
Towards a Framework for Algorithm Recognition in Binary
Code

Frédéric Mesnard
LIM, université de la Réunion

France
frederic.mesnard@univ-

reunion.fr

Étienne Payet
LIM, université de la Réunion

France
etienne.payet@univ-

reunion.fr

Wim Vanhoof
Faculté d’informatique,

université de Namur
Belgium

wim.vanhoof@unamur.be

ABSTRACT
Algorithm recognition, which is the problem of verifying
whether a program implements a given algorithm, is an im-
portant topic in program analysis. We propose an approach
for algorithm recognition in binary code. For this paper, we
have chosen the Dalvik Virtual Machine (DVM) bytecode.
Given an algorithm A that is compiled into a DVM method
M0, and a DVM program P that includes a series of methods
{M1, . . . ,Mn}, the approach is able to identify those blocks
Mi from P that essentially implement the algorithm A. The
technique we propose first translates binary code into Horn
clauses. Then we consider programs as implementing the
same algorithm if their Horn clause representations can be
reduced to a single common set of Horn clauses by means of
a sequence of transformations.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal meth-
ods.

Keywords
Algorithm recognition.

1. INTRODUCTION
Algorithm recognition – which we could intuitively de-

fine as verifying whether a program implements a given al-
gorithm [29] – is an important topic in program analysis.
Applications are diverse and range from program compre-
hension [24] over plagiarism detection [31] and malware de-
tection [30] to advanced analyses and optimisations such as
the automatic detection of the best parallelisation strategy
for a given code fragment [16].

How to identify whether a given piece of code implements
a particular algorithm is a challenging question that can
be studied from different angles. While it can generally be
assumed that the algorithm to be recognised is known in
the form of source code, whether this is the case for the

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, contractor or affiliate of a national government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this article, or to al-
low others to do so, for Government purposes only.

PPDP ’16, September 05-07, 2016, Edinburgh, United Kingdom
c© 2016 ACM. ISBN 978-1-4503-4148-6/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2967973.2968600

codebase in which the search has to take place depends on
the desired application. Consider for example a system for
assessing whether students in a programming course have
correctly implemented a particular sorting algorithm [27];
in that case one can safely assume the student’s source code
to be available and one can resort to techniques for assessing
the similarity between two algorithms represented in source
code. However, as an alternative example, consider a com-
pany that wishes to verify whether a competitor’s software
program uses a (proprietary) algorithm. In this case, the
competitor’s software might be written in a different pro-
gramming language and is presumably only available as bi-
nary code. Consequently, the verification must be performed
between some model of the algorithm and that of the binary
code under scrutiny [31].

In this work, we propose an approach for algorithm recog-
nition in binary code, namely Google’s Dalvik Virtual Ma-
chine (DVM) bytecode, making the approach directly appli-
cable to (compiled) Android programs. A direct application
of our approach resides in algorithm plagiarism detection, a
topic that has – in contrast with so-called software plagia-
rism – received relatively little attention [31]. While soft-
ware plagiarism is mainly about unlawfully reusing existing
source code or libraries, algorithm plagiarism is more about
unlawfully copying the ideas behind how a certain compu-
tation is done. Let us consider computing the maximum of
three integer values as an almost ridiculously simple exam-
ple. Figure 1 shows two different Java source methods that
perform this computation. While the code of the two meth-
ods is quite different (and will as such presumably not be
recognised as software plagiarism or software clones), the al-
gorithm that is implemented by both methods is essentially
the same. Indeed, in both cases one compares z with the
maximum of x and y. In the middle method code this is
more explicit by the presence of the auxiliary variable, but
the left-hand side method does essentially the same. While
the example is, admittedly, too simple to speak of algorithm
plagiarism, for several other applications (for example in the
context of program understanding or program refactoring)
it might nevertheless be desirable to recognize that the al-
gorithm underlying both methods is the same.

