Automated Theorem Proving for Prolog Verification

Fred Mesnard Thierry Marianne Etienne Payet

LIM, université de La Réunion, France

ICLP 2025 - TC

・ロト・日本・モト・モト ヨー うへつ

1/16

Prolog verification

Total correctness = termination + partial correctness

Termination – many papers, which tool?
 E.g., ours for pure Prolog
 NTI+cTI ranked 1st at TermComp since 2022

 Partial correctness – a few papers, which tool? LPTP: Logic Program Theorem Prover Robert Stärk, mid-1990's

イロト 不同 トイヨト イヨト 二日

Some LPTP examples

nat(0). add(0,Y,Y).
nat(s(X)) :- nat(X). add(s(X),Y,s(Z)) :- add(X,Y,Z).

Lemma [add:existence] $\forall x, y (S \operatorname{nat}(x) \to \exists z \ S \operatorname{add}(x, y, z)).$

Lemma [add:uniqueness] $\forall x, y, z_1, z_2 (\mathbf{S} \operatorname{add}(x, y, z_1) \land \mathbf{S} \operatorname{add}(x, y, z_2) \rightarrow z_1 = z_2).$

Lemma [add:term:1] $\forall x, y, z (Snat(x) \rightarrow Tadd(x, y, z)).$

Lemma [add:term:3] $\forall x, y, z (S \operatorname{nat}(z) \to T \operatorname{add}(x, y, z)).$

Theorem [add:commutative] $\forall x, y, z (Snat(x) \land Snat(y) \land Sadd(x, y, z) \rightarrow Sadd(y, x, z)).$

An LPTP proof: source and PDF

```
:- lemma(add:exist.
all [x,y]: succeeds nat(?x) => (ex z: succeeds add(?x,?y,?z)),
induction(
 [all x: succeeds nat(?x) => (all y: ex z: succeeds add(?x,?y,?z))],
 [step([],
  Γ٦,
   Fsucceeds add(0,?v,?v).
   ex z: succeeds add(0,?y,?z)],
  all y: ex z: succeeds add(0,?y,?z)),
 step([x],
   [all y: ex z: succeeds add(?x,?y,?z),
   succeeds nat(?x)],
   Fex z: succeeds add(?x,?y,?z),
   exist(z0, succeeds add(?x,?v,?z0),
    [succeeds add(s(?x),?y,s(?z0)) by sld],
     ex z1: succeeds add(s(?x).?v.?z1))].
  all y: ex z: succeeds add(s(?x),?y,?z))])).
```

Lemma 1 [add:exist] $\forall x, y (\mathsf{Snat}(x) \to \exists z \; \mathsf{Sadd}(x, y, z)).$

Proof.

```
 \begin{array}{l} \operatorname{Induction}_{0} \colon \forall x \, (\operatorname{\mathtt{Snat}}(x) \to \forall y \, \exists z \, \operatorname{\mathtt{Sadd}}(x, y, z)). \\ \operatorname{Hypothesis}_{1} \colon \operatorname{none.} \, \operatorname{\mathtt{Sadd}}(0, y, y). \ \exists z \, \operatorname{\mathtt{Sadd}}(0, y, z). \\ \operatorname{Conclusion}_{1} \colon \forall y \, \exists z \, \operatorname{\mathtt{Sadd}}(0, y, z). \\ \operatorname{Hypothesis}_{1} \colon \forall y \, \exists z \, \operatorname{\mathtt{Sadd}}(x, y, z) \text{ and } \operatorname{\mathtt{Snat}}(x). \ \exists z \, \operatorname{\mathtt{Sadd}}(x, y, z). \\ \operatorname{Let}_{2} \, z_{0} \, \text{with} \, \operatorname{\mathtt{Sadd}}(x, y, z_{0}). \, \operatorname{\mathtt{Sadd}}(\operatorname{\mathtt{s}}(x), y, \operatorname{\mathtt{s}}(z_{0})) \text{ by sld.} \\ \operatorname{Thus}_{2} \colon \exists z_{1} \, \operatorname{\mathtt{Sadd}}(\operatorname{\mathtt{s}}(x), y, z_{1}). \\ \operatorname{Conclusion}_{1} \colon \forall y \, \exists z \, \operatorname{\mathtt{Sadd}}(\operatorname{\mathtt{s}}(x), y, z). \quad \Box \end{array} \right.
```

Main LPTP papers

🔋 R. F. Stärk

First-order theories for pure Prolog programs with negation *Arch. Math. Log.*, 34(2):113–144, 1995

