
Automated Theorem Proving for Prolog Verification

Fred Mesnard, Thierry Marianne, and Étienne Payet

LIM, université de La Réunion, France
{frederic.mesnard,thierry.marianne,etienne.payet}@univ-reunion.fr

Abstract

LPTP (Logic Program Theorem Prover) is an interactive natural-deduction-based the-
orem prover for pure Prolog programs with negation as failure, unification with the occurs
check, and a restricted but extensible set of built-in predicates. With LPTP, one can
formally prove termination and partial correctness of such Prolog programs. LPTP was
designed in the mid 90’s by Robert F. Stärk. It is written in ISO-Prolog and comes with
an Emacs user-interface.

From a theoretical point of view, in his publications about LPTP, Stärk associates a
set of first-order axioms IND(P) to the considered Prolog program P . IND(P) contains
the Clark’s equality theory for P , definitions of success, failure and termination for each
user-defined logic procedure in P , axioms relating these three points of view, and an axiom
schema for proving inductive properties. LPTP is thus a dedicated proof editor where
these axioms are hard-wired.

We propose to explicit these axioms as first-order formulas (FOFs), and apply auto-
mated theorem provers to check the property of interest. Using FOF as an intermediary
language, we experiment the use of automated theorem provers for Prolog program veri-
fication. We evaluate the approach over a benchmark of about 400 properties of Prolog
programs from the library available with LPTP. Both the compiler which generates a
set of FOF files from a given input Prolog program together with its properties and the
benchmark are publicly available.

1 Introduction

In the mid 90’s, Robert F. Stärk defined a framework for Prolog verification [23, 25]. He con-
sidered a subset of ISO-Prolog [11]: pure Prolog programs with negation as failure, unification
with the occurs check, and allowed a restricted but extensible set of built-in predicates. He
presented a first-order formalisation with axiom schemas of the usual operational semantics
of Prolog. A safeness condition included in termination condition imposes groundness before
evaluation of negated goals. He showed soundness and completeness for termination, success,
and failure. The framework also allows partial correctness properties to be proved by induction
wrt. the clauses defining predicates, considered as inductive definitions. The logical theory
was hard-wired in an interactive dedicated first-order natural-deduction-based theorem prover
called LPTP (Logic Program Theorem Prover). Stärk implemented1 LPTP in ISO-Prolog,
together with an Emacs user-interface, an HTML and TEX manager, a detailed user-manual,
and a library of predicates for Peano numbers, integers, lists, sorting algorithms, etc. with
numerous proven properties.

Thirty years later, LPTP is still running on any ISO-Prolog processor, with its initial in-
terface. Today, formal verification of computer programs is an established discipline within
computer science. Nonetheless, program verification by interactive theorem proving is still a
slow process and requires non-trivial skills. On the other hand, during the last three decades,

1available at https://github.com/FredMesnard/lptp

https://github.com/FredMesnard/lptp

Automated Theorem Proving for Prolog Verification Mesnard, Marianne, and Payet

the increase in computing power and the advances in automated theorem proving have been
notable. For instance, the TPTP (Thousands of Problems for Theorem Provers) [26] is a library
of test problems for automated theorem proving. It provides online tools to check the syntax of
input problems and apply a bunch of user selected automated theorem provers. Among them, E
[22] and Vampire [14] are two powerful freely available automated theorem provers, performing
very well in many international competitions over the years. Interactive theorem prover im-
plementers starting with [20, 3] were able to take advantage of these progress by implementing
so-called hammers for their tools.

This evolution raises the following questions: can we also use the TPTP Esperanto to
formulate the logic theory Stärk associates to a logic program? Can we use off the shelf TPTP
provers and obtain automatic proofs in reasonable time? Can we get an acceptable success rate
with such an approach?

The main contribution of this paper is the following. Using FOF (First-Order Form, one of
the logic languages proposed by TPTP [27]) as an intermediary language, we describe the first
– to the best of our knowledge – experiment of the use of automated theorem provers, namely
E and Vampire, for Prolog program verification, including termination and partial correctness.
We evaluate the approach over about 400 properties of Prolog programs. Both the compiler
applying Stärk’s theory to a given input Prolog program and its properties to a set of FOF files
and the benchmark are publicly available2.

We organize the paper as follows. The next section presents a brief summary of the LPTP
system. The third section describes step by step how to compile a Prolog program, its associated
LPTP axioms and a property of interest into a FOF file. Section 4 explains how to compile
function and predicate definitions which may appear in a proof file. Then we present an
experimental evaluation, related work and we conclude.

2 Notation

FOF (First Order Form) is a well-known logic language from TPTP for expressing first-order
logic (FOL) axioms and conjectures. A formula is written fof(name,role,formula), where
name is the name of the formula, role is either axiom or conjecture and formula is informally
defined as:

FOL FOF FOL FOF
A ∧B A & B ¬p(x) ~ p(X)

A ∨B A | B ∃x.A ?[X] : A

A→ B A => B ∀x.A ![X] : A

Numerous examples will appear in the next sections.
Let P be a pure logic program where negative literals may appear in the body of clauses (also

called normal program in [17]). For sake of conciseness, we do not consider built-in predicates
(see [25] for a full treatment) other than the equality =/2. We start with L, the first-order
language associated to P . The goals of L are:

G,H ::= true |fail | s = t | A | \+ G | (G,H) | (G;H) | some x G

where s and t are two terms, x is a variable and A is an atomic goal. The goals of L have the
operational semantics specified by ISO-Prolog [11] assuming the occurs check.

