
Automated Theorem Proving
for

Prolog Verification

Fred Mesnard Thierry Marianne Étienne Payet

LIM, université de La Réunion

May 2024

1 / 14

Prolog verification

▶ Termination – which tool?
E.g., ours for Logic Programming (LP)
NTI+cTI ranked 1st at TermComp 2022, 2023

▶ Partial correctness – which tool?
▶ A few theoretical frameworks
▶ LPTP: Logic Program Theorem Prover

Robert Stärk, mid 90’s

2 / 14

Main LPTP paper

R. F. Stärk
The theoretical foundations of LPTP (a logic program theorem
prover)
Journal of Logic Programming (JLP), 36(3):241–269, 1998

3 / 14

LPTP: an interactive theorem prover (ITP)

▶ An Emacs user-interface

▶ A proof checker written in ISO-Prolog

▶ A proof manager based on TEX and HTML

Runs out of the box 30 years later!

4 / 14

The languages of LPTP – the object language

Pure ISO-Prolog with negation and the occurs check

▶ Let P be a pure logic program with negation and L the
first-order language associated to P

▶ The goals of L are:

G ,H ::= true |fail | s = t | A | \+ G | (G ,H) | (G ;H) | some x G

s and t are terms, x is a variable and A is an atomic goal

▶ Operational semantics: ISO-Prolog with the occurs check

5 / 14

The languages of LPTP – the specification language

FOL

▶ L̂ is the specification language of LPTP

▶ For each user-defined predicate symbol R, L̂ contains three
predicate symbols Rs , R f , Rt of the same arity as R which
respectively express success, failure and termination of R

▶ The formulas of L̂ are:

ϕ, ψ ::= ⊤ | ⊥ | s = t | R(#»
t) | ¬ϕ | ϕ∧ψ | ϕ∨ψ | ϕ→ ψ | ∀xϕ | ∃xϕ

where
#»
t is a sequence of n terms and R denotes a n-ary

predicate symbol of L̂
▶ The semantics of L̂ is classical first order logic (FOL)

▶ For any of the user-defined logic procedure R(#»x) in P,
DP
R (

#»x) denotes its Clark’s if-and-only-if completed definition

6 / 14

The languages of LPTP – the specification language

For defining the declarative semantics of LP, three syntactic
operators S, F and T which map goals of L into L̂-formulas

Intuitively:

▶ SG means G succeeds
Any breadth-first evaluation of G succeeds

▶ FG means G fails
The ISO-Prolog evaluation stops without any answer

▶ TG means G terminates
The ISO-Prolog evaluation produces a finite number of
answers then stops

7 / 14

IND(P) – from the JLP paper

The declarative semantics of P is IND(P), an always consistent
theory which includes Clark’s equality theory and induction

8 / 14

IND(P) – from the JLP paper

9 / 14

Examples

nat(0). add(0,Y,Y).

nat(s(X)) :- nat(X). add(s(X),Y,s(Z)) :- add(X,Y,Z).

Lemma [add:existence] ∀x , y (S nat(x) → ∃z S add(x , y , z)).

Lemma [add:uniqueness]
∀x , y , z1, z2 (S add(x , y , z1) ∧ S add(x , y , z2) → z1 = z2).

Lemma [add:x 0 x] ∀x (S nat(x) → S add(x , 0, x)).

Theorem [add:commutative]
∀x , y , z (S nat(x) ∧ S nat(y) ∧ S add(x , y , z) → S add(y , x , z)).

10 / 14

ATP for LPTP?

Observation:

▶ Within LPTP, we prove properties of a Prolog program P
using a specialized ITP where the axioms IND(P) of the
theoretical framework are hardwired

Idea:

▶ Go back to FOL by expliciting the axioms IND(P) in FOF
(First Order Form) and invoke any first-order theorem prover

Experimentation:

▶ Try with E and Vampire

11 / 14

Workflow of our experiment

▶ Requirements: the logic program P and the associated proof file
(we do not use the proofs, only the statements!)

▶ If P depends on other logic programs, we include them

▶ If the associated proof file uses other proof files, we include them

▶ We build a target logic program P ′ and a target LPTP proof file

▶ Each property is compiled as a FOF conjecture possibly with its
induction axiom and stored in a single file which also contains the
logic theory IND(P ′) compiled as FOF axioms

▶ Previously processed FOF conjectures are converted as FOF axioms
(hence we produce as many FOF files as there are properties in the
initial LPTP proof file)

▶ Both E and Vampire are applied to each FOF file with predefined
time limits

12 / 14

Benchmarks

On a Mac Book Air M2, 400 properties from the LPTP library
Average success rate: 77%

lib # E-1s V-1s EV-1s E-10s V-10s EV-10s E-60s V-60s EV-60s
nat 91 54% 72% 78% 58% 77% 80% 61% 81% 85%
gcd 11 45% 45% 45% 45% 45% 45% 45% 45% 45%
list 84 56% 73% 83% 67% 87% 90% 68% 89% 92%
suff 31 74% 81% 93% 81% 94% 97% 81% 97% 100%
rev 25 52% 64% 64% 64% 80% 84% 68% 84% 88%
perm. 42 45% 50% 55% 52% 59% 64% 52% 64% 67%
sort 42 33% 33% 40% 43% 57% 57% 48% 59% 62%
merg. 24 50% 71% 71% 62% 79% 79% 67% 79% 79%
taut 43 0% 67% 67% 65% 70% 70% 65% 74% 74%

▶ https://github.com/FredMesnard/lptp

▶ https://github.com/atp-lptp/

automated-theorem-proving-for-prolog-verification

13 / 14

https://github.com/FredMesnard/lptp
https://github.com/atp-lptp/automated-theorem-proving-for-prolog-verification
https://github.com/atp-lptp/automated-theorem-proving-for-prolog-verification

Conclusion

A compiler from Prolog/LPTP to FOF as the assembly language
and an experiment with E and Vampire as FOF processors

Why does it work?
▶ Concepts and tools closely related to FOL:

▶ pure Prolog + sound negation
▶ LPTP specification language + IND(P)
▶ FOF, the Esperanto of FOL syntax for ATP
▶ Availability of efficient FOL theorem provers

▶ Huge computing power of our modern laptops

▶ Nice slicing of the LPTP library proofs

What’s next? A hammer for LPTP?

▶ Automatic construction of the corresponding LPTP proofs

14 / 14

