
Automated Certification of Logic Program Groundness
Analysis

Thierry Marianne, Fred Mesnard, Étienne Payet

September 2025

1 / 24

Abstract interpretation and interactive theorem proving

At the extremes of the verification automation spectrum :
Abstract Interpretation and Interactive Thereom Proving
Proofs assistants (for instance Isabelle with Sledgehammer) can rely
on SMT solvers (like cvc5) to automate proof drafting without
abstact interpretation.
Run-time checking mechanism, random test case generator, and
unit-test framework have been combined to test static analyzers
We have considered groundness analysis to combine these two
techniques in the context of logic programming :

abstract interpretation generates invariants automatically
interactive theorem proving allows us to certify these invariants.

2 / 24

Certification of Logic Programs Groundness Analysis

We apply two distinct techniques to automate the formal certification of
invariants generated by abstract interpretation.

These techniques depend on
proving automatically groundnesss properties from the theoretical
framework of LPTP (Logic Program Theorem Prover 1) and
the automated construction of derivations certified by LPTP proof
checker.

1natural deduction proof assistant designed by Robert F. Stärk
3 / 24

Groundness analysis by abstract interpretation

We consider logic programming with SLD resolution as the operational
semantics.

We only consider positive logic programs and our reference semantics is the
s-semantics, a non-ground semantics of logic programs.

A term t is ground when it is variable-free.

For example, any constant is a ground term, in particular the constant []
denoting the empty list.

4 / 24

Groundness analysis by abstract interpretation

Abstract interpretation is a formal method invented by Patrick and Radhia
Cousot for designing program semantics approximations

used to collect information for data flow analysis for concrete
domains
resulting in a behavior abstraction of a program during its
execution
generating invariants for analyzed programs automatically.

It was extended to logic program analysis.

5 / 24

Groundness analysis by abstract interpretation

In the context of using cTI (constraint-based Termination Inference), an
abstract interpretation technique named abstract compilation provides
approximations of the analysed program.

These approximations are expressed as inter-arguments relations in the
form of boolean relations. We use them to formulate groundness
properties. Dependencies between variable groundness can be represented
by boolean constraints.

6 / 24

Groundness analysis by abstract interpretation

For instance, a relation such as “if the variable Y is instantiated to a
ground term, then the variable X is ground” can be denoted by the boolean
constraint y ⇒ x .

The boolean variable y (resp. x) represents the instantiation state (ground
or possibly not ground) of the variable Y (resp. X).

7 / 24

List concatenation example

Let us consider the logic program P composed of the single predicate
append/3

append([], Xs, Xs).
append([X|Xs], Ys, [X|Zs]) :-

append(Xs, Ys, Zs).

Analyzing P by abstract interpretation provides the following arguments
groundness dependency relation in boolean form :

(xappend ∧ yappend) ↔ zappend

8 / 24

List concatenation example

(xappend ∧ yappend) ↔ zappend

This formula expresses the fact that if the call append(x , y , z) succeeds,
then, after its proof (via SLD-resolution or bottom-up computation) the
third argument z is ground if and only if the first argument x and the
second argument y are ground.

9 / 24

LPTP theoretical framework

In the mid-1990s, Robert F. Stärk defines his Prolog programs verification
theory and offers LPTP (Logic Program Theorem Prover).

At the heart of LPTP, IND(P) is a first-order axioms set associated with
the logic program P including

Clark’s completion and
Induction along its predicates definition.

10 / 24

LPTP theoretical framework

In LPTP format, groundness properties are expressed by calling the unary
predicate gr predefined in an axiomatic way.

This guarantee allows us to formulate groundness properties about P in the
specification language of LPTP, whose semantics is the first-order calculus
of classical logic.

LPTP allows to prove operational properties for a logic program. The
declarative operator Succeeds expresses the success of the predicate call
to which it is applied.

11 / 24

Automated proving by theorem provers

Prior to this work, translating IND(P) axioms in FOF format (First-Order
Form) allowed us to experiment with automated theorem provers for
Prolog program verification (LPAR-25, ICLP 2025).

The requirement for proving a property are the corresponding logic program
P and the invariant to be certified. We compile P into the FOF version of
IND(P). The groundness property to prove is compiled as a FOF
conjecture.

12 / 24

Automated proving by theorem provers

In particular, we translate the invariant inferred by abstract interpretation
for our example :

fof(’lemma-append3’, conjecture,
! [Xx1,Xx2,Xx3] : (append_succeeds(Xx1,Xx2,Xx3)
=> (((((gr(Xx3) & gr(Xx2)) & gr(Xx1)) |
((~ (gr(Xx3)) & gr(Xx2)) & ~ (gr(Xx1)))) |
((~ (gr(Xx3)) & ~ (gr(Xx2))) & gr(Xx1))) |
((~ (gr(Xx3)) & ~ (gr(Xx2))) & ~ (gr(Xx1)))))

).