While the notion of two algorithms being the same is not
easily defined, and the mere existence of equivalence classes
of programs implementing the same algorithm is even sub-
ject to debate [5], a pragmatic approach that is often taken
in algorithm recognition [17] is to consider programs as im-
plementing the same algorithm if they can be reduced to one
another by means of a sequence of syntactical transforma-

int max(int x, int y, int z) {
if ((x>=y) && (x>=z))
return x;

else if ((y>=x) && (y>=z))
return y;

else
return z;

}

int max(int x, int y, int z) {
int max_xy;
if (x>=y)
max_xy = x;

else
max_xy = y;

if (max_xy>=z)
return max_xy;

else
return z;

}

.method public max(III)I
.registers 5

0: if-lt v2, v3, 4
1: move v0, v2
2: if-lt v0, v4, 6
3: return v0
4: move v0, v3
5: goto 2
6: move v0, v4
7: goto 3
.end method

Figure 1: Two different methods computing the maximum of three values, and the Dalvik code corresponding
to the middle method.

tions. While our approach is based on program transforma-
tion and targets algorithm recognition in binary code, one
of its cornerstones is the fact that we use Horn clauses to
represent a model of the algorithm as well as of the compiled
code under scrutiny. This has several advantages:

• Horn clauses are a suitable abstraction that is in be-
tween binary code and a more high-level programming
language. This is in line with recent work [10] in which
the use of Horn Clauses as a universal intermediate
language has been advocated. In that work the general
idea is to compile a program (written in an arbitrary
language) first into Horn clauses, then analysing and
optimizing this representation and, if needed, compile
the result into executable code. In our work we take
this idea the other way round and we present a scheme
that allows us to decompile Dalvik binary code into
Horn clauses.

• Horn clauses are a well-known formalism and have al-
ready been proven to be suitable for a lot of differ-
ent program analyses. In this work, we resort to well-
known transformations of Horn clauses in order to for-
mally establish what it means for two algorithms, rep-
resented by a set of Horn clauses, to be the same.

• Even if we specifically target Android binary code in
this work, the fact that our framework for algorithm
recognition is expressed at the Horn clause level makes
it a very general approach that can be readily ported
to a multitude of programming languages and systems.

In our approach, we assume that we have an algorithm of
interest A, for example the Java code at the left of Figure 1,
and a series of DVM bytecode fragments {M1, . . . ,Mn} (a
code fragment typically being a method but in principle any
block having a clearly defined entry and exit point will do)
where we suspect one of these bytecode fragments to be im-
plementing the algorithm A. In the context of our example,
one of the bytecode fragments could be the DVM code, right-
hand side of Figure 1, resulting from compiling the method
in the middle of Figure 1. The algorithm recognition process
that we propose is schematically represented in Figure 2.

The algorithm A is transformed (either directly or via its
DVM implementation M0) into a Horn clause representation
H0. Each bytecode fragment Mi is likewise decompiled into
its Horn clause equivalent Hi. Subsequently, for each frag-
ment Mi (1 ≤ i ≤ n), we try to establish two transformation
sequences, T0 and Ti, that transform respectively H0 and Hi
into a single Horn clause representation Ci that has, at least
partially, the same semantics as H0 and Hi (and thus as A

Figure 2: The algorithm recognition process.

and Mi). If such a common representation Ci can be found,
we conclude that Mi implements the same algorithm as does
A, at least with respect to the part of the semantics that has
been preserved by the transformations. Note that termina-
tion of the process depends on the algorithm that is used
when searching for a common representation. Since, as we
will explain further, the search is based on repeatedly apply-
ing a set of given program transformations, the process can
be made terminating at the cost of not necessarily finding
such a common representation. In that sense, the outcome of
the process is either that the code fragments are recognised
as implementing the same algorithm, or that the search is
inconclusive. Returning to our running example, Figure 3
represents H0 and H1 that is, the Horn-clause equivalent of,
respectively, the left-hand and right-hand sides of Figure 1
after some initial semantics-preserving transformations (ba-
sically unfolding all non-recursive predicates). The precise
description of our Horn-clause language will be defined in
Section 2, but let us note that it is essentially a constraint
logic language. The last two arguments of each predicate
correspond to the Dalvik memory before and after the call,
modeled as a zero-based array where its first element is the
return value of the corresponding method.

Even if the predicates p0/7 and p1/8 depicted in the figure
are different, it is not hard to see that they can be trans-
formed into a common definition. Indeed, unfolding V4 ≥ V5

in the second clause of p1 into (V4 > V5) ∨ (V4 = V5), un-
folding likewise V3 ≥ V4 in the third clause, and removing

p0(V0, V1, V2, V3, V4, 〈A, I〉, 〈A′, I〉)←
{V2 ≥ V4, V2 ≥ V3, A

′ = A{0← V2}}.
p0(V0, V1, V2, V3, V4, 〈A, I〉, 〈A′, I〉)←
{V2 < V3, V3 ≥ V4, A

′ = A{0← V3}}.
p0(V0, V1, V2, V2, V4, 〈A, I〉, 〈A′, I〉)←
{V2 < V4, A

′ = A{0← V4}}.
p0(V0, V1, V2, V3, V4, 〈A, I〉, 〈A′, I〉)←
{V2 < V4, V3 < V2, A

′ = A{0← V4}}.
p0(V0, V1, V2, V3, V4, 〈A, I〉, 〈A′, I〉)←
{V2 < V3, V3 < V4, A

′ = A{0← V4}}.

