
1

NTI+CTI: a Logic Programming
Termination Analyzer

Fred Mesnard Étienne Payet

LIM, université de La Réunion

2023



2

We describe NTI+CTI, our logic programming termination
analyzer that takes part in the Termination Competition 2023.

The tool is built from two separate components, NTI for
Non-Termination Inference and CTI for constraint-based
Termination Inference, plus an overall main process.



3

NTI

NTI is fully written in Java. It performs automated
non-termination proofs of logic programs. It implements a
technique that consists in unfolding the program under analysis
and in checking whether the produced unfolded clauses satisfy
some non-termination criteria. When a proof is successful, NTI
provides an example of a non-terminating query.

▶ https://github.com/etiennepayet/nti

▶ http://lim.univ-reunion.fr/staff/epayet/
Research/NTI/NTI.html

https://github.com/etiennepayet/nti
http://lim.univ-reunion.fr/staff/epayet/Research/NTI/NTI.html
http://lim.univ-reunion.fr/staff/epayet/Research/NTI/NTI.html


4

NTI

Two kinds of criteria are used.

▶ The first kind relies on an extension of the “is more general
than” relation. It is able to detect infinite derivations that
consist of the repeated application of the same sequence
ω of clauses, i.e., of the form Q0 ⇒ω Q1 ⇒ω · · · . If the body
of an unfolded clause is more general than the head up to
some predicate arguments in neutral position, then
non-termination is detected; more precisely, every query
obtained from replacing the neutral arguments of the head
with ground terms is non-terminating. So, if such a
non-terminating query belongs to the mode of interest then
the proof is successful.



5

NTI



6

NTI

▶ The second kind is able to detect infinite derivations that
rely on two sequences ω1 and ω2 of clauses, i.e., that have
the form Q0(⇒∗

ω1
◦⇒ω2)Q1(⇒∗

ω1
◦⇒ω2) · · · . It consists in

detecting pairs (c1, c2) of unfolded clauses of a particular
form. Intuitively, c1 and c2 are mutually recursive and, in c1,
a context is removed from the head to the body while, in
c2, it is added again.



7

NTI



8

CTI

▶ https://github.com/FredMesnard/cTI

The termination analyzers are written in SWI-Prolog. The
analysis starts with applying termination inference.

If the mode given in the moded query of interest of the
analyzed program implies the inferred termination condition,
termination is ensured.

This first analysis relies on the term-size norm to abstract the
logic program and on linear ranking functions. If necessary,
termination inference is restarted using the same tool but by
combining both the term-size norm and the list-size norm.

https://github.com/FredMesnard/cTI


9

CTI

Otherwise, we switch to BINTERM, the termination analyzer
we’ve built for Java bytecode termination analysis, with various
termination tests:
▶ linear and eventual ranking functions
▶ multi-dimensional linear ranking
▶ the size-change principle

BINTERM takes as input binary Constrained Horn Clauses.



10

CTI

Mapping the original moded query and the original logic
program to binary Constrained Horn Clauses:
▶ Mode inference: The original logic program goes through a

tabled left-to-right top-down mode analysis starting from
the original moded query of interest.

▶ An abstract numeric constraint logic program is built using
the term-size norm.

▶ A numerical model is computed.
Then a binary Constrained Horn Clauses program is created by
a tabled left-to-right top-down interpreter, which keeps only the
input arguments of the predicates.
If necessary, a similar analysis is done by combining both the
term-size and the list-size norms.



11

CTI

At last resort, a left-to-right top-down meta-interpreter
computes a (time-bounded) LD tree for the most general query
: −p(X1, . . . ,Xn).

If the LD-tree is completely built, then any query from the set of
concrete queries abstracted by the original moded query
universally left-terminates.

NB:
▶ Unification with occurs check is mandatory
▶ A sound termination test only for logic programs

Examples: BCGGV05/g.pl, SGST06/at.pl, SGST06/toyama.pl,
lpexamples/lategen.pl, talp_plumer/pl2.3.1.pl,
talp_talp/transitive_closure.pl, ...



12

CTI

Unification with occurs check is mandatory

Consider:

go :- p(X,f(X)).
p(Y,Y) :- go.

The query :- go. loops for most Prolog engines but should
fail, as p(X,f(X)) does not unify with the head p(Y,Y) of the
second rule, due to the occurs check.



13

CTI

A sound termination test only for logic programs

Consider:

p(X) :- var(X), !.
p(a) :- p(a).

For any Prolog engine:
▶ the query :-p(X). terminates
▶ the query :-p(a). does not terminate.

The theoretical LP framework does not apply to Prolog.



14

The main process

Non-termination and termination analyses in parallel:
▶ a thread that runs NTI
▶ a thread that runs CTI

If one thread terminates successfully then the other is stopped
and the result is reported.


