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Introduction

Test-case generation for automatic software testing

Random input data:

the most used approach

simple, fast, sound, but poor coverage in general

Based on symbolic execution:

replace concrete inputs by symbolic inputs, extend semantics (add a
“path condition” to each state, etc)

build a search tree, solve constraints in leaves to produce test cases

good coverage, huge search space (incompleteness), complex
constraints should be simplified (unsoundness due to abstraction)

Alternative: concolic testing
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Introduction

Concolic testing

Very popular in imperative and OO programming languages
Java PathFinder (NASA), Cute and jCute (UIUC), Klee,...

Useful for

test case generation

debugging

...

Concolic stands for concrete + symbolic execution
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Introduction

Concolic testing: basic idea

Let s0 be a concrete state Let α0 be a symbolic state

s0

~~
s1

~~
s2

  
s3

~~
s4

α0

c1
}}

α1

c2
}}

α2
c3

!!
α3

c4
}}

α4

− α0 similar to s0 but inputs unknown

− symbolic exec. mimicks the concrete one

− c1, . . . , c4 constraints on the symb. values

− computing alternative (concrete) states:

¬c1 ⇒ s ′0
c1 ∧ ¬c2 ⇒ s ′′0

c1 ∧ c2 ∧ ¬c3 ⇒ s ′′′0

. . .
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Introduction

main(2, 3)

��
if (X > 0)

ww
if (Y < 0)

''
skip

main(X ,Y )

��
if (X > 0)

c1≡X>0ww
if (Y < 0)

c2≡Y≥0

''
skip

New test cases:

¬c1 ≡ ¬(X > 0) ≡ X ≤ 0⇒ main(0, 3)

c1 ∧ ¬c2 ≡ (X > 0) ∧ ¬(Y ≥ 0)⇒ main(2,−1)
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Introduction

Concolic testing in LP

The good news

concrete execution = symbolic execution

Main differences

unification, nondeterminism and backtracking

the way input data to explore alternative paths is computed
[ICLP 2015]
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Introduction

Concolic execution in LP

(`1) p(s(a)). (`4) q(a). (`6) r(a).
(`2) p(s(W ))← q(W ). (`5) q(b). (`7) r(c).
(`3) p(f (X ))← r(X ).

A concolic execution for, e.g., p(f (a)) will combine a concrete execution

p(f (a))→id r(a)→id true

with a symbolic execution for p(N):

p(N)→{N/f (Y )} r(Y )→{Y /a} true

that mimicks the steps of the former derivation despite being more general
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Introduction

The concolic execution actually looks like

〈p(f (a))id ][ p(N)id〉;c({`3},{`1,`2,`3})〈r(a)id ][ r(Y ){N/f (Y )}〉
;c({`6},{`6,`7}) 〈trueid ][ true{N/f (a)}〉

Choice steps store the labels of the clauses that unified with each concrete
and symbolic goals

Therefore, when looking for new run time goals that explore alternative
paths, one should look for instances of p(N) that unify with

{},
{`1},
{`1, `2},
{`1, `2, `3},
{`2},
. . .

�� ��Selective Unification

Atom A
Positive atoms H+

Negative atoms H−

p(N)
p(s(a))
p(s(W)), p(f(X))
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Selective unification in LP

The Selective Unification Problem – ICLP15

A be an atom

G ⊆ Var(A) be a set of variables (when ground, the initial goal
terminates)

H+ and H− be finite sets of atoms such that all atoms are pairwise
variable disjoint and A ≈ B for all B ∈ H+ ∪H−�� ��“A ≈ B” stands for ”A unifies with B”

Definition (selective unification problem)

P(A,H+,H−,G ) =

σ|̀Var(A)

∀H ∈ H+ : Aσ ≈ H
∧ ∀H ∈ H− : ¬(Aσ ≈ H)
∧ Gσ is ground


The set P(A,H+,H−,G ) can be infinite
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Selective unification in LP

Examples

P(A,H+,H−,G ) =

σ|̀Var(A)

∀H ∈ H+ : Aσ ≈ H
∧ ∀H ∈ H− : ¬(Aσ ≈ H)
∧ Gσ is ground


A = p(X ), H+ = {p(a), p(b)}, H− = ∅, G = ∅
One solution: ε, p(X ) unifies with p(a) and p(b)

A = p(X ), H+ = {p(a), p(b)}, H− = {p(f (Z ))}, G = ∅
No solution: there is no instance of A that unifies with both atoms in H+

and does not unify with p(f (Z ))