p1(V0, V1, V2, V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V3 ≥ V4, V3 ≥ V5, A

′ = A{0← V3}}.
p1(V0, V1, V2, V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V4 ≥ V5, V3 < V4, A

′ = A{0← V4}}.
p1(V0, V1, V2, V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V3 ≥ V4, V3 < V5, A

′ = A{0← V5}}.
p1(V0, V1, V2, V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V4 < V5, V3 < V4, A

′ = A{0← V5}}.

Figure 3: Horn clause representation of the methods of Figure 1, obtained by decompilation.

from the definition the three first (unused) arguments, one
obtains

p1(V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V3 ≥ V4, V3 ≥ V5, A

′ = A{0← V3}}.
p1(V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V4 > V5, V3 < V4, A

′ = A{0← V4}}.
p1(V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V4 = V5, V3 < V4, A

′ = A{0← V4}}.
p1(V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V3 = V4, V3 < V5, A

′ = A{0← V5}}.
p1(V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V3 > V4, V3 < V5, A

′ = A{0← V5}}.
p1(V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V4 < V5, V3 < V4, A

′ = A{0← V5}}.

It can be easily observed that the same code (apart from a re-
naming of the arguments and a reordering of the constraints)
can be obtained from the definition of p0 by unfolding the
atom V3 ≥ V4 in the second clause and eliminating from the
definition the first two (unused) arguments. Since unfolding
and removal of unused arguments preserves the semantics,
we can conclude that both fragments implement the same
algorithm.

The remainder of the paper is organised as follows. Sec-
tion 2 describes our decompilation schema from Dalvik code
to Horn clauses. Section 3 provides the formal framework
enabling the algorithm recognition process as described, and
the formal definition of what it means, within this frame-
work, when two program fragments implement the same al-
gorithm. Section 4 summarizes related work and Section 5
concludes with a discussion of future work.

2. FROM BINARY CODE TO CLAUSES
Android programs are written in Java. They are com-

piled to the Google’s Dalvik Virtual Machine (DVM) byte-
code format before installation on a device. We assume the
reader familiar with the basic concepts of object-oriented
programming and the Android platform [3]. Here, we briefly
describe the DVM, see [4] for a complete presentation.

Unlike the Java Virtual Machine [14] which is stack-based,
the DVM is register-based. It runs a Dalvik bytecode pro-
gram by keeping an activation stack of frames. Each frame
is created by a method call, survives until the end of the call
and uses its own registers. An invoked method cannot af-
fect the registers in the frame of the invoking method. Any
call to a same method always produces a frame with a same
number of registers. For each method ω, this number is stat-
ically known. We denote it as reg(ω) and we refer to it as
the number of registers used by ω.

The memory of the system contains objects, connected

through pointers. To simplify the presentation, we do not
consider array nor interface types and only allow integers as
values of basic types.

Definition 1. The set of values is Z∪L, where Z is the
set of integers and L is the set of memory locations. A
frame of the DVM is a pair 〈v, µ〉 where v is a sequence of
values, called registers, numbered from 0 upwards and µ is
a memory, or heap, that maps locations into objects. An
object is a pair 〈κ, f〉 where κ is a class identifier i.e., an
index (integer) in the class definition list of the program,
and f is a sequence of values, called fields, numbered from
0 upwards; we say that it belongs to class κ or that it is an
instance of class κ or has class κ. We let o.κ and o.f respec-
tively denote the class and fields of an object o. We require
that there are no dangling pointers i.e., v ∩ L ⊆ dom(µ)
and µ(`).f ∩ L ⊆ dom(µ) for every ` ∈ dom(µ). The set of
all classes is denoted by K and it is partially ordered by the
subclass relation (we consider that a class is a subclass of
itself).

The Dalvik bytecode is strongly typed. Each value has a
type and registers are statically typed.

