2z > z+t+1.
We have ((z + 1)0,(y+ 1)8) > ((z + 1)8,y0) and ((z + 1)8,(y+ 1)8) >,
(20,10).

Example 5.2 For the rev predicate of example 4.1, if we take (W,>) =
(IN, >) then p'(z,y,2)=(1,0,0) and p*(z,y,2)=(0,—1,1) with I, = {1}
and [,- = {3} are two t-valid measures.

There is an important class of measures which can be automatically
inferred.

Definition 5.2 A p-linear measure (p for positive) p = (f1,..., o) i
a mapping from IN" to IN such that: the p;’s are natural numbers and
V(ay,...,a,) € IN" play,...,a,) =30 pia;.

For p-linear measures, we can give an equivalent (wrt definition 5.1)
definition for t-validity:

Definition 5.3 A p-linear measure 1, associated to a recursive predicate p
is t-valid if for each rule p(t) «— ¢ o B defining p in P, for each solution 8
of ¢, for each atom p(3) appearing in B, we have: u,(10) > 1 + u,(30).

Note that we take (W,>) = (IN,> 41) and that for a t-valid p-linear
measure (tvpl-measure) g = (f1,...,ft,), the set {i | g; > 0} defines the
associated set I, which supports p.

Example 5.3 Consider the specialized CLP(N) version of the example 1.1
using the IR: V[som3(z,y,2) — 22 + 2y > 2z > z + y]

som3(0, B, B).
som3(A +1,0,0).
som3(A+1,B+1,C+1): —

2A42B > 2C > A+ B,som3(A, B,C).

somdl(A,B,C, D) : —
S=|A|+|B|,T=|C|+|E|,25>2E>82T>2D>T,
som3(A, B, E), som3(E,C, D).

som42(a,b,c,d): —
S=|A|+|B|,T=|C|+|E|,25>2E>82T>2D>T,
som3(FE,C, D), som3(A, B, F).

Clearly, we have at least three tvpl-measures : u* = (1,0,0), u* = (0,1,0)
and p® = (0,0,1). In general, we can limit ourselves to a "finite basis” of
measures which covers all others measures (see [12]).

Automatic discovery of tvpl-measures is a consequence of a result of [17]

and gives another example of the computation interest in moving from A to
Q7 (cf. remark 4.1).

Theorem 5.1 In Q7F, there exists a complete polynomial procedure for de-
ciding the existence of a t-valid p-linear measure for any logic procedure
defined using a single predicate symbol.

This procedure, based on the duality theorem of linear programming
(hence its theoretical complexity in Q%t), can be adapted to compute the
coefficients of p [12]. The resulting coefficients for pu are of course non-
negative rational numbers, but it is routine, starting from a p-linear t-valid
measure for a CLP(Q%) logic procedure p to construct a p-linear t-valid
measure for p considered as a CLP(N) logic procedure.

Example 5.4 For the following CLP(Q%) program P, it is not so easy to
detect a tvpl-measure at first sight:

p(X,Y):— 10> X,10> Y.
p2X +3,Y +5): —p(Y + 7, X +2).
PX+2Y+43):— V+1>5X,p(X+3,Y+2),p(Y +3,2X +2).

Using our implementation of the technique of Sohn and Van Gelder, we
find that p(z,y) = 32 + 5y is a tvpl-measure. So p/(z,y) = bz + 10y for P
considered as a CLP(N') program is a tvpl-measure.

For a more general logic procedure p where r,...,7, (r; # p) appears in
the definition of p, we delete each occurrence of each r; and we apply theorem
5.1. Once again remember that we are dealing with specialized versions.

We end this section with a definition and two properties which makes
our goal (left-termination) appear closer.

Definition 5.4 Let p be a recursive predicate, associated to a non-empty set
L', of t-valid measures. We say that — ¢, p(Z) is bounded wrt I', if 3p € T,
s.t. u() is bounded in c.

Once a goal is bounded, its immediate descendants are smaller:

Proposition 5.1 Let — ¢, p(Z) be a goal bounded wrt one of its valid mea-
sures (i : IN*TW®) (W,>). Let p(&) — ¢,...,p(7),... be one of the rules
defining p and ¢” the conjunction (2 = &)ANeAc'. Then — ¢”,p(g) is bounded
wrt w and for each solution 8 of ¢, u(26) = u(yh).

Using proposition 5.1 and the order defined by the dependency graph of
the program (well-founded because we disallow mutual recursive programs),
we can show:

Theorem 5.2 Let PV be a program s.t. each recursive predicate p is asso-
ciated to a non-empty set I', of t-valid measures. If all the left most atoms
met during the construction of a computation tree are either bounded or
non-recursive, then the computation tree is finite.

