Automated Certification of Logic Program Groundness
Analysis

Thierry Marianne, Fred Mesnard, Etienne Payet

September 2025

UNIVERSITE
DE LA REUNION

1/24

Abstract interpretation and interactive theorem proving

o At the extremes of the verification automation spectrum :
Abstract Interpretation and Interactive Thereom Proving

@ Proofs assistants (for instance Isabelle with Sledgehammer) can rely
on SMT solvers (like cvch) to automate proof drafting without
abstact interpretation.

@ Run-time checking mechanism, random test case generator, and
unit-test framework have been combined to test static analyzers

@ We have considered groundness analysis to combine these two
techniques in the context of logic programming :

e abstract interpretation generates invariants automatically
e interactive theorem proving allows us to certify these invariants.

2/24

Certification of Logic Programs Groundness Analysis

We apply two distinct techniques to automate the formal certification of
invariants generated by abstract interpretation.

These techniques depend on

@ proving automatically groundnesss properties from the theoretical
framework of LPTP (Logic Program Theorem Prover ') and

o the automated construction of derivations certified by LPTP proof
checker.

Inatural deduction proof assistant designed by Robert F. Stark
3/24

Groundness analysis by abstract interpretation

We consider logic programming with SLD resolution as the operational
semantics.

We only consider positive logic programs and our reference semantics is the
s-semantics, a non-ground semantics of logic programs.

Aterm tis when it is variable-free.

For example, any constant is a ground term, in particular the constant []
denoting the empty list.

4/24

Groundness analysis by abstract interpretation

Abstract interpretation is a formal method invented by Patrick and Radhia
Cousot for designing program semantics approximations

@ used to collect information for data flow analysis for concrete
domains

@ resulting in a behavior abstraction of a program during its
execution

@ generating invariants for analyzed programs automatically.

It was extended to logic program analysis.

5/24

Groundness analysis by abstract interpretation

In the context of using cT| (constraint-based Termination Inference), an
abstract interpretation technique named abstract compilation provides
approximations of the analysed program.

These approximations are expressed as inter-arguments relations in the
form of boolean relations. We use them to formulate groundness

properties. Dependencies between variable groundness can be represented
by boolean constraints.

6/24

Groundness analysis by abstract interpretation

For instance, a relation such as “if the variable Y is instantiated to a
ground term, then the variable X is ground” can be denoted by the boolean
constraint y = x.

The boolean variable y (resp. x) represents the instantiation state (ground
or possibly not ground) of the variable Y (resp. X).

7/24

List concatenation example

Let us consider the logic program P composed of the single predicate
append/3

append([], Xs, Xs).
append([X|Xs], Ys, [X|Zs]) :-
append(Xs, Ys, Zs).

Analyzing P by abstract interpretation provides the following arguments
groundness dependency relation in boolean form :

(X%ppend A\Yﬁppend) A Zappend

8/24

List concatenation example

(Xéppend f\y%ppend) A Zappend

This formula expresses the fact that if the call append(x, y, z) succeeds,
then, after its proof (via SLD-resolution or bottom-up computation) the
third argument z is ground if and only if the first argument x and the
second argument y are ground.

9/24

LPTP theoretical framework

In the mid-1990s, Robert F. Stark defines his Prolog programs verification
theory and offers LPTP (Logic Program Theorem Prover).

At the heart of LPTP, IND(P) is a first-order axioms set associated with
the logic program P including

o Clark’s completion and

@ Induction along its predicates definition.

10/ 24

LPTP theoretical framework

In LPTP format, groundness properties are expressed by calling the unary
predicate gr predefined in an axiomatic way.

This guarantee allows us to formulate groundness properties about P in the
specification language of LPTP, whose semantics is the first-order calculus
of classical logic.

LPTP allows to prove operational properties for a logic program. The
declarative operator Succeeds expresses the success of the predicate call
to which it is applied.

11/24

Automated proving by theorem provers

Prior to this work, translating IND(P) axioms in FOF format (First-Order
Form) allowed us to experiment with automated theorem provers for
Prolog program verification (LPAR-25, ICLP 2025).

The requirement for proving a property are the corresponding logic program
P and the invariant to be certified. We compile P into the FOF version of
IND(P). The groundness property to prove is compiled as a FOF
conjecture.

12 /24

Automated proving by theorem provers

In particular, we translate the invariant inferred by abstract interpretation
for our example :

fof (’lemma-append3’, conjecture,
! [Xx1,Xx2,Xx3] : (append_succeeds(Xx1,Xx2,Xx3)
=> (((((gr(Xx3) & gr(Xx2)) & gr(Xx1)) |
(™" (gr(Xx3)) & gr(Xx2)) & ~ (gr(Xx1)))) |
((7 (gr(Xx3)) & ~ (gr(Xx2))) & gr(Xx1))) |
(7 (gr(Xx3)) &~ (gr(Xx2))) & ~ (grXx1)))))
).