Definition 2. The set of types of our simplified DVM is
T = K∪ {int, void}. The void type can only be used as the
return type of methods. A method signature is denoted by
κ.m(t1, . . . , tp)t standing for a method named m, defined in
class κ, expecting p explicit parameters of type, respectively,
t1, . . . , tp and returning a value of type t, or returning no
value when t = void.

A non-static method κ.m(t1, . . . , tp)t also has an implicit pa-
rameter of type κ called this in the code of the method. So
the actual number of parameters is p+ 1. We do not distin-
guish between methods and constructors. A constructor is
just a method named <init> and returning void. By a void
method (resp. non-void method) we mean a method whose
return type is void (resp. is not void). We do not consider
static fields and methods. The extension of our definitions
to them is not difficult.

Dalvik bytecode instructions work over frames and their
execution affects the registers or the memory in the frames.
Many are similar or only differ in the type or size of their
operands. So we concentrate on a restricted set which ex-
emplifies the operations that the DVM performs.

• const d, c Writes constant c into register d.

• move d, s Writes the value of register s into register d.

• add d, s, c Writes the sum of the value of register s and
constant c into register d.

• if -lt i, j, q If the value of register i is less than the value
of register j then jumps to program point q, otherwise
executes the immediately following instruction.

• goto q Jumps to program point q.

• invoke S, κ.m(t1, . . . , tp)t where S = s0, s1, . . . , sp is
a sequence of register indexes. The value vs0 of reg-
ister s0, . . . , vsp of register sp are the actual param-
eters of the call. Value vs0 is called receiver of the
call and must be 0 (the equivalent of null in Java)
or the memory location of an object o. In the former
case, the computation stops with an exception. Oth-
erwise, a lookup procedure is started from the class
of o upwards along the superclass chain, looking for a
method calledm expecting p formal parameters of type
t1, . . . , tp, respectively, and returning a value of type t.
It is guaranteed that such a method is found in a sub-
class of κ. That method is run from a new frame where
the last p + 1 registers are bound to vs0 , vs1 , . . . , vsp ,
respectively, and the other ones to 0.

• return Returns from a void method.

• return s Returns from a non-void method with the
value of register s as result.

• move-result d Writes the result of the most recent
called method into register d. This instruction must
immediately follow an invoke instruction.

• new -instance d, κ Writes the memory location of a
new, properly initialised, object of class κ into register
d.

• iget d, i, j (resp. iput s, i, j) The value vi of register i
must be 0 or the memory location of an object o. If vi
is 0, the computation stops with an exception. Other-
wise, the value of field j of o is written into register d
(resp. the value of register s is written into the field j
of o).

We suppose that the Dalvik program P under consid-
eration consists of these instructions and that it is well-
formed. For instance, each move-result immediately follows
an instruction of the form invoke S, κ.m(t1, . . . , tp)t where
t 6= void. As for Java bytecode, real Dalvik bytecode must
pass a verification check before being run on a device. Pro-
gram points of P are denoted by q, q′, . . . and we let q + 1
denote the program point immediately following q.

Our rules for compiling the instructions of P into clauses
are given in Fig. 4–6. Some of them have already been pre-
sented in [18]. They have the form q : ins 7→ E where E
is the set of clauses resulting from the compilation of in-
struction ins occurring at q. We sometimes write ψ

q:ins 7→E
meaning that the rule only applies when condition ψ holds.

We assign a predicate symbol pq to each program point q
of P . The arity of pq is r+ 2 where r = reg(ω) and ω is the
method where q occurs. We assign the following meaning to
the parameters of pq. In an atom of the form

pq(V0, . . . , Vr−1,M,M ′)

the first r + 1 parameters correspond to the state of the
current frame just before executing the instruction at q:
V0, . . . , Vr−1 are the values of the registers and M is the

memory. The last parameter M ′ is the memory upon ter-
mination of ω. It is used for handling method calls; it is
instantiated in the clauses generated for return and its value
is used in the clauses generated for invoke (Fig. 5).

We generate clauses with constraints on integer and ar-
ray terms. Our constraint theory combines the theory of
integers with that of arrays defined in [6]. We borrow the
following notations from [6]: the read a[i] returns the value
stored at position i of the array a and the write a{i ← e}
is a modified so that position i has value e; for multidimen-
sional arrays, a[i] · · · [j] is abbreviated with a[i, . . . , j]. We
model a memory as a pair 〈a, i〉 where a is an array, called
memory content, indexed from 0 upwards and i is the in-
dex where the next insertion in a will take place. We do
not model garbage collection and assume that the memory
is unbounded. Memory locations are indexes into a; they
start at 1 and 0 corresponds to the null value. We model
an object as an array of integers [κ, x0, . . . , xn], indexed from
0 upwards, where κ is the class identifier and x0, . . . , xn are
the current values of the fields. Note that the value xj of
a field j is located at index j + 1. A memory content has
the form [x, o0, . . . , on] where x, an integer, is the result of
the most recent called, non-void, method and o0, . . . , on are
objects.

