Automated Theorem Proving
for
Prolog Verification

Fred Mesnard Thierry Marianne Etienne Payet
LIM, université de La Réunion, France

ICLP 2025 - TC

1/16

Prolog verification

Total correctness = termination + partial correctness

» Termination — many papers, which tool?
E.g., ours for pure Prolog
NTI4cTI ranked 1st at TermComp since 2022

» Partial correctness — a few papers, which tool?
LPTP: Logic Program Theorem Prover
Robert Stark, mid-1990’s

2/16

Some LPTP examples

nat (0) . add(0,Y,Y).
nat(s(X)) :- nat(X). add(s(X),Y,s(Z)) :- add(X,Y,Z).

Lemma [add:existence] Vx, y (Snat(x) — 3z Sadd(x, y, z)).

Lemma [add:uniqueness|
VX,y,21,22(Sadd(x, y,z1) ASadd(x,y,) = 21 = 2).

Lemma [add:term:1] Vx,y,z (Snat(x) — T add(x, y, z)).
Lemma [add:term:3] Vx,y, z(Snat(z) — T add(x, y, z)).

Theorem [add:commutative]
Vx,y,z(Snat(x) A Snat(y) A Sadd(x,y,z) — Sadd(y, x, z)).

3/16

An LPTP proof: source and PDF

:- lemmaCadd:exist,
all [x,y]: succeeds nat(?x) => (ex z: succeeds add(?x,?y,?z)),
induction(
[all x: succeeds nat(?x) => (all y: ex z: succeeds add(?x,?y,?z))],
[stepCOd,
0

B
[succeeds add(@,?y,?y),
ex z: succeeds add(@,?y,?z)],
all y: ex z: succeeds add(@,?y,?z)),
step([x],
[all y: ex z: succeeds add(?x,?y,?z),
succeeds nat(?x)],
[ex z: succeeds add(?x,?y,?z),
exist(z@, succeeds add(?x,?y,?z0),
[succeeds add(s(?x),?y,s(?z@)) by sld],
ex zl: succeeds add(s(?x),?y,?z1))],
all y: ex z: succeeds add(s(?x),?y,?z))1)).

Lemma 1 [add:ezist] Vz,y (Snat(z) — 3z Sadd(z, y, 2)).

Proof.

Induction: Vz (Snat(z) — Yy 3z Sadd(z,y, 2)).
Hypothesis,: none. Sadd(0,y,y). 3z Sadd(0,y, 2).
Conclusion, : Yy 3z Sadd(0,y, 2).

Hypothesis : Vy 3z S add(z,y,2) and Snat(z). 3z Sadd(z,y, 2).
Let, zo with Sadd(z,y, 20). Sadd(s(x),y,s(20)) by sld.

Thus,: 3z Sadd(s(z),y, 21)-
Conclusion, : Yy 3z Sadd(s(z),y,2). O

4/16

Main LPTP papers

[d R.F.Stirk
First-order theories for pure Prolog programs with negation
Arch. Math. Log., 34(2):113-144, 1995

[4 R.F. Stirk
Total correctness of logic programs: A formal approach
ELP'96, LNCS 1050, 237-254. Springer, 1996

[d R.F.Stirk
The theoretical foundations of LPTP
(a logic program theorem prover)
Journal of Logic Programming (JLP), 36(3):241-269, 1998

5/16

LPTP is also an interactive theorem prover (ITP)

» An Emacs user-interface

» Natural-deduction tactic-based ITP

> A very limited auto tactic

» A proof checker written in ISO-Prolog

» A proof manager based on TgX and HTML
Runs out of the box 25 years later:

6/16

The two languages of LPTP — @ the object language

’ Pure Prolog (finite terms) with negation as failure‘

> Let P be a pure logic program with negation and L the
first-order language associated to P

» The goals of L are:
G,H ::=truel|fail|s=t|A|\+ G| (G,H)|(G; H)|some x G

s and t are terms, x is a variable and A is an atomic goal
» | Operational semantics: 1SO-Prolog with the occurs check‘

7/16

The two languages of LPTP — @ the specification language

’Classical first order logic ‘

>
>

L is the specification language of LPTP

For each user-defined predicate symbol R, £ contains three
predicate symbols R, R, Rt of the same arity as R which
respectively express success, failure and termination of R

The formulas of £ are:

G0 u=T|L[s=t|R(T) || oAV | VY| — ¥ | Vx| Ixd

where T is a sequence of n terms and R denotes a n-ary
predicate symbol of L

The semantics of £ is classical first order logic (FOL)

For any of the user-defined logic procedure R(X) in P,
DE(X) denotes its Clark's if-and-only-if completed definition

8/16

The two languages of LPTP — @ the specification language

For defining the declarative semantics of LP, three syntactic
operators S, F and T which map goals of £ into £L-formulas

Intuitively:
» SG means G succeeds

The breadth-first left-to-right evaluation of G succeeds
One or more infinite branches may exist

» FG means G fails

The 1SO-Prolog evaluation stops without any answer
No infinite branch

» TG means G terminates
The 1SO-Prolog evaluation produces a finite number of
answers then stops
No infinite branch

9/16

IND(P) — from the JLP paper

The declarative semantics of P is IND(P), an always consistent
theory which includes Clark’s equality theory ...