2https://github.com/atp-lptp/automated-theorem-proving-for-prolog-verification

2

https://github.com/atp-lptp/automated-theorem-proving-for-prolog-verification

Automated Theorem Proving for Prolog Verification Mesnard, Marianne, and Payet

L̂ is the specification language of LPTP. For each user-defined predicate symbol R, L̂ does
not include R, but instead it contains three predicate symbols Rs, Rf , Rt of the same arity as
R, which respectively express success, failure and termination of R. L̂ also contains a unary
constraint for groundness gr, expressing that its argument is ground. The formulas of L̂ are:

φ, ψ ::= > | ⊥ | s = t | R(
#»
t) | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ∀xφ | ∃xφ

where
#»
t is a sequence of n terms and R denotes a n-ary predicate symbol of L̂. The semantics

of L̂ is the first-order predicate calculus of classical logic.
For any of the user-defined logic procedure R in a logic program P , DP

R(#»x) denotes its
Clark’s if-and-only-if completed definition [4, 17].

For defining the declarative semantics of logic programs, Stärk uses three syntactic operators
S, F and T which map goals of L into L̂-formulas. Intuitively, SG means G succeeds (any
breadth-first evaluation of G succeeds), FG means G fails (the ISO-Prolog evaluation stops
without any answer), and TG means G terminates (the ISO-Prolog evaluation produces a
finite number of answers then stops). Moreover, termination implies a safe use of negation.
The definition of the operators follows:

SR(
#»
t) := Rs(

#»
t) S true := > S fail := ⊥ S(s = t) := (s = t)

S\+G := FG S(G,H) := SG ∧ SH S(G;H) := SG ∨ SH S(some x G) := ∃xSG

FR(
#»
t) := Rf (

#»
t) F true := ⊥ F fail := > F(s = t) := ¬(s = t)

F\+G := SG F(G,H) := FG ∨ FH F(G;H) := FG ∧ FH F(some x G) := ∀xFG

TR(
#»
t) := Rt(

#»
t) T true := >

T fail := > T(s = t) := >
T\+G := TG ∧ gr(G) T(G,H) := TG ∧ (FG ∨TH)
T(G;H) := TG ∧TH T(some x G) := ∀xTG

Finally, we add the definition of gr, which is a constraint of the specification language and
is needed for defining T\+G:

gr(true) := > gr((G,H)) := gr(G) ∧ gr(H)
gr(fail) := > gr((G;H)) := gr(G) ∧ gr(H)
gr(s = t) := gr(s) ∧ gr(t) gr(some x G) := ∃x gr(G)
gr(R(t1, . . . , tn)) := gr(t1) ∧ . . . ∧ gr(tn) gr(\+G) := gr(G)

3 Compiling LPTP axioms to FOF

With LPTP, we prove properties of a logic program P wrt. its inductive extension IND(P)
which includes Clark’s completion [4] and induction along the definition of the predicates.
Stärk shows that the inductive extension is always consistent and proves various correctness
and completeness results wrt. the operational semantics of Prolog in [25]. The first-order theory
IND(P) (cf. [25], pp. 253–254) is defined by nine kinds of axioms which we describe now, along
with their translation in FOF. We omit the fixed point axioms for builtins.

3.1 First steps

Let us consider the following logic program ADD as our running example.

nat(0). add(0,Y,Y).

nat(s(X)) :- nat(X). add(s(X),Y,s(Z)) :- add(X,Y,Z).

3

Automated Theorem Proving for Prolog Verification Mesnard, Marianne, and Payet

We discuss the axioms proposed by Stärk and apply them to the ADD program.

The axioms of Clark’s equality theory

1. f(x1, . . . , xn) = f(y1, . . . , yn)→ xi = yi [if f is n-ary and 1 ≤ i ≤ n]

2. f(x1, . . . , xn) 6= g(y1, . . . , ym) [if n 6= m or f 6≡ g]

3. t 6= x [if x occurs in t and t 6≡ x]

The first two axioms specify some properties of the trees built from the function symbols
extracted from the program under consideration. The third axiom forbids infinite rational trees.
Note that it is an axiom schema, i.e., an infinite set of first order axioms. We will omit it and
it can be a source of imprecision, but we stay sound. Here is the FOF version:

fof(id1,axiom,! [Xx4] : ! [Xx5] : (s(Xx4) = s(Xx5) => Xx4 = Xx5)).

fof(id2,axiom,! [Xx3] : ~ (’0’ = s(Xx3))).

Axioms for gr/1

4. gr(c) [if c is a constant]

5. gr(x1) ∧ . . . ∧ gr(xm)↔ gr(f(x1, . . . , xm)) [f is m-ary]

Actually, LPTP deals with non-ground terms, as any ISO-Prolog processor does. LPTP offers
a predefined predicate gr/1 that we can consider as a constraint. This relation is useful for
instance for dealing with negation as failure as LPTP only allows negation by failure for ground
goals (see the definition T\+G). Back to our example, here is the FOF version:

fof(id4,axiom,gr(’0’)).

fof(id5,axiom,! [Xx6] : (gr(Xx6) <=> gr(s(Xx6)))).

The ADD program contains two user-defined predicates, add/3 and nat/1. LPTP considers
each user-defined predicate through three points of view: failure, success and termination. So
LPTP creates the following predicates: add fails/3, add succeeds/3, add terminates/3,
and similarly for nat/1. These three viewpoints are linked with the following axioms, where
Rs (resp. Rf and Rt) denotes R succeeds/3 (resp. R fails/3 and R terminates/3).