We prove the invariant automatically by applying both provers Vampire
and E Theorem Prover within a time limit.
As a result, we get either a positive answer or a "don’t know" answer.

We also have a trace of the positive answer. This trace is not expressed as
a LPTP derivation but in a FOF format.

13 / 24

Automated generation in natural deduction
append/3 predicate arguments groundness example

The axiom VIII schema from LPTP theoretical framework IND(P) allows
us to generate an induction axiom for

a user-defined directly recursive predicate and
a formula to prove.

The append3_gr lemma is obtained by applying this axiom from the
relation inferred by abstract interpretation for append/3

14 / 24

Groundness formula derivation

The general form of the groundness property to prove is an implication
whose conclusion is in clausal disjunctive normal form. It is derived from
the groundness formula inferred by cTI:

∀x1, . . . , xn SR(x1, . . . , xn) →
∨ ∧

gr_ngr(xj)

where R is a n-ary user-defined predicate and gr_ngr(xj) denotes either
gr(xj) or ¬gr(xj).

15 / 24

Groundness formula derivation

We generate an inductive proof inspired by a proof in Logic in Computer
Science authored by Huth and Ryan from

the groundness formula to show
the append/3 predicate inductive definition

∀x , y , z (S append(x , y , z) ↔ (x = [] ∧ z = y) ∨
(∃v0, xs, zs (x = [v0|xs] ∧ z = [v0|zs] ∧ S append(xs, y , zs))))

Elements of the least fixpoint of the immediate consequences operator TP

are approximated by abstract compilation.
We will prove that these elements belong to the non-ground representation
of the least term model MP of P with LPTP.
As MP = lfp(TP), these proofs certify that these elements belong to the
least fixpoint of TP for the s-semantics.

16 / 24

Recursive procedure to prove the groundness formula

prove_with_premises(Phi, TruthValue, Premises)
switch Phi

case gr(Form): Deriv := assemble_derivation(...)
case ~ Form: ...
case Phi1 \/ Phi2: ...
case Phi1 & Phi2: ...
case Phi1 => Phi2: Deriv := prove_with_premises(

Phi2, TruthValue, concat(Phi1, Premises)
)

return Deriv

Input:
Phi: Groundness formula
TruthValue: Truth value to show for Phi
Premises: Groundness hypothesis for Phi variables

Output:
Deriv: Proof term in LPTP format for Phi or ¬Phi

17 / 24

Proof by induction construction example
Base case

Base case: ∀x1, x2, x3 Sappend(x1, x2, x3) ↔
x1 = [] ∧ ∃x4 with x4 = x2 ∧ x4 = x3

The law of excluded middle gives gr(x4) ∨ ¬gr(x4)

18 / 24

Proof by induction construction example
Induction step

Let us prove the induction step from append/3 second clause,
∀x6, x7, x8 (gr(x6) ∧ gr(x7)) ↔ gr(x8)∧Sappend(x6, x7, x8) =⇒
∃x5(gr([x5|x6]) ∧ gr(x7)) ↔ gr([x5|x8])

We apply the same algorithm after enumerating the 16 groundness cases of
variables x5, x6, x7 et x8.

19 / 24

Proof certification

We certify the derivations validity by checking with LPTP the proof
term automatically generated.

20 / 24

Experimental results

Methodology applied to LPTP library and some additional programs2

Complete proofs published on-line3

2from a MacBook Pro M2 with macOS Sonoma 14.6.1.
3github.com/atp-lptp/automated-certification-of-logic-program-groundness-analysis

21 / 24

Key strengths and limitations

Key strengths

All analysed programs invariants have been proved by the automated
theorem provers
All generated derivations have been automatically certified

Limitations

When applying automated theorem provers
Absence of proof reconstruction in LPTP syntax
No termination guarantee

When constructing derivation automatically
Exponential complexity in the number of variables of the properties to
be certified

22 / 24

Follow-ups

More efficient alternative construction of property derivations to be
certified for groundness analysis
Application of the methodology to other abstract domains

23 / 24

Thank you

thierry.marianne@univ-reunion.fr

24 / 24

	Certification of Logic Programs Groundness Analysis
	Groundness analysis by abstract interpretation
	LPTP theoretical framework
	Automated proving by theorem provers
	Automated generation in natural deduction
	Experimental results
	Follow-ups