🔋 R. F. Stärk

Total correctness of logic programs: A formal approach ELP'96, *LNCS* 1050, 237–254. Springer, 1996

📔 R. F. Stärk

The theoretical foundations of LPTP (a logic program theorem prover) Journal of Logic Programming (JLP), 36(3):241–269, 1998

LPTP is also an interactive theorem prover (ITP)

- An Emacs user-interface
- Natural-deduction tactic-based ITP
- A very limited auto tactic
- A proof checker written in ISO-Prolog
- A proof manager based on TEX and HTML Runs out of the box 25 years later:

The two languages of LPTP – 1 the object language

Pure Prolog (finite terms) with negation as failure

- Let P be a pure logic program with negation and L the first-order language associated to P
- ▶ The *goals* of *L* are:

 $G, H ::= \texttt{true} |\texttt{fail}| s = t |A| \setminus + G |(G, H)|(G; H)| \text{some} \times G$

s and t are terms, x is a variable and A is an atomic goal

Operational semantics: ISO-Prolog with the occurs check

The two languages of LPTP – 2 the specification language

Classical first order logic

- $\hat{\mathcal{L}}$ is the specification language of LPTP
- For each user-defined predicate symbol R, L̂ contains three predicate symbols R^s, R^f, R^t of the same arity as R which respectively express success, failure and termination of R
- The *formulas* of $\hat{\mathcal{L}}$ are:

$$\phi, \psi ::= \top \mid \bot \mid s = t \mid R(\vec{t}) \mid \neg \phi \mid \phi \land \psi \mid \phi \lor \psi \mid \phi \to \psi \mid \forall x \phi \mid \exists x \phi$$

where \vec{t} is a sequence of *n* terms and *R* denotes a *n*-ary predicate symbol of $\hat{\mathcal{L}}$

- The semantics of $\hat{\mathcal{L}}$ is classical first order logic (FOL)
- For any of the user-defined logic procedure $R(\vec{x})$ in P, $D_R^P(\vec{x})$ denotes its Clark's *if-and-only-if* completed definition

・ロト ・回ト ・ヨト ・ヨト ・ヨ

The two languages of LPTP – 2 the specification language

For defining the declarative semantics of LP, three syntactic operators **S**, **F** and **T** which map goals of \mathcal{L} into $\hat{\mathcal{L}}$ -formulas

Intuitively:

- SG means G succeeds
 The breadth-first left-to-right evaluation of G succeeds
 One or more infinite branches may exist
- FG means G fails The ISO-Prolog evaluation stops without any answer No infinite branch
- TG means G terminates
 The ISO-Prolog evaluation produces a finite number of answers then stops
 No infinite branch

IND(P) – from the JLP paper

The declarative semantics of P is IND(P), an always consistent theory which includes Clark's equality theory ...

IND(P), comprises the following axioms:

I. The axioms of Clark's equality theory CET: 1. $f(x_1,\ldots,x_m) = f(y_1,\ldots,y_m) \rightarrow x_i = y_i$ [if f is m-ary and $1 \le i \le m$] 2. $f(x_1, \ldots, x_m) \neq g(y_1, \ldots, y_n)$ [if f is m-ary, g is n-ary and $f \neq g$] 3. $t \neq x$ [if x occurs in t and $t \not\equiv x$] II. Axioms for gr: 4. gr(c) [if c is a constant] 5. $\operatorname{gr}(x_1) \wedge \cdots \wedge \operatorname{gr}(x_m) \leftrightarrow \operatorname{gr}(f(x_1, \ldots, x_m))$ [if f is m-arv] III. Uniqueness axioms (UNI): 6. $\neg (R^{s}(\vec{x}) \land R^{f}(\vec{x}))$ IV. Totality axioms (TOT): 7. $R^{t}(\vec{x}) \rightarrow R^{s}(\vec{x}) \lor R^{f}(\vec{x})$ V. Fixed point axioms for user-defined predicates R: 8. $\mathbf{SD}_{R}^{P}[\vec{x}] \leftrightarrow R^{s}(\vec{x}), \quad \mathbf{FD}_{R}^{P}[\vec{x}] \leftrightarrow R^{f}(\vec{x}), \quad \mathbf{TD}_{R}^{P}[\vec{x}] \leftrightarrow R^{t}(\vec{x})$

IND(P) – from the JLP paper

... and induction

VIII. The simultaneous induction scheme for user-defined predicates: Let R_1, \ldots, R_n be user-defined predicates and let $\varphi_1(\vec{x}_1), \ldots, \varphi_n(\vec{x}_n)$ be $\hat{\mathscr{L}}$ -formulas such that the length of \vec{x}_i is equal to the arity of R_i for $i = 1, \ldots, n$. Let