Definition 3. Our CLP domain of computation (values
interpreting constraints) is D = Z ∪ O ∪ A where O is the
set of objects and A is the set of memory contents.

Each rule of Fig. 4–6 considers an instruction ins occur-
ring at a program point q. Uppercase letters denote vari-
ables. We let Ṽ = V0, . . . , Vr−1 and Ṽ ′ = V ′0 , . . . , V

′
r−1

be sequences of distinct variables where r is the number
of registers used by the method where ins occurs. For each
i ∈ [0, r − 1], variable Vi (resp. V ′i) denotes the value of
register i before (resp. after) executing ins. We use vari-
ables M,M ′, . . . or pairs of variables 〈A, I〉, 〈A′, I ′〉, . . . for
denoting the memory. We let id denote the sequence (V ′0 =
V0, . . . , V

′
r−1 = Vr−1) and id−i (where i ∈ [0, r − 1]) the se-

quence (V ′0 = V0, . . . , V
′
i−1 = Vi−1, V

′
i+1 = Vi+1 . . . , V

′
r−1 =

Vr−1). By |W̃ | we mean the length of sequence W̃ . For
any method ω = κ.m(t1, . . . , tp)t, qω is the program point
where ω starts. Moreover, for any subclass κ′ of κ, we let
lookup(ω, κ′) denote the closest method in the superclass
chain of κ′ that has name m, expects p formal parameters
of type t1, . . . , tp, respectively, and returns a value of type
t. As κ′ is a subclass of κ and ω = κ.m(t1, . . . , tp)t, it is
guaranteed that such a method exists.

Some compilation rules are rather straightforward. For
instance, const d, c writes constant c into register d, so in
Fig. 4 the output register variable V ′d is set to c while the
other register variables remain unchanged (modelled with
id−d). Rules for move, add and goto are similar. The rule
for if -lt i, j, q′ generates two clauses expressing that when
the test is true execution jumps to program point q′ other-
wise it jumps to the next instruction i.e., to program point
q + 1.

In Fig. 5 we consider method calls. The rule for instruc-
tion invoke s0, . . . , sp, κ.m(t1, . . . , tp)t works as follows. We
impose that Vs0 (the receiver of the call) is a non-null loca-
tion (i.e., Vs0 > 0). Therefore, if Vs0 ≤ 0, the execution of
the generated CLP program fails, as the original Dalvik pro-
gram. Moreover, we statically express the Dalvik dynamic
lookup of the method to invoke. The method that will ef-

q : const d, c 7→
{
pq(Ṽ ,M,M ′)← {V ′d = c} ∪ id−d, pq+1(Ṽ ′,M,M ′)

}
q : move d, s 7→

{
pq(Ṽ ,M,M ′)← {V ′d = Vs} ∪ id−d, pq+1(Ṽ ′,M,M ′)

}
q : add d, s, c 7→

{
pq(Ṽ ,M,M ′)← {V ′d = Vs + c} ∪ id−d, pq+1(Ṽ ′,M,M ′)

}
q : goto q′ 7→

{
pq(Ṽ ,M,M ′)← id , pq′(Ṽ

′,M,M ′)
}

q : if -lt i, j, q′ 7→
{
pq(Ṽ ,M,M ′)← {Vi < Vj} ∪ id , pq′(Ṽ

′,M,M ′)

pq(Ṽ ,M,M ′)← {Vi ≥ Vj} ∪ id , pq+1(Ṽ ′,M,M ′)

}

Figure 4: Compilation of simple instructions.

ins = invoke s0, . . . , sp, κ.m(t1, . . . , tp)t

q : ins 7→


pq(Ṽ , 〈A, I〉,M ′) ←

{
Vs0 > 0, κ′ = A[Vs0 , 0]