A = p(X ), H+ = {p(s(Y ))}, H− = {p(s(0))}, G = {X}
Infinitely many solutions, including {X/sn+2(0)} for n ∈ N
E.g., σ = {X/s(s(0))}, Aσ = p(s(s(0))), Aσ and p(s(Y )) unify, Aσ and
p(s(0)) do not, Xσ is ground

A = p(X ,Y ), H+ = {p(a, b), p(Z ,Z )}, and H− = ∅, G = ∅
Two solutions: {X/a} and {Y /b}
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Selective unification in LP

Finite signatures – LOPSTR16

Theorem

For finite signatures, P(A,H+,H−,G ) 6= ∅ is decidable

Idea: when the signature is finite

there exists n such that, if a solution has not been found when
considering terms of depth ≤ n, then the problem is not satisfiable

hence a bounded generate-and-test algorithm is sound and complete
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Selective unification in LP

Infinite signatures – LOPSTR16

Linearity = each variable occurs only once

We restrict our interest to linear solutions

Definition (selective linear unification problem – SLUP)

P(A,H+,H−,G ) =

σ|̀Var(A)

∀H ∈ H+ : Aσ ≈ H
∧ ∀H ∈ H− : ¬(Aσ ≈ H)
∧ Gσ is ground
∧ σ is linear


We only consider linear sets of positive atoms H+

We present a sound and complete algorithm for SLUP
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Selective unification in CLP

Definitions

A structure D admits quantifier elimination if for each first-order
formula ϕ there exists a quantifier-free formula ψ such that
D |= ∀[ϕ↔ ψ]

A constraint atom is a tuple of the form 〈c | p(~X )〉 where ~X is a
vector of distinct variables and c is a constraint
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Selective unification in CLP

CSUP

Let

A be a constraint atom of the form 〈cA | p(~X )〉 with G ⊆ Var(A)

H+ and H− be finite sets of constraint atoms such that all constraint
atoms, including A, are pairwise variable disjoint and A ≈ B for all
B ∈ H+ ∪H−

Definition (constraint selective unification problem – CSUP)

P(A,H+,H−,G ) =cA ∧ c

cA ∧ c is satisfiable
∧ c is variable disjoint with H+ ∪H−

∧ ∀H ∈ H+ : 〈cA ∧ c | p(~X )〉 ≈ H

∧ ∀H ∈ H− : ¬(〈cA ∧ c | p(~X )〉 ≈ H)
∧ each X ∈ G is fixed within cA ∧ c


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Selective unification in CLP

Some CSUP for CLP(Qlin)

P(A,H+,H−,G ) =

cA ∧ c

cA ∧ c is satisfiable
∧ c is variable disjoint with H+ ∪H−
∧ ∀H ∈ H+ : 〈cA ∧ c | p(~X )〉 ≈ H

∧ ∀H ∈ H− : ¬(〈cA ∧ c | p(~X )〉 ≈ H)
∧ each X ∈ G is fixed within cA ∧ c


A = 〈0 ≤ X ∧ X ≤ 5 | p(X )〉, H+ = {〈4 ≤ Y | p(Y )〉},
H− = {〈Z < 2 | p(Z )〉}, G = {X}
Infinitely many solutions, e.g., c = (X = 9/2)
0 ≤ X ∧ X ≤ 5 ∧ X = 9/2 sat, X = Y , 4 ≤ Y ,X = 9/2 sat,
X = Z ,Z < 2,X = 9/2 unsat and X is ground

A = 〈0 ≤ X ∧ X ≤ 5 | p(X )〉, H+ = {〈4 ≤ Y1 | p(Y1)〉, 〈Y2 ≤ 1 | p(Y2)〉},
H− = {〈2 < Z ∧ Z < 3 | p(Z )〉}, G = ∅
No solution
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Undecidability of the CSUP

Theorem

For CLP in general, P(A,H+,H−,G ) 6= ∅ is undecidable

Idea: encode the halting problem for Turing machines in CLP(A), where
A is a subclass of the decidable array property fragment introduced in
[BradleyMS06]
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A decidable case for the CSUP

Additional hypotheses

A1: The constraint structure admits variable elimination

A2: The negation of any atomic constraint is equivalent to a finite
disjunction of atomic constraints

Example

Qlin with {< /2,≤ /2,= /2,≥ /2, > /2} verifies A1 and A2:

Fourier-Motzkin for variable elimination

The negation of each atomic constraint from
{< /2,≤ /2,≥ /2, > /2} is an atomic constraint

¬(X = Y ) ≡ X < Y ∨ X > Y
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A decidable case for the CSUP

CSUP without the Groundness Condition

Algorithm CSUP-(A,H+,H−) terminates, correct and complete

1 Intersect of all the complements of the atoms in H−:

I :=
∧
{¬C ′|H = 〈c ′|p( ~Y )〉 ∈ H−,C ′ ≡ ∃ ~Y [~X = ~Y ∧ c ′]}

2 Eliminate negation from I then distribute ∧ over ∨: J :=
∨

1≤j≤n Cj(~X )