 $closed(\varphi_1(\vec{x}_1)/R_1,\ldots,\varphi_n(\vec{x}_n)/R_n)$

be the formula obtained from

 $\forall \vec{x}_1(\mathbf{SD}_{R_1}^P[\vec{x}_1] \to R_1^s(\vec{x}_1)) \land \cdots \land \forall \vec{x}_n(\mathbf{SD}_{R_n}^P[\vec{x}_n] \to R_n^s(\vec{x}_n))$

by replacing simultaneously all occurrences of $R_i(\vec{t})$ by $\varphi_i(\vec{t})$ for i = 1, ..., n and renaming the bound variables when necessary. Let

 $sub(\varphi_1(\vec{x}_1)/R_1,\ldots,\varphi_n(\vec{x}_n)/R_n)$

be the formula

 $\forall \vec{x}_1(R_1^{\mathrm{s}}(\vec{x}_1) \to \varphi_1(\vec{x}_1)) \land \cdots \land \forall \vec{x}_n(R_n^{\mathrm{s}}(\vec{x}_n) \to \varphi_n(\vec{x}_n)).$

Then the simultaneous induction axiom is the following formula:

10. $closed(\varphi_1(\vec{x}_1)/R_1,\ldots,\varphi_n(\vec{x}_n)/R_n) \rightarrow sub(\varphi_1(\vec{x}_1)/R_1,\ldots,\varphi_n(\vec{x}_n)/R_n).$

Correct and partially complete w.r.t. the Prolog semantics

ATP for LPTP?

Observation:

Within LPTP, we prove properties of a Prolog program P using a natural-deduction tactic-based ITP where the axioms IND(P) of the theoretical framework are hardwired

Idea:

Go back to FOL by translating the axioms IND(P) in TPTP FOF (*First Order Form*) and invoke *any* FOF-compatible theorem prover

Experimentation:

Try with E and Vampire on the LPTP lib

Workflow of our experiment

- Requirements: the logic program P and the associated proof file We do not use the proofs, only the statements!
- ▶ If *P* depends on other logic programs, we include them
- If the associated proof file uses other proof files, we include them
- We build a target logic program P' and a target LPTP proof file
- Each property is compiled as a FOF conjecture possibly with its induction axiom and stored in a single file which also contains the logic theory IND(P') compiled as FOF axioms
- Previously processed FOF conjectures are converted as FOF axioms So we produce as many FOF files as there are properties in P'
- Both E and Vampire are applied to each FOF file with predefined time limits

Benchmarks

On a Mac Book Air M2, 400 properties from the LPTP library

lib	#	E-1s	V-1s	EV-1s	E-10s	V-10s	EV-10s	E-60s	V-60s	EV-60s
nat	91	70%	88%	88%	76%	95%	95%	78%	97%	97%
gcd	11	45%	45%	45%	45%	45%	45%	45%	45%	45%
ack	3	33%	33%	33%	33%	33%	33%	33%	33%	33%
int	67	76%	82%	87%	79%	88%	90%	79%	91%	91%
list	84	75%	94%	94%	80%	96%	96%	81%	99%	99%
suffix	31	94%	100%	100%	94%	100%	100%	97%	100%	100%
reverse	25	72%	88%	88%	84%	100%	100%	84%	100%	100%
permut.	42	48%	71%	71%	60%	79%	81%	62%	86%	86%
sort	42	45%	62%	62%	50%	74%	74%	55%	76%	76%
merges.	24	79%	88%	88%	79%	92%	92%	79%	100%	100%
taut	43	65%	81%	81%	70%	84%	84%	74%	84%	84%

Average success rate: 83% for a 1 min timeout

Table: Experimental Evaluation

- https://github.com/FredMesnard/lptp
- https://github.com/atp-lptp/ automated-theorem-proving-for-prolog-verification

Conclusion

We have presented a compiler

- from LPTP: FOL for Prolog verification
- to FOF: the assembly language
- executable: on any FOF processor
- + an experiment with E and Vampire

Why does it work?

Concepts and tools closely related to FOL:

- pure Prolog + sound negation
- LPTP specification language + IND(P)
- ► FOF, the *Esperanto* of FOL syntax for ATP
- Availability of efficient FOL theorem provers
- Huge computing power of our modern laptops
- Smart slicing of the LPTP library proofs by Stärk What's next? A hammer for LPTP?

Conclusion

What's next? A hammer for LPTP?

- From an ATP resolution proof
 - build the corresponding LPTP natural deduction proof
 - check it with the LPTP proof checker