}
∪ id , κ′ is a subclass of κ

pqω′ (W̃ , 〈A, I〉,M1), ω′ = lookup(κ.m(t1, . . . , tp)t, κ
′)

pq+1(Ṽ ′,M1,M
′) W̃ = 0, . . . , 0, Vs0 , . . . , Vsp with |W̃ | = reg(ω′)


q : move-result d 7→

{
pq(Ṽ , 〈A, I〉,M ′)←

{
V ′d = A[0]

}
∪ id−d, pq+1(Ṽ ′, 〈A, I〉,M ′)

}
q : return s 7→

{
pq(Ṽ , 〈A, I〉, 〈A′, I ′〉)← {A′ = A{0← Vs}, I ′ = I}

}
q : return 7→

{
pq(Ṽ , 〈A, I〉, 〈A′, I ′〉)← {A′ = A, I ′ = I}

}
Figure 5: Compilation of instructions related to method calls.

ins = new -instance d, κ and objects of class κ have n fields

q : ins 7→
{
pq(Ṽ , 〈A, I〉,M ′)←

{
O[0] = κ, O[1] = 0, . . . , O[n] = 0, A1 = A{I ← O},

V ′d = I, I1 = I + 1
}
∪ id−d, pq+1(Ṽ ′, 〈A1, I1〉,M ′)

}

q : iget d, i, j 7→
{
pq(Ṽ , 〈A, I〉,M ′)←

{
Vi > 0, V ′d = A[Vi, j + 1]

}
∪ id−d, pq+1(Ṽ ′, 〈A, I〉,M ′)

}
q : iput s, i, j 7→

{
pq(Ṽ , 〈A, I〉,M ′)←

{
Vi > 0, O = A[Vi], O1 = O{j + 1← Vs},

A1 = A{Vi ← O1}
}
∪ id , pq+1(Ṽ ′, 〈A1, I〉,M ′)

}

Figure 6: Compilation of memory-related instructions.

fectively be invoked at runtime is necessarily defined in a
subclass of κ. Hence, for each subclass κ′ of κ, we generate
a clause in which we specify that if the class of object A[Vs0]
is κ′ (i.e., κ′ = A[Vs0 , 0]), then we invoke the closest method
ω′ in the superclass chain of κ′ that has name m, expects p
formal parameters of type t1, . . . , tp and returns a value of
type t. This invocation is modelled by a call to pqω′ with a
set of registers initialised as needed i.e., the arguments of
the call in the last registers and the other registers set to 0.
This call potentially modifies the memory, which yields the
new memory M1. Finally, when the execution of the invoked
method terminates, we transfer control to the program point
following the invocation point. This is modelled by a call to
pq+1 with input memory M1. The rule for move-result pro-
duces a clause that writes the value returned by the most
recent called method (i.e., A[0]) into register d. Instruc-
tions return and return s stop the execution of the current
method, hence the body of the generated clauses contains
no call. Moreover, the clause generated for return s writes
the value of register s at index 0 of the memory content i.e.,
it sets the value returned by the most recent called method
to that of register s.

Example 4. Let us consider the program in Fig. 7. In
method f, the variable a has type A, hence it may store a
reference to an instance of any subclass of A. Therefore, when
compiling the call a.mm() to clauses, we have to consider all
the subclasses of A i.e., A itself and B. For each subclass, we
determine the method that would be invoked if a reference to
an instance of it was stored in a. If a stores a reference to
an instance of A, then the method mm of A is invoked. If a

stores a reference to an instance of B, then the method mm of
B is invoked. So, the instruction at line 14 is compiled to:

p14(V0, V1, V2, V3, 〈A, I〉,M ′)← {V0 > 0, A = A[V0, 0],
V ′0 = V0, V

′
1 = V1, V

′
2 = V2, V

′
3 = V3},

p4(0, V0, 〈A, I〉,M1), p15(V ′0 , V
′
1 , V

′
2 , V

′
3 ,M1,M

′).

p14(V0, V1, V2, V3, 〈A, I〉,M ′)← {V0 > 0, B = A[V0, 0],
V ′0 = V0, V

′
1 = V1, V

′
2 = V2, V

′
3 = V3},

p7(0, V0, 〈A, I〉,M1), p15(V ′0 , V
′
1 , V

′
2 , V

′
3 ,M1,M

′).