Uniqueness axioms and totality axioms

6. ¬(Rs(#»x) ∧Rf (#»x)) [if R is a user-defined predicate]

7. Rt(#»x)→ (Rs(#»x) ∨Rf (#»x)) [if R is a user-defined predicate]

Axiom 6 says that for any tuple of (possibly non-ground) terms, we cannot have at the
same time success and failure of R. Axiom 7 states that given termination, we have success or
failure. Altogether, it means that for any tuple of terms #»x , assuming termination, either R(#»x)
succeeds or (exclusively) R(#»x) fails. So for our example, we get:

fof(ida6,axiom,! [Xx7,Xx8,Xx9] :

~ ((add_succeeds(Xx7,Xx8,Xx9) & add_fails(Xx7,Xx8,Xx9)))).

fof(ida7,axiom,! [Xx7,Xx8,Xx9] :

4

Automated Theorem Proving for Prolog Verification Mesnard, Marianne, and Payet

(add_terminates(Xx7,Xx8,Xx9) =>

(add_succeeds(Xx7,Xx8,Xx9) | add_fails(Xx7,Xx8,Xx9)))).

fof(idn6,axiom,! [Xx10] :

~ ((nat_succeeds(Xx10) & nat_fails(Xx10)))).

fof(idn7,axiom,! [Xx10] :

(nat_terminates(Xx10) =>

(nat_succeeds(Xx10) | nat_fails(Xx10)))).

Fixed point axioms for user-defined predicates R

8. Rs(#»x)↔ SDP
R(#»x), Rf (#»x)↔ FDP

R(#»x), Rt(#»x)↔ TDP
R(#»x)

We recall that DP
R(#»x) denotes the definition of the completion [4] of the user-defined procedure

R(#»x) in the logic program P . In the previous section, we saw how to apply the operator S,
F, and T to formulas. So for instance, the first equivalence Rs(#»x)↔ SDP

R(#»x) defines Rs(#»x).
Back to our running example, we get:

fof(idns8,axiom,! [Xx1] : (nat_succeeds(Xx1) <=>

(? [Xx2] : (Xx1 = s(Xx2) & nat_succeeds(Xx2)) | Xx1 = ’0’))).

fof(idnf8,axiom,! [Xx1] : (nat_fails(Xx1) <=>

(! [Xx2] : (~ (Xx1 = s(Xx2)) |

nat_fails(Xx2)) & ~ (Xx1 = ’0’)))).

fof(idnt8,axiom,! [Xx1] : (nat_terminates(Xx1) <=>

(! [Xx2] : ((~ (Xx1 = s(Xx2)) | nat_terminates(Xx2)))))).

and similarly for add/3.
Finally, for any property of the form ∀ #»x [Rs(#»x) → φ(#»x)], where R(#»x) is a user-defined

procedure and φ(#»x) an L̂ -formula, we have an induction schema. The interactive prover
LPTP is able to dynamically generate an induction axiom on demand while the user interacts
with it. In our approach, we statically generate the induction axiom once from the conjecture
to be proved, if the conjecture can be easily rewritten as required. This is a potential source of
imprecision, but again we stay sound. Let us examine a simple case. It is exactly what happens
using LPTP, which slightly generalizes [25]. By directly recursive user-defined predicate in the
box below, we forbid mutual recursive definitions. Of course, LPTP is able to handle mutually
recursive properties, see [23] for some examples.

A (simplified) induction schema for a user-defined predicate R

Let R be a directly recursive user-defined predicate and let φ(#»x) be an L̂-formula such
that the length of #»x is equal to the arity of R.
Let sub(φ(#»x)/R) be the formula to be proven ∀ #»x (Rs(#»x)→ φ(#»x)).
Let closed(φ(#»x)/R) be the formula obtained from ∀ #»x (SDP

R(#»x)→ Rs(#»x)) by replacing

• Rs(#»x) by φ(#»x) on the right of →,

• all occurrences of R(
#»
t) appearing on the left of → by φ(

#»
t) ∧R(

#»
t).

Then the induction axiom is the following formula:

9. closed(φ(#»x)/R)→ sub(φ(#»x)/R)

5

Automated Theorem Proving for Prolog Verification Mesnard, Marianne, and Payet

Let us apply this axiom to the following property, informally stated as: for any term x, if
nat(x) then add(x,0,x). Expressed in LPTP, it gives: for any term x, if nat succeeds(x)
then add succeeds(x,0,x), which is exactly the formula sub(φ(#»x)/R) of axiom 9. So R ≡ nat,
Rs ≡ nat succeeds and φ(#»x) ≡ add succeeds(x, 0, x).

For the left-hand side of axiom 9, we start from

∀x(SDADD
nat (x)→ nat succeeds(x))

We have DADD
nat (x) ≡ x = 0 ∨ ∃y(x = s(y) ∧ nat(y)). We replace nat(y) by nat(y) ∧

add succeeds(y, 0, y). We replace nat succeeds(x) by add succeeds(x, 0, x). We get: ∀x (S
[x = 0 ∨ ∃y(x = s(y) ∧ nat(y)∧ add succeeds(y, 0, y))] → add succeeds(x, 0, x)). We ap-
ply S and obtain: ∀x([x = 0 ∨ ∃y(x = s(y) ∧ nat succeeds(y) ∧ add succeeds(y, 0, y))] →
add succeeds(x, 0, x)).

Summarizing, in FOF, associated to the property to be proved:

fof(lemma,conjecture,

! [Xx] : (nat_succeeds(Xx) => add_succeeds(Xx,’0’,Xx))).

we obtain the following induction axiom:

fof(induction,axiom,(

! [Xx] :

((? [Xx2] : (Xx = s(Xx2) & (nat_succeeds(Xx2)

& add_succeeds(Xx2,’0’,Xx2)))

| Xx = ’0’) => add_succeeds(Xx,’0’,Xx))

=>

! [Xx] : (nat_succeeds(Xx) => add_succeeds(Xx,’0’,Xx)))).

We can gather all the 15 axioms, including the axioms defining add success/3, add fails/3,
and add terminates/3 and the conjecture plus its induction axiom in a file, say test.fof and
submit it3 to the E prover or to Vampire. Both systems will find a refutation in a fraction of a
second4 on a standard laptop.