Example 5.5 Let us apply theorem 5.2 and proposition 5.1 to P, (exam-
ple 5.1). If nis a natural number, then the goals: — n > X + Y, ack(X,Y, 7).
and : — n > Z, ack(X,Y, 7). terminate.

Example 5.6 The following program (on the left) is taken from [11]. We
approximate it (on the right) using the ”exotic” size function of the example
3.2. Note that there are no non-trivial IR for rotate.

rotate(empty). rotate(0).
rotate(tree(L, X, empty)). rotate(l).
rotate(tree(L1, X1,tree(L2, X2, R2))) : — rotate(2 + R2) : —

rotate(tree(tree(L1, X1, L2), X2, R2)). rotate(1l + R2).

The proof of the goal : —rotate(tree(X1, X2,tree(X3, X4, empty))). ter-
minates as u(?) = (1) is a tvpl-measure.

Remark 5.1 Indeed, when p is the only predicate symbol appearing in all
the rules defining p, then if the top most goal is bounded, the computation
tree is finite, for any computation rule.

6 Termination Conditions

Some kind of data-flow analysis misses us to take full profit of theorem 5.2.
We show how one may rely on CLP(B) to fill the gap.

Definition 6.1 Let p(Z) be a n-ary CLP(N) recursive predicate with T,
= {u', ..., u} as its associated set of t-valid measures. We map T, to a
boolean term called its boolean measure defined by:

Y(E) = \/ [/\ 3621
1<j<q+1 i€l

If p(%) is a non-recursive predicate, we set v,(%) = 1.
Example 6.1 For ack(z,y, z), we found two t-valid measures: p* = (0,—1,1)
with I, = {3} and p?*(z,y,2) = (z,y) with I, = {1,2}. Its boolean mea-
sure is: Yaep(2,9,2) = 2V (2 A y).
Example 6.2 For som3(z,y, z), we found three tvpl-valid measures: p' =
(1,0,0), u* = (0,1,0) and p* = (0,0, 1). Its boolean measure is: Y;om3(, ¥,)
=xVyVz.

Example 6.3 For rev(z,y,2), Yreo(2,y,2) = 2 V 2.

Our aim is to find, for each predicate p of the CLP(x) program a sufficient
condition expressing left-termination. More precisely:

Definition 6.2 A boolean term T'C,(Z) is a termination condition for p(Z)
if, for every constraint ¢, Y[AS(c) = TC,(&)] implies — ¢, p(Z) left —
terminates.

If we combine proposition 3.1 and remark 5.1, we obtain:

Proposition 6.1 If p is the only predicate symbol appearing in the rules
defining p then v, is a termination condition for p.

Example 6.4 Hence TCy . (2,y,2) = 2V (2 Ay), TCsoms(z,y,2) =aVyVz
and TC,.p(,y,2) =2 V 2.

Now it is time to address the general case. Assume that m rules define
the predicate p. Let the kth-rule be:

in CLP(A)r s p(2) — ey pua(@0)s - - Do ()
in CLP(B) r¢ s p(&) = Lo pea(@i)s - o5 D@,

If cﬁl is the "empty” constraint, we rewrite it as true and we put c?l = true.
From the kth-rule 72, we define a sequence S¥ of j, boolean constraints as
follows: if the body of rj, is empty, then SP = () else SF = <c?1, .. .,c?]»k>
with
C?,H—l = C?,i A ka,,,success(m)

for 1 <i < jip — 1 (cf remark 3.2 for the definition of ¢ . (.cqs)-

Intuitively, each c?i is the boolean approximation of the ”calling con-
text” of py (2 ;). Now if for each predicate ¢ other, we have a termination
condition T'C', and we want to check T'C),, it remains to show that the call-
ing context (depending on the calling context of the top goal p,i.e. T'C)) is
strong enough to ensure that the sub-proof starting with ¢ will left-terminate,
i.e. implies T'C';. Note that if the rule is recursive, then there is a ¢ which
is p. More formally, with the help of propositions 3.1, 3.2, 6.1 and theorems

3.2, 5.2, we can prove:

Theorem 6.1 Assume that for each predicate ¢ # p appearing in the rules
defining p, we have a termination condition TC,. If TC,(Z) verifies :

V[TCN(Z) = 7,(2)]
and
V1<k<mY1<i< gV [TCE) Ak, = TC,, (i)

then TC, (%) is a termination condition for p(Z).