Now, consider the call a.m(). As there is no implementation
of m in B, the method m of A is always invoked here. So, the
instruction at line 13 is compiled to:

p13(V0, V1, V2, V3, 〈A, I〉,M ′)← {V0 > 0, A = A[V0, 0],
V ′0 = V0, V

′
1 = V1, V

′
2 = V2, V

′
3 = V3},

p0(0, V0, 〈A, I〉,M1), p14(V ′0 , V
′
1 , V

′
2 , V

′
3 ,M1,M

′).

p13(V0, V1, V2, V3, 〈A, I〉,M ′)← {V0 > 0, B = A[V0, 0],
V ′0 = V0, V

′
1 = V1, V

′
2 = V2, V

′
3 = V3},

p0(0, V0, 〈A, I〉,M1), p14(V ′0 , V
′
1 , V

′
2 , V

′
3 ,M1,M

′).

Finally, in Fig. 6 we consider the memory-related instruc-
tions. The rule for new -instance d, κ builds a new object
O which is properly initialised, stores O in memory at lo-
cation I (i.e., A1 = A{I ← O}), writes the location of O
into register d (i.e., V ′d = I) and sets the next insertion
index to I + 1 (i.e., I1 = I + 1). In the clauses generated
for iget d, i, j and iput s, i, j we specify that the value of
register i is a non-null location (i.e., Vi > 0). Therefore, if
Vi ≤ 0, the execution of the generated CLP program fails,
as the original Dalvik program. The rule for iget considers

the object whose location is in register i (i.e., A[Vi]) and
writes the value of field j of this object into register d i.e.,
V ′d = A[Vi, j + 1]. We write A[Vi, j + 1] for accessing field
j because the array A[Vi] starts with the class identifier of
the object, hence field j is located at index j + 1. The rule
for iput considers the object O whose location is in register
i (i.e., O = A[Vi]) and replaces it in memory with a new
object O1 (i.e., A1 = A{Vi ← O1}) which is the same as
O up to the value of field j, which is set from the value of
register s (i.e., O1 = O{j + 1← Vs}).

Example 5. In Fig. 7, objects of class A only have one
field (n). Hence, the new-instance instruction at line 11 of
the Dalvik program is compiled into the clause:

p11(V0, V1, V2, V3, 〈A, I〉,M ′)← {O[0] = A, O[1] = 0,
A1 = A{I ← O}, V ′0 = I, I1 = I + 1,
V ′1 = V1, V

′
2 = V2, V

′
3 = V3},

p12(V ′0 , V
′
1 , V

′
2 , V

′
3 , 〈A1, I1〉,M ′).

3. ALGORITHM RECOGNITION IN HORN
CLAUSES

In this section we will define what it means for two (de-
compiled) programs to be algorithmically equivalent. Prov-
ing algorithmic equivalence boils down [17] to proving se-
mantic equivalence on the one hand (the two program frag-
ments compute the same results and/or exhibit the same
behaviour) and some sort of structural equivalence on the
other hand, meaning that the two program fragments are
similar in their (algorithmic) structure. We will first define
what semantic equivalence means in our setting, and we will
focus on structural equivalence afterwards.

3.1 Semantic equivalence of code fragments
A decompiled Dalvik program is represented by a set of

predicate definitions of the form H ← {C}, B where H is
the head atom, C is a set of constraints and B a conjunction
of atoms (most notably calls to other predicates). Although
in our case B is a conjunction of 0, 1 or 2 atoms, the results
of this section remain valid for the general case where B is
any conjunction of atoms. While different semantics have
been defined for CLP programs [12, 13], given the simplicity
of the clauses that are generated by the compilation scheme,
we can stick to the basic computed answer semantics as it
is known from Prolog [15]. As usual, we will use Greek let-
ters to denote substitutions (mapping from variables to data
terms). A call to one of the generated predicates having as
head pq(V0, . . . , Vn−1,M,M ′) is thus represented by an atom
pq(V0, . . . , Vn−1,M,M ′)θ with θ a substitution. Given the
nature of the generated clauses, θ will map the predicate’s
input arguments (V0, . . . , Vn and M) to ground terms and,
given the deterministic behaviour of the generated clauses,
the call will result in a single answer substitution θ′ map-
ping the predicate’s single output argument M ′ to a ground
value.