It allows us to conclude for any term x, if nat(x) then add(x,0,x) is true. Operationally, for
any natural number n, in the Prolog search tree corresponding to the goal add(sn(0), 0, sn(0)),
the empty clause appears. Assuming termination which will be shown later, it means that the
user will get (at least) one positive answer for the query :- add(sn(0), 0, sn(0)). when executed
with any ISO-Prolog system.

Here’s the manual proof of the same property in its LPTP version (a Prolog file), followed
by its TEX version produced by LPTP. Using the interactive LPTP Emacs mode, we began
this proof by invoking the ind tactic, asking for an inductive proof. Both the base case and the
inductive case were automatically generated and completed by LPTP.

:- lemma(add:x_0_x, all [x]: succeeds nat(?x) => succeeds add(?x,0,?x),

induction([all x: succeeds nat(?x) => succeeds add(?x,0,?x)],

[step([],[],[],succeeds add(0,0,0)),

step([x], [succeeds add(?x,0,?x), succeeds nat(?x)], [],

succeeds add(s(?x),0,s(?x)))])).

3E.g., in the terminal eprover --auto test.fof and vampire test.fof
40.05s for Vampire, 0.017s for E on a MacBook Air, Apple M2, 16Go, macOS Sonoma.

6

Automated Theorem Proving for Prolog Verification Mesnard, Marianne, and Payet

Lemma [add:x 0 x] ∀x (S nat(x)→ S add(x, 0, x)).

Proof.
Induction

0
: ∀x (S nat(x)→ S add(x, 0, x)).

Hypothesis
1
: none.

Conclusion
1
: S add(0, 0, 0).

Hypothesis
1
: S add(x, 0, x) and S nat(x).

Conclusion
1
: S add(s(x), 0, s(x)). tu

3.2 A second property

Now let us consider the following property: for any x, y and z such that nat(x), nat(y) and
add(s(x), y, z), we have add(x, s(y), z). Let us first assert the previous property as an axiom,
which can now be freely used by the automated prover, then we have our new conjecture:

fof(’lemma-(add:x_0_x)’,axiom,

! [Xx] : (nat_succeeds(Xx) => add_succeeds(Xx,’0’,Xx))).

fof(’lemma-(add:succ)’,conjecture,

! [Xx,Xy,Xz] : (((nat_succeeds(Xx) & nat_succeeds(Xy))

& add_succeeds(s(Xx),Xy,Xz))

=> add_succeeds(Xx,s(Xy),Xz))).

In order to generate an induction axiom for this property, we first rewrite it in the form
∀ #»x [Rs(#»x) → φ(#»x)] and we apply the simplified induction schema for user-defined predicate.
It gives:

fof(induction,axiom,(

! [Xx] :

((? [Xy25] :

(Xx = s(Xy25) & (nat_succeeds(Xy25)

& ! [Xy,Xz] : ((add_succeeds(s(Xy25),Xy,Xz)

& nat_succeeds(Xy))

=> add_succeeds(Xy25,s(Xy),Xz))))

| Xx = ’0’) =>

! [Xy,Xz] : ((add_succeeds(s(Xx),Xy,Xz) & nat_succeeds(Xy))

=> add_succeeds(Xx,s(Xy),Xz)))

=> ! [Xx] : (nat_succeeds(Xx)

=> ! [Xy,Xz] : ((add_succeeds(s(Xx),Xy,Xz) & nat_succeeds(Xy))

=> add_succeeds(Xx,s(Xy),Xz))))).

Again, we can gather all axioms, the conjecture and its induction axiom in a file and submit
it to Vampire, which will find a refutation in about one minute.

3.3 Commutativity of Peano addition

We are now equipped to consider commutativity of Peano addition: for any x, y, z, if add(x, y, z)
then add(y, x, z). Of course, stated this way, the property is false. We need to enforce that x
and y are Peano numbers. So first we add our two previous properties as axioms. Here is our
new conjecture, associated to its induction axiom:

7

Automated Theorem Proving for Prolog Verification Mesnard, Marianne, and Payet

fof(’theorem-(add:commutative)’,conjecture,

! [Xx,Xy,Xz] : (((nat_succeeds(Xx) & nat_succeeds(Xy))

& add_succeeds(Xx,Xy,Xz))

=> add_succeeds(Xy,Xx,Xz))).

fof(induction,axiom,

(! [Xx] :

((? [Xy26] : (Xx = s(Xy26) & (nat_succeeds(Xy26)

& ! [Xy,Xz] : ((add_succeeds(Xy26,Xy,Xz) & nat_succeeds(Xy))

=> add_succeeds(Xy,Xy26,Xz))))

| Xx = ’0’) =>

! [Xy,Xz] : ((add_succeeds(Xx,Xy,Xz) & nat_succeeds(Xy))

=> add_succeeds(Xy,Xx,Xz)))

=>

! [Xx] : (nat_succeeds(Xx) =>

! [Xy,Xz] : ((add_succeeds(Xx,Xy,Xz) & nat_succeeds(Xy))

=> add_succeeds(Xy,Xx,Xz))))).

The conjecture is proved in a fraction of a second by Vampire.

3.4 Some termination proofs

Finally, let us prove some termination properties about add/3. It is immediate to see that
the Prolog proof of add(x, y, z) terminates if nat(x) or nat(z). We prove this by stating two
lemmas which we will gather in a theorem. Here are the LPTP properties and their proofs (we
omit the second one).

Lemma [add:term:1] ∀x, y, z (S nat(x)→ T add(x, y, z)). Proof.

Induction
0
: ∀x (S nat(x)→ ∀y, z T add(x, y, z)).

Hypothesis
1
: none.