Example 6.5 We apply theorem 6.1 to prove that TC(z,y, 2,t) = (z A y)
is a termination condition for som41(x,y, z,t) from example 1.1. We obtain
the system:

Viz Ay = 1]
VizAyAl=>2zVyVaul
VizAyALA(zVYyY)A(us (zAy))=>uVzVi]

First, we check T'C' implies v,,m41. Second, T'C' together with the empty con-
straint implies T'Cyoms(@, y,u). Third, TC and the returned constraint corre-
sponding to the success of the proof of som3(z,y, u) implies TC,ms(u, 2,1).
All the three implications are true, hence TC'(z,y,2,t) = (x A y) is a termi-
nation condition for som41(z,y, z,1).

Theorem 6.1 also defines a method for inferring a termination condition:
compute the most general (wrt =) boolean term T'(Z) which verifies the
system. A correct algorithm is given in [12]. With our implementation, we
compute the following termination conditions:

e for the specialized reverse predicate of the example 4.1,
TCreverse(xv 3/) =azV Y

e for the non-specialized version of the example 1.1,
TCsomar(w,y,2,0) = (xVy) AN(@Vz VI A(yVaVi)
Tcsom42($7y727t) = ($ \ Yy \% t) A (Z \ t)

e for the specialized (see example 5.3) version of the example 1.1,
TCsomar(z,y,2,t) =(yVaVi)A(eVyVi)A(zVzVi)
Tcsom’42($7 Y, z, t) = Tcsom"ll(xv Y, z, t)

So without specialization, T'C,,41 and TC,,,42 are not comparable. For
(z,y,2,t) = (1,1,0,0), TCsomar = 1 and TCyppao = 0 and for (z,y,2,t) =
(0,0,0,1), TCipmar = 0 and T'Cyppnan = 1. But once specialized, the two
predicates have the same better operational behavior: TC,ma, = TCsomra,s
TCsomia, = TCsoma, and TCygmia, = TCsoma,.

This is a general rule which we verify on many examples: if we can
generate IR’s in the form of conjunction of inequalities and if we can compute
t-valid measures, then in most cases the computation rule has a rather low
influence on termination, although it may have an impact on efficiency.

We see two possible ways to lift a termination condition from B to y.
FEither the CLP system warns the user that for the goal — ¢,p(Z) to be
proven, if V [Af(c) = TCP(JE)] is false, left-termination is not insured. Or
the result of the termination analysis can be an explicit text (e.g. ”for
som'41(a,b,c,d), left termination is guaranteed if d is a list of bounded
length or two lists among a, b, ¢ are of bounded length”). In the latter case,
we assume that the main words (”list of bounded length”) are given with
the definition of AQK .

We end this section by pointing out that the system defined in theorem
6.1 can be seen as an effective definition of T'C, in the propositional u-
calculus for which there is an efficient interpreter: Toupie, described in [5].

7 Conclusion

Let us first summarize our approach for left-termination of a CLP(x) pro-
gram PX| given AQ/:

1. Abstract PX to PV,

2. Find interargument relations for PY and add them to PV and PX,
now specialized to PV and P'X

3. Compute the t-valid measures for PV,
4. Abstract PN to P'® and compute the least fixpoint of P'Z,

5. Compute the termination conditions in B. Lifting them to y, they
become sufficient left-termination conditions for P’X.

So the main question is: to what extent can we automate AQ/? We think
that there are two possible answers to the problem. On the one hand, the
more ambitious answer relies on adding another layer of approximation to
infer AQ/. Some works have already begun concerning that problem (e.g.
[16]). On the other hand, a more reasonable approach might be to insist
on a type discipline for CLP and to predefine an approximation based on
the "usual” size for each data-structure. For instance, one can compute the
termination conditions of most predicates defined in the library of SICStus
Prolog using the usual associated sizes.

Concerning approximations, the original idea of such mappings was al-
ready present for resolution theorem proving in [14]. The concept has been
adapted and developed for CLP in [3, 9]. We find it useful both from the
theoretical side (clarity of the algebraic reasoning) and from the practical
side (a CLP system freely provides the needed solvers).

Of course we owe a lot to the works on compile-time termination analysis
of logic programs. This research started with [18, 15, 19]. Again, we refer the
reader to the survey of D. De Schreye and S. Decorte [6]. In our approach,
there is an obvious relation with the notions of level mappings, rigidity,
recurrency, boundeness and norms introduced in [1, 2]. The two important
improvements are the following. On the one hand, we allow, via the notion of
measure, more flexiblity to choose the well-founded set. On the other hand,
we generalize to CLP, where a particular data-structure may be defined with
some "non-syntactical” function (e.g. the concatenation function for lists).

