
Automated Theorem Proving
for

Prolog Verification

Fred Mesnard Thierry Marianne Etienne Payet

LIM, université de La Réunion, France

ICLP 2025 – TC

1 / 16

Prolog verification

Total correctness = termination + partial correctness

▶ Termination – many papers, which tool?
E.g., ours for pure Prolog
NTI+cTI ranked 1st at TermComp since 2022

▶ Partial correctness – a few papers, which tool?
LPTP: Logic Program Theorem Prover
Robert Stärk, mid-1990’s

2 / 16

Some LPTP examples

nat(0). add(0,Y,Y).

nat(s(X)) :- nat(X). add(s(X),Y,s(Z)) :- add(X,Y,Z).

Lemma [add:existence] ∀x , y (S nat(x) → ∃z S add(x , y , z)).

Lemma [add:uniqueness]
∀x , y , z1, z2 (S add(x , y , z1) ∧ S add(x , y , z2) → z1 = z2).

Lemma [add:term:1] ∀x , y , z (S nat(x) → T add(x , y , z)).

Lemma [add:term:3] ∀x , y , z (S nat(z) → T add(x , y , z)).

Theorem [add:commutative]
∀x , y , z (S nat(x) ∧ S nat(y) ∧ S add(x , y , z) → S add(y , x , z)).

3 / 16

An LPTP proof: source and PDF

4 / 16

Main LPTP papers

R. F. Stärk
First-order theories for pure Prolog programs with negation
Arch. Math. Log., 34(2):113–144, 1995

R. F. Stärk
Total correctness of logic programs: A formal approach
ELP’96, LNCS 1050, 237–254. Springer, 1996

R. F. Stärk
The theoretical foundations of LPTP
(a logic program theorem prover)
Journal of Logic Programming (JLP), 36(3):241–269, 1998

5 / 16

LPTP is also an interactive theorem prover (ITP)

▶ An Emacs user-interface

▶ Natural-deduction tactic-based ITP

▶ A very limited auto tactic

▶ A proof checker written in ISO-Prolog

▶ A proof manager based on TEX and HTML

Runs out of the box 25 years later:

6 / 16

The two languages of LPTP – ① the object language

Pure Prolog (finite terms) with negation as failure

▶ Let P be a pure logic program with negation and L the
first-order language associated to P

▶ The goals of L are:

G ,H ::= true |fail | s = t | A | \+ G | (G ,H) | (G ;H) | some x G

s and t are terms, x is a variable and A is an atomic goal

▶ Operational semantics: ISO-Prolog with the occurs check

7 / 16

The two languages of LPTP – ② the specification language

Classical first order logic

▶ L̂ is the specification language of LPTP

▶ For each user-defined predicate symbol R, L̂ contains three
predicate symbols Rs , R f , Rt of the same arity as R which
respectively express success, failure and termination of R

▶ The formulas of L̂ are:

ϕ, ψ ::= ⊤ | ⊥ | s = t | R(#»
t) | ¬ϕ | ϕ∧ψ | ϕ∨ψ | ϕ→ ψ | ∀xϕ | ∃xϕ

where
#»
t is a sequence of n terms and R denotes a n-ary

predicate symbol of L̂
▶ The semantics of L̂ is classical first order logic (FOL)

▶ For any of the user-defined logic procedure R(#»x) in P,
DP
R (

#»x) denotes its Clark’s if-and-only-if completed definition

8 / 16

The two languages of LPTP – ② the specification language

For defining the declarative semantics of LP, three syntactic
operators S, F and T which map goals of L into L̂-formulas

Intuitively:

▶ SG means G succeeds
The breadth-first left-to-right evaluation of G succeeds
One or more infinite branches may exist

▶ FG means G fails
The ISO-Prolog evaluation stops without any answer
No infinite branch

▶ TG means G terminates
The ISO-Prolog evaluation produces a finite number of
answers then stops
No infinite branch

9 / 16

IND(P) – from the JLP paper

The declarative semantics of P is IND(P), an always consistent
theory which includes Clark’s equality theory ...

10 / 16

IND(P) – from the JLP paper

... and induction

Correct and partially complete w.r.t. the Prolog semantics

11 / 16

ATP for LPTP?

Observation:

▶ Within LPTP, we prove properties of a Prolog program P
using a natural-deduction tactic-based ITP where the axioms
IND(P) of the theoretical framework are hardwired

Idea:

▶ Go back to FOL by translating the axioms IND(P) in TPTP
FOF (First Order Form) and invoke any FOF-compatible
theorem prover

Experimentation:

▶ Try with E and Vampire on the LPTP lib

12 / 16

Workflow of our experiment

▶ Requirements: the logic program P and the associated proof file
We do not use the proofs, only the statements!

▶ If P depends on other logic programs, we include them

▶ If the associated proof file uses other proof files, we include them

▶ We build a target logic program P ′ and a target LPTP proof file

▶ Each property is compiled as a FOF conjecture possibly with its
induction axiom and stored in a single file which also contains the
logic theory IND(P ′) compiled as FOF axioms

▶ Previously processed FOF conjectures are converted as FOF axioms
So we produce as many FOF files as there are properties in P ′

▶ Both E and Vampire are applied to each FOF file with predefined
time limits

13 / 16

Benchmarks

On a Mac Book Air M2, 400 properties from the LPTP library

Average success rate: 83% for a 1 min timeout

lib # E-1s V-1s EV-1s E-10s V-10s EV-10s E-60s V-60s EV-60s

nat 91 70% 88% 88% 76% 95% 95% 78% 97% 97%
gcd 11 45% 45% 45% 45% 45% 45% 45% 45% 45%
ack 3 33% 33% 33% 33% 33% 33% 33% 33% 33%
int 67 76% 82% 87% 79% 88% 90% 79% 91% 91%
list 84 75% 94% 94% 80% 96% 96% 81% 99% 99%
suffix 31 94% 100% 100% 94% 100% 100% 97% 100% 100%
reverse 25 72% 88% 88% 84% 100% 100% 84% 100% 100%
permut. 42 48% 71% 71% 60% 79% 81% 62% 86% 86%
sort 42 45% 62% 62% 50% 74% 74% 55% 76% 76%
merges. 24 79% 88% 88% 79% 92% 92% 79% 100% 100%
taut 43 65% 81% 81% 70% 84% 84% 74% 84% 84%

Table: Experimental Evaluation

▶ https://github.com/FredMesnard/lptp

▶ https://github.com/atp-lptp/

automated-theorem-proving-for-prolog-verification

14 / 16

https://github.com/FredMesnard/lptp
https://github.com/atp-lptp/automated-theorem-proving-for-prolog-verification
https://github.com/atp-lptp/automated-theorem-proving-for-prolog-verification

Conclusion

We have presented a compiler

▶ from LPTP: FOL for Prolog verification

▶ to FOF: the assembly language

▶ executable: on any FOF processor

▶ + an experiment with E and Vampire

Why does it work?
▶ Concepts and tools closely related to FOL:

▶ pure Prolog + sound negation
▶ LPTP specification language + IND(P)
▶ FOF, the Esperanto of FOL syntax for ATP
▶ Availability of efficient FOL theorem provers

▶ Huge computing power of our modern laptops

▶ Smart slicing of the LPTP library proofs by Stärk

What’s next? A hammer for LPTP?

15 / 16

Conclusion

What’s next? A hammer for LPTP?
▶ From an ATP resolution proof

▶ build the corresponding LPTP natural deduction proof
▶ check it with the LPTP proof checker

16 / 16