We prove the invariant automatically by applying both provers Vampire
and E Theorem Prover within a time limit.
As a result, we get either a positive answer or a "don't know" answer.

We also have a trace of the positive answer. This trace is not expressed as
a LPTP derivation but in a FOF format.

13 /24

Automated generation in natural deduction

append/3 predicate arguments groundness example

The axiom VIII schema from LPTP theoretical framework IND(P) allows
us to generate an induction axiom for

@ a user-defined directly recursive predicate and
@ a formula to prove.

The append3 _gr lemma is obtained by applying this axiom from the
relation inferred by abstract interpretation for append/3

Lemma [append3 _gr| Vxi, x2, x3 (S append(xi, x2, x3) —

(gr(xs) N gr(xe) A gr(xa)) V (—gr(xs) A gr(xe) A —gr(x1)) v
(mgr(xs) A —gr(x) Agr(x1)) V (—gr(xs) A —gr(x2) A —gr(x1))).

14 /24

Groundness formula derivation

The general form of the groundness property to prove is an implication
whose conclusion is in clausal disjunctive normal form. It is derived from
the groundness formula inferred by cTl:

Vx1,. ... xn SR(x1,...,xn) = \/ /\gr_ngr(xj)

where R is a n-ary user-defined predicate and gr_ngr(x;) denotes either
gr(xj) or —gr(x;).

15 /24

Groundness formula derivation

We generate an inductive proof inspired by a proof in Logic in Computer
Science authored by Huth and Ryan from

@ the groundness formula to show

e the append/3 predicate inductive definition
Vx,y,z(Sappend(x,y,z) > (x=[]Az=y)V
(3vo, xs, 25 (x = [wo|xs] A z = [wvo|zs] A S append(xs, y, zs))))

Elements of the least fixpoint of the immediate consequences operator Tp
are approximated by abstract compilation.

We will prove that these elements belong to the non-ground representation
of the least term model Mp of P with LPTP.

As Mp = Ifp(Tp), these proofs certify that these elements belong to the
least fixpoint of Tp for the s-semantics.

16 /24

Recursive procedure to prove the groundness formula

prove_with_premises(Phi, TruthValue, Premises)
switch Phi
case gr(Form): Deriv := assemble_derivation(...)
case - Form:
case Phil \/ Phi2:
case Phil & Phi2:
case Phil => Phi2: Deriv := prove_with_premises(
Phi2, TruthValue, concat(Phil, Premises)
)

return Deriv

Input:

@ Phi: Groundness formula

@ TruthValue: Truth value to show for Phi

@ Premises: Groundness hypothesis for Phi variables
Output:

@ Deriv: Proof term in LPTP format for Phi or —Phi

17 /24

Proof by induction construction example

Base case

@ Base case: Vxi, x2, x3 Sappend(xi, x2, x3) >
x1 =[] A 3xq with xa = x20 A x4 = x3
@ The law of excluded middle gives gr(xs) V —gr(xa)

Proof.
Induction;) : Vxi, x2, x3 (Sappend(x1, x2,x3) —
(8r(x3) A gr(x2) A gr(x1)) V (—gr(xs) A gr(x2) A —gr(x1)) v
(—gr(xs) A —gr(x2) Agr(x1)) V (—gr(xs) A —gr(x2) A —gr(x1)))-
Hypothesis, : none.
Case, : gr(xa). gr(xa) A gr(xa). gr(xa) A gr(xa) A gr(])-
(gr(xa) A gr(xa) Agr([l)) V —gr(xa) A gr(xa) A —gr([]).
gr(xa) A gr(xs) Agr(ll) V —gr(xa) A gr(xa) A —gr([l) v
—gr(xa) A —~gr(xa) A gr([]).
gr(xa) Agr(xs) Agr(ll) v —gr(xa) A gr(xa) A —gr([l) v
—gr(xa) A —gr(xa) Agr(ll) V —gr(xa) A —gr(xa) A —gr([)-
Case2 :—gr(xa). -
Hence,, in all cases : gr(xa) A gr(xs) A gr([]) v
—gr(xa) A gr(xa) A —gr([]) V —gr(xa) A —gr(xa) A gr(l]) v
—gr(xs) A —gr(xs) A —gr([])-
Conclusion, : gr(xs) A gr(xa) A gr([]) V —gr(xs) A gr(xs) A —gr([]) v
—gr(xs) A —gr(xa) A gr([l) V —gr(xa) A —gr(xs) A —gr([l). O

18 /24

Proof by induction construction example

Induction step

Let us prove the induction step from append/3 second clause,
Vxe, X7, xg (gr(x6) A gr(x7)) <> gr(xs)A\Sappend(xs, x7,xg) —
Ixs(gr([xs|xe]) A gr(xr)) <> gr([xs|xs])

We apply the same algorithm after enumerating the 16 groundness cases of
variables x5, xg, X7 et xg.