From the best of our knowledge, there is only one paper [4] dealing with
termination for CLP. The authors characterize termination wrt to a precon-
dition by means of the notion of ”"termination triple”. The approach may
take into account non-ideal CLP system and negation. Then they introduce
a methodology for finding such triples and a sufficient criterion for termi-
nation. Although our proposal seems less powerful, it is directly oriented
towards automation: we believe that programmers are both lazy and in a
hurry. Hence we feel that it is up to the CLP system to provide, as far as it
can, termination proofs.

We think that the main contribution of our work is twofold. First, we
propose a clean generalization of concepts about termination from LP to
CLP using approximations. Second, the extra-layer using CLP(B) allows us
to derive at compile-time whether arguments are bounded in CLP(N), and
to compute a set of classes of left-terminating queries.

To go one step farther, one may study the following problem. Given
a class of left-terminating goals for P, is it possible, while preserving left-
termination, to reorder the literals in the rules of P in order to reduce the
size of the computation tree ?

References

[1] M. BEzZEM. Characterizing termination of logic programs with level mappings.

[2]

J. Logic Programming, 15(1-2):79-98, 1992.

A. Bossi, N. Cocco, and M. FaBris. Norms on terms and their use in prov-
ing universal termination of a logic program. Theoretical Computer Science,

124:297-328, 1994.

P. CopoGNET and G. FILE. Computations, abstractions and contraints in
logic programs. In Proc. of ICCL’92. IEEE, 1992.

L. Corussi, E. MARCHIORI, and M. MARCHIORI. On termination of constraint
logic programs. In Proc. of PPCP’95, LNCS 976. Springer-Verlag, 1995.

M-M. Corsini, B. LE CHARLIER, K. MUsuMBU, and A. Rauzy. Efficient
abstract interpretation of prolog programs by means of constraint solving over
finite domains. In Proc. of PLILP’93, LNCS 714. Springer-Verlag, 1993.

D. DE SCcHREYE and S. DECORTE. Termination of logic programs: the never-
ending story. J. Logic Programmaing, 19:199-260, 1993.

L. FRiBOURG and H. OLSEN. Datalog programs with arithmetical constraints:
Hierarchic, periodic and spiralling least fixpoints. Technical report, L.I.LE.N.S,
France, 1995.

M. GaABBRIELLI and G. LEVI. Modelling answer constraints in constraint logic
programs. In Proc. of ICLP’91, pages 238-252. MIT Press, 1991.

R. GracoBazzi, S.K. DEBRAY, and G. LEVI. A generalized semantics for
constraint logic programs. In Proc. of FG(CS’92, pages b81-591, 1992.

J. JAFFAR and M.J. MAHER. Constraint logic programming: a survey. J. Logic
Programming, 19:503-581, 1994.

S. LUETTRINGHAUS-KAPPEL. Control generation for logic programs. In Proc.
of 10th ICLP, pages 478-495. MIT Press, 1993.

F. MESNARD. Ftude de la terminaison des programmes logiques avec con-
traintes, au moyen d’approzimations. PhD thesis, Université Paris VI, 1993.

F. MEsNARD. Towards automatic control for clp(x) programs. In Proc. of
LOPSTR’95, LNCS 1048, pages 106-119. Springer Verlag, 1995.

D. PLAISTED. Abstraction mappings in mechanical theorem proving. In Proc.
of CADE’80, LNCS 87, pages 264-280. Springer-Verlag, 1980.

L. PLOMER. Termination Proofs For Logic Programs. Springer-Verlag, 1989.

B. SagraMm and J.P. GALLAGHER. Approximating constraint logic programs
using polymorphic types and regular descriptions. In Proc. of PLILP’95, LNCS
982, pages 461-462. Springer-Verlag, 1995.

K. SouN and A. VAN GELDER. Termination detection in logic programs using
argument sizes. In Proc. of PODS’91, pages 216-226. ACM Press, 1991.

J.D. ULLMAN and A. VAN GELDER. Efficient tests for top-down termination
of logical rules. Journal of the ACM, 35(2):345-373, 1988.

K. VERSCHAETSE and D. DE SCHREYE. Deriving termination proofs for logic
programs, using abstract procedures. In Proc. of ICLP’91, pages 301-315. MIT
Press, 1991.

K. VERSCHAETSE and D. DE SCHREYE. Derivation of linear size relations
by abstract interpretation. In Proc. of PLILP’92, pages 296-310. LNCS 631,
Springer Verlag, 1992.