Conclusion
1
: ∀y, z T add(0, y, z).

Hypothesis
1
: ∀y, z T add(x, y, z) and S nat(x).

Conclusion
1
: ∀y, z T add(s(x), y, z). tu

Lemma [add:term:3] ∀x, y, z (S nat(z)→ T add(x, y, z)). Proof. Similar. tu

Theorem [add:term] ∀x, y, z (S nat(x) ∨ S nat(z)→ T add(x, y, z)). Proof.

Assumption
0
: S nat(x) ∨ S nat(z).

Case
1
: S nat(x). T add(x, y, z) by Lemma 1 [add:term:1].

Case
1
: S nat(z). T add(x, y, z) by Lemma 2 [add:term:3].

Hence
1
, in all cases: T add(x, y, z).

Thus
0
: S nat(x) ∨ S nat(z)→ T add(x, y, z). tu

Each of the three statements is proved in a fraction of a second by Vampire. Our compiler
generates an instance of the induction axiom for each lemma and not for the theorem. For
instance, here is the first conjecture and its induction axiom:

8

Automated Theorem Proving for Prolog Verification Mesnard, Marianne, and Payet

fof(’lemma-(add:term:1)’,conjecture,

! [Xx,Xy,Xz] : (nat_succeeds(Xx) => add_terminates(Xx,Xy,Xz))).

fof(induction,axiom,(

! [Xx] :

((? [Xx2] : (Xx = s(Xx2) & (nat_succeeds(Xx2)

& ! [Xy,Xz] : add_terminates(Xx2,Xy,Xz)))

| Xx = ’0’)

=> ! [Xy,Xz] : add_terminates(Xx,Xy,Xz))

=>

! [Xx] : (nat_succeeds(Xx) => ! [Xy,Xz] : add_terminates(Xx,Xy,Xz)))).

4 Dealing with definitions in LPTP proof files

The specification language L̂ of LPTP can be extended by new function and predicate symbols,
which can be handy while formalizing properties. Although Stärk often uses this feature in his
proofs (see for instance the LPTP library nat), one may safely skip this section on first reading.
Function definitions have the form

:- definition_fun(f, n,
all [x1, . . . , xn, y]: δ(x1, . . . , xn) => (f(x1, . . . , xn) = y <=> γ(x1, . . . , xn, y)),
existence by fact(reference1),

uniqueness by fact(reference2)

).

where f is the defined symbol, n is its number of arguments and δ (resp. γ) is the domain (resp.
graph) of the function. Moreover, reference1 refers to a fact (i.e., LPTP lemma, corollary or
theorem) from which the formula

all [x1, . . . , xn]: δ(x1, . . . , xn) => (ex y: γ(x1, . . . , xn, y)) (1)

is immediately derivable and reference2 to a fact from which the formula

all [x1, . . . , xn, y, z]: (δ(x1, . . . , xn) & γ(x1, . . . , xn, y) & γ(x1, . . . , xn, z)) => y = z (2)

is immediately derivable. On the other hand, predicate definitions have simply the form

:- definition_pred(R, n, all [x1, . . . , xn]: R(x1, . . . , xn) <=> ϕ).

where the free variables of ϕ are contained in x1, . . . , xn.

4.1 An example of a function definition

Here is a manual LPTP proof in its TEX version of a fact that exactly matches formula (1),
where δ ≡ nat succeeds and γ ≡ add succeeds:

9

Automated Theorem Proving for Prolog Verification Mesnard, Marianne, and Payet

Lemma [add:existence] ∀x, y (S nat(x)→ ∃z S add(x, y, z)).

Proof.
Induction

0
: ∀x (S nat(x)→ ∀y ∃z S add(x, y, z)).

Hypothesis
1
: none. S add(0, y, y). ∃z S add(0, y, z).

Conclusion
1
: ∀y ∃z S add(0, y, z).

Hypothesis
1
: ∀y ∃z S add(x, y, z) and S nat(x). ∃z S add(x, y, z).

Let
2
z with S add(x, y, z). S add(s(x), y, s(z)).

Thus
2
: ∃z S add(s(x), y, z). ∃z S add(s(x), y, z).

Conclusion
1
: ∀y ∃z S add(s(x), y, z).

Assumption
0
: S nat(x). ∀y ∃z S add(x, y, z). ∃z S add(x, y, z).

Thus
0
: S nat(x)→ ∃z S add(x, y, z). tu

The corresponding FOF conjecture and its associated induction axiom are:

fof(’lemma-(add:existence)’,conjecture,

! [Xx,Xy] : (nat_succeeds(Xx) => ? [Xz] : add_succeeds(Xx,Xy,Xz))).

fof(induction,axiom,

(! [Xx] :

((? [Xx2] : (Xx = s(Xx2) & (nat_succeeds(Xx2)

& ! [Xy] : ? [Xz] : add_succeeds(Xx2,Xy,Xz))) | Xx = ’0’)

=> ! [Xy] : ? [Xz] : add_succeeds(Xx,Xy,Xz))

=>

! [Xx] : (nat_succeeds(Xx) =>

! [Xy] : ? [Xz] : add_succeeds(Xx,Xy,Xz)))).

The conjecture is proved in less than a second by E and Vampire.
Here is also an LPTP proof of a fact of the form

all [x1, . . . , xn, y, z]: (γ(x1, . . . , xn, y) & γ(x1, . . . , xn, z)) => y = z

(for the same γ as above) from which formula (2) is immediately derivable:

Lemma [add:uniqueness] ∀x, y, z1, z2 (S add(x, y, z1) ∧ S add(x, y, z2)→ z1 = z2). Proof.

Induction
0
: ∀x, y, z1 (S add(x, y, z1)→ ∀z2 (S add(x, y, z2)→ z1 = z2)).