3 Intersect J with A: K :=
∨

1≤j≤n[Cj(~X ) ∧ cA]

4 Collect the constraints from K which intersect each of H+:

S :=

Cj(~X ) ∧ cA ∈ K |
∧

〈c′|p( ~X ′)〉∈H+

D |= ∃[ ~X ′ = ~X ∧ CA
j (~X ) ∧ c ′]


5 Return S

Step 2 relies on A1 and A2
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A decidable case for the CSUP

CSUP with the Groundness Condition

Algorithm CSUP terminates, correct and complete

Postcondition: A possibly empty finite set of constraints, each of them being
a solution of P(A,H+,H−,G )

1 S := CSUP−(A,H+,H−)

2 T := ∅
3 For each Cj ∈ S do

1 U := GRND(〈Cj |p(~X )〉,H+,G )
2 If U 6= ⊥ then T := T ∪ {Cj ∧ U}

4 Return T

The function GRND is domain dependent
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A decidable case for the CSUP

An example

A := 〈cA | p(X ,Y )〉, with cA ≡ 0 ≤ X ∧ 0 ≤ Y

H+ :=

{
〈Y 1 ≤ X1− 4 | p(X1,Y 1)〉,
〈X2 ≤ 8 ∧ 8 ≤ Y 2 | p(X2,Y 2)〉

}
,

H− := {〈Y 3 ≤ 2 | p(X3,Y 3)〉, 〈X4 ≤ 4 | p(X4,Y 4)〉}.

Geometrical interpretation:

the first quadrant of the plane
(restricted to X < 15 and Y < 15) as
the solutions are inside cA
the two positive spaces:

Y ≤ X − 4 in the lower right
X ≤ 8 ∧ 8 ≤ Y in the upper left

the two negative spaces:

Y ≤ 2
X ≤ 4
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A decidable case for the CSUP

For G = ∅, we get cA ∧ {4 < X ∧ 2 < Y }
The union of the two green areas with the
white one in between
It has a non-empty intersection with the
positive spaces and an empty intersection with
the negative spaces

For G = {Y }, we get cA ∧ {4 < X ∧ Y = 9}
The blue half-line
The half-line – included into the first quadrant
and with Y ground – has a non-empty
intersection with both positive spaces and an
empty intersection with the negative spaces

For G = {X}, cA ∧ {X = 7 ∧ 2 < Y } Idem

For G = {X ,Y }, ∅
Can one find a point which belongs to the
green upper left space and at the same time to
the green lower right space? No

Fred Mesnard (U. of Réunion Island, France) Selective Unification in CLP PPDP 2017, Namur 22 / 25



A decidable case for the CSUP

Implemented

The queries solving the previous example:

?- csup(p(X,Y)-[X>=0,Y>=0],

[p(X1,Y1)-[Y1=<X1-4], p(X2,Y2)-[X2=<8,Y2>=8]],

[p(X3,Y3)-[Y3=<2],p(X4,Y4)-[X4=<4]],

[], S).

S = p(X, Y)-[Y>2, X>4].

?- csup(p(X,Y)-[X>=0,Y>=0],

[p(X1,Y1)-[Y1=<X1-4], p(X2,Y2)-[X2=<8,Y2>=8]],

[p(X3,Y3)-[Y3=<2],p(X4,Y4)-[X4=<4]],

[Y],S).

S = p(X, Y)-[Y=9, X>4].

?- csup(p(X,Y)-[X>=0,Y>=0],

[p(X1,Y1)-[Y1=<X1-4], p(X2,Y2)-[X2=<8,Y2>=8]],

[p(X3,Y3)-[Y3=<2],p(X4,Y4)-[X4=<4]],

[X],S).

S = p(X, Y)-[X=7, Y>2].

?- csup(p(X,Y)-[X>=0,Y>=0],

[p(X1,Y1)-[Y1=<X1-4], p(X2,Y2)-[X2=<8,Y2>=8]],

[p(X3,Y3)-[Y3=<2],p(X4,Y4)-[X4=<4]],

[X,Y],S).

false.
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Conclusion

Summary

We have considered concolic testing for CLP

We have proved that the selective unification problem is generally
undecidable for CLP

For a restricted class of constraint structures, we have given a generic
correct and complete algorithm for selective unification without the
groundness condition

For CLP(Qlin), we have presented a specific correct and complete
selective unification with the groundness condition

Future work: investigate the links with constructive negation
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Conclusion

Thank you for your attention!
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