IND(P), comprises the following axioms:

1. The axioms of Clark’s equality theory CET:
L f(x1yesXm) =f Oy oo yym) = xi =y [if fis m-ary and 1<i<m]
2. f(xye o xm) #8001, .- ym) [if £ is m-ary, g is n-ary and f # g]
3.t#x [if x occurs in f and ¢ # x|
I1. Axioms for gr:
4. gr(c) [if cis a constant]
5. gr(x1) A+ Agr(xm) < gr(f(xi,...,xn)) [if f is m-ary]
II1. Uniqueness axioms (UNI):
6. ~(RS (%) AR (%))
IV. Totality axioms (TOT):
7. RY(ZX) — RS (%) V R'(%)
V. Fixed point axioms for user-defined predicates R:
8. SDE[X] — R8(¥), FDE[X] « RI(R), TDL[F] — R'(%)

10/16

IND(P) — from the JLP paper

. and induction

VIIL The simultaneous induction scheme for user-defined predicates:
Let Ry,...,R, be user-defined predicates and let ¢,(%)),...,¢,(X,) be L-formulas
such that the length of X; is equal to the arity of R; fori = 1,...,n. Let
closed(@,(X\)/Ry, ..., 0,(%,)/R,)
be the formula obtained from
VE (D, [f1] — R(%)) A - - AVE,(SD], [5] — Ry(%,))
by replacing simultaneously all occurrences of R;(7) by ¢,(7) for i =1,...,n and re-
naming the bound variables when necessary. Let
s“b(‘Pl (fl)/Rl 1rte (Pn(fn)/Rn)
be the formula
VX (Rsl(fl) =@ X)) AA Vf,,(R:()_C‘,,) - ‘pn()?n))-_
Then the simultaneous induction axiom is the following formula:
10. Closed(q’l(x’l)/Rl‘ o @, (%n) /R) — Sub((pl(:{l)/Rh oy @, (%) /R).

Correct and partially complete w.r.t. the Prolog semantics

11/16

ATP for LPTP?

Observation:

> Within LPTP, we prove properties of a Prolog program P
using a natural-deduction tactic-based ITP where the axioms
IND(P) of the theoretical framework are hardwired

Idea:

» Go back to FOL by translating the axioms IND(P) in TPTP
FOF (First Order Form) and invoke any FOF-compatible
theorem prover

Experimentation:
» Try with E and Vampire on the LPTP lib

12/16

Workflow of our experiment

>

vV v vy

Requirements: the logic program P and the associated proof file
We do not use the proofs, only the statements!

If P depends on other logic programs, we include them
If the associated proof file uses other proof files, we include them
We build a target logic program P’ and a target LPTP proof file

Each property is compiled as a FOF conjecture possibly with its
induction axiom and stored in a single file which also contains the
logic theory IND(P’) compiled as FOF axioms

Previously processed FOF conjectures are converted as FOF axioms
So we produce as many FOF files as there are properties in P’

Both E and Vampire are applied to each FOF file with predefined
time limits

13/16

Benchmarks
On a Mac Book Air M2, 400 properties from the LPTP library

Average success rate: 83% for a 1 min timeout

[lib [#] Els V-1s EV-1s E-10s V-10s EV-10s E-60s V-60s EV-60s |
nat 91 70% 88% 88% 76% 95% 95% 78% 97% 97%
ged 11 45% 45% 45% 45% 45% 45% 45% 45% 45%
ack 3 33% 33% 33% 33% 33% 33% 33% 33% 33%
int 67 76% 82% 87% 79% 88% 90% 79% 91% 91%
list 84 75% 94% 94% 80% 96% 96% 81% 99% 99%
suffix 31 94% 100% 100% 94% 100% 100% 97% 100% 100%
reverse 25 72% 88% 88% 84% 100% 100% 84% 100% 100%
permut. 42 48% 71% 71% 60% 79% 81% 62% 86% 86%
sort 42 45% 62% 62% 50% 74% 74% 55% 76% 76%
merges. 24 79% 88% 88% 79% 92% 92% 79% 100% 100%
taut 43 65% 81% 81% 70% 84% 84% 74% 84% 84%

Table: Experimental Evaluation

> https://github.com/FredMesnard/lptp

> https://github.com/atp-lptp/
automated-theorem-proving-for-prolog-verification

14/16

https://github.com/FredMesnard/lptp
https://github.com/atp-lptp/automated-theorem-proving-for-prolog-verification
https://github.com/atp-lptp/automated-theorem-proving-for-prolog-verification

Conclusion

We have presented a compiler
» from LPTP: FOL for Prolog verification
» to FOF: the assembly language
> executable: on any FOF processor
> -+ an experiment with E and Vampire
Why does it work?

» Concepts and tools closely related to FOL:

» pure Prolog + sound negation

» LPTP specification language + IND(P)

» FOF, the Esperanto of FOL syntax for ATP
» Availability of efficient FOL theorem provers

» Huge computing power of our modern laptops
» Smart slicing of the LPTP library proofs by Stark
What's next? A hammer for LPTP?

15/16

Conclusion

What's next? A hammer for LPTP?
» From an ATP resolution proof

» build the corresponding LPTP natural deduction proof
» check it with the LPTP proof checker

16/16