Hypothesis
1
: none.

Assumption
2
: S add(0, y, z2). DS add(0, y, z2) by completion. y = z2.

Thus
2
: S add(0, y, z2)→ y = z2.

Conclusion
1
: ∀z2 (S add(0, y, z2)→ y = z2).

Hypothesis
1
: ∀z2 (S add(x, y, z2)→ z1 = z2) and S add(x, y, z1).

Assumption
2
: S add(s(x), y, z2). DS add(s(x), y, z2) by completion.

∃z3 (z2 = s(z3) ∧ S add(x, y, z3)).
Let

3
z3 with z2 = s(z3) ∧ S add(x, y, z3). S add(x, y, z3)→ z1 = z3. z1 = z3.

Thus
3
: s(z1) = z2.

Thus
2
: S add(s(x), y, z2)→ s(z1) = z2.

Conclusion
1
: ∀z2 (S add(s(x), y, z2)→ s(z1) = z2).

10

Automated Theorem Proving for Prolog Verification Mesnard, Marianne, and Payet

Assumption
0
: S add(x, y, z1) ∧ S add(x, y, z2). ∀z2 (S add(x, y, z2) → z1 = z2).

S add(x, y, z2)→ z1 = z2. z1 = z2.
Thus

0
: S add(x, y, z1) ∧ S add(x, y, z2)→ z1 = z2. tu

The corresponding FOF conjecture and its associated induction axiom are:

fof(’lemma-(add:uniqueness)’,conjecture,

! [Xx,Xy,Xz1,Xz2] : ((add_succeeds(Xx,Xy,Xz1) & add_succeeds(Xx,Xy,Xz2))

=> Xz1 = Xz2)).

fof(induction,axiom,

(! [Xx,Xy,Xz1] :

((? [Xx4] : ? [Xx5] :

(Xx = s(Xx4) & (Xz1 = s(Xx5)

& (add_succeeds(Xx4,Xy,Xx5)

& ! [Xz2] : (add_succeeds(Xx4,Xy,Xz2) => Xx5 = Xz2))))

| (Xx = ’0’ & Xz1 = Xy))

=> ! [Xz2] : (add_succeeds(Xx,Xy,Xz2) => Xz1 = Xz2))

=>

! [Xx,Xy,Xz1] : (add_succeeds(Xx,Xy,Xz1) =>

! [Xz2] : (add_succeeds(Xx,Xy,Xz2) => Xz1 = Xz2)))).

Neither Vampire neither E is able to prove the conjecture in reasonnable time. Nonetheless, we
have the LPTP proof, so we can define the function @+ that takes two arguments:

:- definition_fun(@+, 2,

all [x,y,z]: succeeds nat(?x) => (?x @+ ?y = ?z <=> succeeds add(?x,?y,?z)),

existence by lemma(add:existence),

uniqueness by lemma(add:uniqueness)

).

The TEX version of this definition produced by LPTP is:

Definition [@+/2] ∀x, y, z (S nat(x)→ (x+ y = z ↔ S add(x, y, z))).

The domain of @+ is δ ≡ nat succeeds and its graph is γ ≡ add succeeds. We note that
for all terms y, add(0,y,y) is true (see the definition of add) so, by the uniqueness property,
we have 0 @+ y = y. Hence the following manual LPTP proof:

Corollary [add:zero] ∀y 0 + y = y. Proof. 0 + y = y by Definition @+/2 [@+/2]. tu

In the FOF version, we handle the definition of @+ as an axiom:

fof(’@+’,axiom,

! [Xx,Xy,Xz] : (nat_succeeds(Xx) =>

(’@+’(Xx,Xy) = Xz <=> add_succeeds(Xx,Xy,Xz)))).

We also add the existence property and the uniqueness property as axioms. Our conjecture is:

fof(’corollary-(add:zero)’, conjecture, ! [Xy] : ’@+’(’0’,Xy) = Xy).

We gather all the axioms and the conjecture in a file that we submit to E and Vampire. Both
systems find a refutation in a fraction of a second.

11

Automated Theorem Proving for Prolog Verification Mesnard, Marianne, and Payet

4.2 An example of a predicate definition

We define the predicate even using the function @+ introduced above:

:- definition_pred(even, 1, all [x]: even(?x) <=> (ex y: ?y @+ ?y = ?x)).

The TEX version produced by LPTP is:

Definition [even/1] ∀x (even(x)↔ ∃y y + y = x).

We can show that even is not empty. The manual LPTP proof is:

Lemma [even:non empty] ∃x even(x). Proof. S add(0, 0, 0).

0 + 0 = 0 by Definition @+/2 [@+/2]. even(0) by Definition even/1 [even/1]. tu

In the FOF version, we handle the predicate definition as an axiom and we get:

fof(even,axiom,

! [Xx] : (even_succeeds(Xx) <=> ? [Xy] : (’@+’(Xy,Xy) = Xx))).

fof(’lemma-(even:non_empty)’, conjecture, ? [Xx] : even_succeeds(Xx)).

We gather all the axioms (including those for @+) and the conjecture in a file that we submit
to E and Vampire. Both systems find a refutation in a fraction of a second.

5 Experimental Results

We applied the schema explained in the previous sections to various libraries available with
LPTP which we summarize now. The library nat defines some basic Peano relations with the
expected properties. The library gcd defines a version of the greatest common divisor relation,
with its full correctness proof. The library list proposes some elementary relations about lists
with their properties. The library suffix defines two versions of the sublist relation, one as the
prefix of a suffix, the other as the suffix of a prefix, and shows that the two versions are equivalent
wrt. termination, success and failure. Similarly, the library reverse defines the two classical
versions of the reverse relation, one with the append relation, the other with an accumulator
and shows their equivalence. The library permutation defines the permutation relation with
some useful properties for the correctness proofs of the sorting algorithms defined in the libraries
sort and mergesort. The library taut defines a tautology checker for propositional formulas,
together with its correctness proof (see [24] for a detailed description).