Proof.

Hypothesis, : gr(xs) A gr(x7) A gr(xe) V —gr(xs) A gr(xz) A —gr(xe) V

—gr(xs) A —gr(x7) A gr(xe) V —gr(xs) A —gr(xr) A —gr(xs) and

S append(xg, X7, X3).

Case, : gr(xs).

Case, : gr(xe)-
Case, : gr(x7).

Case, : gr(xs)| -
Hence,, in all cases :

(8r(xs) N gr(x7) A gr(xe)) V (—gr(xs) A gr(x7) A —gr(xs)) V

(—gr(xe) A —gr(x7) A gr(xe)) V (—gr(xs) A —~gr(xr) A —gr(xs)) —

(er([xslxe]) A er(xr) Agr([xs|xs])) V (—gr([xs|xs]) A gr(x7) A —gr([xs|xe])) V

(—gr(s|xs]) A —gr(x7) A gr(lxs|xe])) v

(—er([xslxs]) A —gr(x7) A —gr([xs|xe])). O

19 /24

Proof certification

We certify the derivations validity by checking with LPTP the proof

term automatically generated.

PN AN GN R

10
11
12
13
14
15
16
17
18
19
20
21
22

a2z

initialize.
needs_thm($(examples)/axiom_2_5/axiom_2_5).
needs_gr($(examples)/filex/append3).

:- lemma(append3_gr,

all [x1,x2,x3]:

(succeeds append(?x1,?x2,?x3) = gr(?x3) & gr(?x2) & gr(?x1) \/
~ gr(?x3) & gr(?x2) & ~ gr(?x1) \/ ~ gr(?x3) & ~ gr(?x2) & gr(?x1) \/
~ gr(?x3) & ~ gr(?x2) & ~ gr(?x1)),

eoo “iptp De @ x 9 @@

LPTP, Version 1.06, July 21, 1999.
Copyright (C) 1999 by Robert F. Staerk
6NU Prolog 1.5.0 (64 bits)

Compiled Jul 8 2021, 09:35:47 with clang
Copyright (C) 1999-2023 Daniel Diaz

Nocanwne

| ?- exec('/Users/Shared/logic-program-theorem-prover-swipl/examples/filex/appenz

< d3.pr').

81 LPTP-Message: append3_gr o.k.
of

10/ (20 ms) yes
1T

Uik #lptpr AL L9 <> (Inferior LPTP:run Heln +2)

20/24

Experimental results

@ Methodology applied to LPTP library and some additional programs?
e Complete proofs published on-line3

Inf. [Vamp./E| FOF |Deriv.|Cert.

Prog. Prop.|Vars (ms)| (ms) LOC | (ms) | (ms) LOC
member.pl 1 3 3 3 66 6 7 269
for.pl 2 4 |4 8 243 8 6 273
addmul.pl 2 6 4 18 1412 |9 16 911
ackermann.pl 1 3 |4 17 1972 (8 16 949
fib.pl 2 5 |5 19 1768 |10 14 |970
nat.pl 4 8 |6 166 2383 |11 16 |975
int.pl 6 11 (10 |55 6386 |16 19 1049
split.pl 1 3 9 10 974 14 28 1123
suffix.pl 4 10 |12 |17 554 18 22 1203
list.pl 5 12 |19 (2456 6760 |26 67 |2873
derivDLS.pl 1 3 |20 |12306 (4705 |263 |146 (3931
reverse.pl 4 10 |20 [493 3451 |43 93 3958
averagel.pl 3 77 22 752 17 116 (8846
permutation.pl 7 19 |22 |215 2864 |36 216 (9335
transitiveclosure.pl|6 18 |43 |105 10220 (541 |654 (14213
sort.pl 9 22 |72 |12755 867612|319 |12187(71067

2from a MacBook Pro M2 with macOS Sonoma 14.6.1.

3github.com/atp-Iptp/automated-certification-of-logic-program-groundness-analysis
21/24

Key strengths and limitations

Key strengths

@ All analysed programs invariants have been proved by the automated
theorem provers

@ All generated derivations have been automatically certified
Limitations

When applying automated theorem provers
@ Absence of proof reconstruction in LPTP syntax

@ No termination guarantee

When constructing derivation automatically

@ Exponential complexity in the number of variables of the properties to
be certified

22/24

Follow-ups

@ More efficient alternative construction of property derivations to be
certified for groundness analysis

@ Application of the methodology to other abstract domains

23/24

Thank you

thierry.marianne@univ-reunion.fr

24 /24

	Certification of Logic Programs Groundness Analysis
	Groundness analysis by abstract interpretation
	LPTP theoretical framework
	Automated proving by theorem provers
	Automated generation in natural deduction
	Experimental results
	Follow-ups