How do we process such files? Given a program from the LPTP library, we first enumerate
the requirements for trying to prove the properties listed in its associated LPTP proof file.
Requirements are the logic program P and the associated LPTP proof file. If P depends on
other logic programs, we must include them. If the associated LPTP proof file uses other proof
files, we must include them as well. We assume there is no circularity such as assuming a lemma
before trying to prove it. We use these requirements to build a target logic program P ′ and
a target LPTP proof file. Then P ′ is compiled into the FOF version of IND(P ′). Each fact
(i.e., lemma, corollary or theorem) is compiled as a FOF conjecture (possibly with its induction
axiom) and stored in a single file. Such file also contains the logic theory IND(P ′) compiled as
FOF axioms. Previously processed FOF conjectures are converted as FOF axioms as well. As

12

Automated Theorem Proving for Prolog Verification Mesnard, Marianne, and Payet

a result, we produce as many FOF files as there are facts in the initial LPTP proof file. At last,
both the E Theorem Prover and Vampire are applied to each FOF file with predefined time
limits.

We gather the results in Table 1. The first column gives the library names. The second
column gives the number of (lemmas/corollaries/theorems) of the associated proof file. The
remaining nine columns can be divided in three groups. On a MacBook Air, Apple M2, 16Go,
macOS Sonoma, the first group gives the success rate for a 1 second timeout for the E prover
(column E-1s), Vampire (column V-1s) and for the combination of the two provers (column
EV-1s). The second group (resp. third group) gives the success rate for a timeout of 10 seconds
(resp. 60 seconds).

lib # E-1s V-1s EV-1s E-10s V-10s EV-10s E-60s V-60s EV-60s
nat 91 54% 72% 78% 58% 77% 80% 61% 81% 85%
gcd 11 45% 45% 45% 45% 45% 45% 45% 45% 45%
list 84 56% 73% 83% 67% 87% 90% 68% 89% 92%
suffix 31 74% 81% 93% 81% 94% 97% 81% 97% 100%
reverse 25 52% 64% 64% 64% 80% 84% 68% 84% 88%
permut. 42 45% 50% 55% 52% 59% 64% 52% 64% 67%
sort 42 33% 33% 40% 43% 57% 57% 48% 59% 62%
merges. 24 50% 71% 71% 62% 79% 79% 67% 79% 79%
taut 43 0% 67% 67% 65% 70% 70% 65% 74% 74%

Table 1: Success rate

6 Related Work

There is quite a few Prolog verification frameworks, see e.g. [6, 9, 2, 21] and more recently
[7]. Most of them aim at paper and pencil proofs. Although they may offer interesting and
elegant methods, the validity of the proofs relies on the usual mathematical writing in natural
language, and proofs are not automatically checked. In our opinion, writing and verifying such
hand-written proofs can be a time consuming process compared to a push-button approach as
the one we present here. For Answer Set Programming (a declarative specification language
with a Prolog syntax, oriented towards knowledge representation and search problems), [8]
describes an approach toward verification in which Vampire checks the equivalence of Answer
Set programs.

Some programming languages include automated verification tools by design. For exam-
ple, Dafny [15] makes heavy use of SMT solving and Why3 [10] allows to export verification
conditions to many automatic and interactive theorem provers.

An earlier account of the integration of automated and interactive theorem proving is de-
scribed in [1]. As already announced in the introduction, most interactive theorem provers now
include the possibility to run some automated theorem provers. Starting with Isabelle[18, 20,
3, 19], hammers can be found in e.g., ACL2 [12], Coq [5] and Lean [16].

7 Conclusion

Let us recall the questions of the introduction and propose our answers after this experiment:

13

Automated Theorem Proving for Prolog Verification Mesnard, Marianne, and Payet

• Can we also use the TPTP Esperanto to formulate the logic theory Stärk associates to
a logic program? Yes. One axiom schema was not implemented: Axiom 3 which forbids
rational terms. Another one was partially implemented: Axiom 9 for induction. Actually
an inductive argument inside an inductive proof is not possible with our approach. We
loose precision but in both cases we stay sound.

• Can we use off the shelf TPTP provers and obtain automatic proofs in reasonable time?
Yes. We use Vampire and the E prover with their most basic options, essentially a
timeout. Although Vampire seems to find refutations faster, the E prover can regularly
find proofs while Vampire cannot conclude within the time limit. Hence the two provers
are complementary. For the moment, we did not try advanced features offered by the
provers like the one proposed in [13].

• Can we get an acceptable success rate with such an approach? Yes. With the E prover
and Vampire running in parallel, the average success rate we get from our benchmark is
about 77% for a one minute timeout on a standard laptop, which we find quite acceptable.

Compared to the efforts one spends while manually, laboriously elaborating certain proofs,
such a tool is clearly a time-saver. We did not expect such a good success rate for this first
experiment. We think there are various reasons that can explain it. Clearly, the computing
power of our current laptops is huge and automated theorem provers have been largely improved.
Stärk’s art of proving, by slicing the proofs of the LPTP library properties into manageable
lemmas, may also have an impact.

Finally, there is room for improvement of the presented work, which can be considered as a
first approach towards a hammer for LPTP according to [3]. In particular, the first step – the
premise selector, which could select subparts of the LPTP library potentially useful for a proof
– and the third step – the proof reconstruction module, which could rewrite the proof found by
the automatic prover in the LPTP proof format – are yet to be investigated.

Acknowledgements. We thank Manuel Hermenegildo, Daniel Jurjo, Pedro López-Garcia,
and Jose Morales for many discussions about the LPTP system.

References

[1] W. Ahrendt, B. Beckert, R. Hähnle, W. Menzel, W. Reif, G. Schellhorn, and P. Schmitt. Integrating
Automated and Interactive Theorem Proving. Automated Deduction — A Basis for Applications:
Volume II: Systems and Implementation Techniques, pages 97–116. Springer, 1998.

[2] K. R. Apt and E. Marchiori. Reasoning about Prolog programs: from modes through types to
assertions. Formal Aspects of Computing, 6(6):743–765, 1994.

[3] J. C. Blanchette, C. Kaliszyk, L. C. Paulson, and J. Urban. Hammering towards QED. J. Formaliz.
Reason., 9(1):101–148, 2016.

[4] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Databases, pages
293–322. Plenum Press, New York, 1978.

[5] L. Czajka, B. Ekici, and C. Kaliszyk. Concrete semantics with Coq and CoqHammer. In F. Rabe,
W. M. Farmer, G. O. Passmore, and A. Youssef, editors, CICM, volume 11006 of LNCS, pages
53–59. Springer, 2018.

[6] P. Deransart. Proof methods of declarative properties of definite programs. Theoretical Computer
Science, pages 99–166, 1993.

[7] W. Drabent. Correctness and completeness of logic programs. ACM Trans. Comput. Log., 17(3):18,
2016.

14

Automated Theorem Proving for Prolog Verification Mesnard, Marianne, and Payet

[8] J. Fandinno, V. Lifschitz, P. Lühne, and T. Schaub. Verifying Tight Logic Programs with Anthem
and Vampire. Theory Pract. Log. Program., 20(5):735–750, 2020.

[9] G. Ferrand and P. Deransart. Proof method of partial correctness and weak completeness for
normal logic programs. J. Log. Program., 17(2/3&4):265–278, 1993.

[10] J.-C. Filliâtre and A. Paskevich. Why3 - where programs meet provers. In M. Felleisen and
P. Gardner, editors, ESOP, volume 7792 of LNCS, pages 125–128. Springer, 2013.

[11] ISO/IEC 13211-1. Information Technology – Programming Languages – Prolog – Part 1: General
Core. 1995.

[12] S. J. C. Joosten, C. Kaliszyk, and J. Urban. Initial experiments with TPTP-style automated the-
orem provers on ACL2 problems. In F. Verbeek and J. Schmaltz, editors, International Workshop
on ACL2, volume 152 of EPTCS, pages 77–85, 2014.

[13] L. Kovács, S. Robillard, and A. Voronkov. Coming to terms with quantified reasoning. In
G. Castagna and A. D. Gordon, editors, POPL 2017, pages 260–270. ACM, 2017.

[14] L. Kovács and A. Voronkov. First-order Theorem Proving and Vampire. In N. Sharygina and
H. Veith, editors, CAV 2013, volume 8044 of LNCS, pages 1–35. Springer, 2013.

[15] K. R. M. Leino. Developing Verified Programs with Dafny. In R. Joshi, P. Müller, and A. Podelski,
editors, VSTTE, volume 7152 of LNCS, page 82. Springer, 2012.

[16] P. Lippe. Lean Hammer. https://github.com/phlippe/Lean_hammer, 2019. Accessed: 2024-01.

[17] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[18] J. Meng and L. C. Paulson. Experiments on supporting interactive proof using resolution. In
D. Basin and M. Rusinowitch, editors, IJCAR, volume 3097 of LNCS, pages 372–384. Springer,
2004.

[19] L. C. Paulson. Sledgehammer: some history, some tips. https://lawrencecpaulson.github.io/
2022/04/13/Sledgehammer.html, 2022. Accessed: 2024-02-01.

[20] L. C. Paulson and J. C. Blanchette. Three Years of Experience with Sledgehammer, a Prac-
tical Link Between Automatic and Interactive Theorem Provers. In G. Sutcliffe, S. Schulz, and
E. Ternovska, editors, IWIL, volume 2 of EPiC Series in Computing, pages 1–11. EasyChair, 2010.

[21] D. Pedreschi and S. Ruggieri. Verification of Logic Programs. J. Log. Program., 39(1-3):125–176,
1999.

[22] S. Schulz, S. Cruanes, and P. Vukmirović. Faster, higher, stronger: E 2.3. In P. Fontaine, editor,
Proc. of the 27th CADE, Natal, Brasil, number 11716 in LNAI, pages 495–507. Springer, 2019.

[23] R. F. Stärk. First-order theories for pure Prolog programs with negation. Arch. Math. Log.,
34(2):113–144, 1995.

[24] R. F. Stärk. Total correctness of logic programs: A formal approach. In R. Dyckhoff, H. Herre,
and P. Schroeder-Heister, editors, ELP’96, volume 1050 of LNCS, pages 237–254. Springer, 1996.

[25] R. F. Stärk. The theoretical foundations of LPTP (a logic program theorem prover). Journal of
Logic Programming, 36(3):241–269, 1998.

[26] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. From CNF to TH0,
TPTP v6.4.0. Journal of Automated Reasoning, 59(4):483–502, 2017.

[27] G. Sutcliffe. The Logic Languages of the TPTP World. Logic Journal of the IGPL, 2022.

15

https://github.com/phlippe/Lean_hammer
https://lawrencecpaulson.github.io/2022/04/13/Sledgehammer.html
https://lawrencecpaulson.github.io/2022/04/13/Sledgehammer.html

	Introduction
	Notation
	Compiling LPTP axioms to FOF
	First steps
	A second property
	Commutativity of Peano addition
	Some termination proofs

	Dealing with definitions in LPTP proof files
	An example of a function definition
	An example of a predicate definition

	Experimental Results
	Related Work
	Conclusion