While the simple computed answer semantics is sufficient
to model the behaviour of our generated CLP programs,
we need a somewhat more sophisticated measure in order
to compare the values that are manipulated by these pro-
grams. Since objects are essentially represented by locations
into a memory, we will in the following often refer to a value-
memory pair, represented by (v, µ), where v is a value from

public class A { .method public m()V .method public mm()I
private int n = 5; .registers 2 .registers 2

0: iget v0, v1, 0 4: iget v0, v1, 0
public void m() { n++; } 1: add v0, v0, 1 5: add v0, v0, 2

2: iput v0, v1, 0 6: return v0
public int mm() { return n + 2; } 3: return .end method

} .end method

public class B extends A { .method public mm()I
public int mm() { return 10; } .registers 2

} 7: const v0, 10
8: return v0
.end method

public class MyActivity extends Activity { .method public f(I)I
... .registers 4
public int f(int i) { 9: const v1, 1 16: return v1

A a = (i >= 1 ? new A() : new B()); 10: if-lt v3, v1, 17 17: new-instance v0, B
a.m(); 11: new-instance v0, A 18: invoke v0, B.<init>()V
return a.mm(); 12: invoke v0, A.<init>()V 19: goto 13

} 13: invoke v0, A.m()V .end method
... 14: invoke v0, A.mm()I

} 15: move-result v1

Figure 7: A part of an Android program with simple instructions, method calls and memory accesses (Java
code on the left and corresponding Dalvik bytecode on the right). The Dalvik bytecode is written in a
simplified Smali’s syntax [22]. The .registers directive at the beginning of each method indicates the number
of registers used by the method. Moreover, v0 and v1 denote registers 0 and 1 respectively and V (resp. I)
denotes the type void (resp. int). At lines 0, 2 and 4, value 0 corresponds to the field n defined in A.

Z ∪ L and µ is the memory potentially referred to by v. In
order to compare value-memory pairs while making abstrac-
tion of the actual locations, we define the notion of value
equivalence as follows:

Definition 6. Two value-memory pairs (v, µ) (v′, µ′) are
value equivalent, which we denote by (v, µ) ≈ (v′, µ′), when
the following conditions are met:

v = v′ if v and v′ are basic values from Z
true if v and v′ are locations, µ = 〈a, i〉 and

µ′ = 〈a′, i′〉, a[v] = 〈κ, x0, . . . , xn〉
and a′[v′] = 〈κ, x′0, . . . , x′n〉,
and ∀j : 0 ≤ j ≤ n : (xj , µ) ≈ (x′j , µ

′)
false otherwise.

Intuitively, two value-memory pairs are value equivalent
if their value parts either represent the same basic (inte-
ger) value, or if they both refer to an object (each in their
respective memory) belonging to the same class and the cor-
responding fields are, in turn, value equivalent.

Now, in order to formalise semantic equivalence of decom-
piled Dalvik programs, let us define what it means for two
such programs to compute the same result. Since the CLP
predicates we wish to relate result from compiling different
sources, they potentially have a different number of argu-
ments (reflecting a different number of used registers) and,
even if the predicates basically compute the same results,
they may use different registers (and thus argument posi-
tions) for storing what may essentially be the same values.
The following definition captures what it means for two such
predicates to compute the same result. It states that both
predicates must have a subsequence of their argument posi-
tions (both sequences having the same size but containing
possibly different argument positions and not necessarily in
the same order) such that when the predicates are invoked

with the corresponding arguments initialised with the same
values, then each predicate computes the same result. This
means that for each pair of arguments representing two cor-
responding registers, the value-memory pairs referred to by
these arguments must be value equivalent both at the mo-
ment the predicates are invoked (condition 1 in the defini-
tion) and at the moment the predicates return (condition
2 in the definition). Note that while the arguments (being
ground values) will not have changed over the execution of
the predicate, the memories will have: the initial memo-
ries represented by θ(M) and σ(M), the final memories by
θ′(M ′) and σ′(M ′). Finally, the values returned by each
of the methods must also be value equivalent (condition 3
in the definition). As for notation, given a sequence R, we
denote by Ri the i’th element of R.

Definition 7. Given CLP programs P1 and P2 repre-
senting decompiled Dalvik programs, let ps/ns and pq/nq
denote predicates in, respectively, P1 and P2 and let R and
R′ denote sequences of argument positions from respectively
{1, . . . ns} and {1, . . . nq} such that |R| = |R′| = n. We say
that (ps, R) computes in P1 a subset of (pq, R

′) in P2 if and
only if for each call of the form ps(V0, . . . , Vns−3,M,M ′)θ
with computed answer substitution θ′, there also exists a call
pq(V0, . . . , Vnq−3,M,M ′)σ with computed answer substitu-
tion σ′ such that the following holds for all k ∈ 0 . . . n− 1:

1. (θ(VRk), µin) ≈ (σ(VR′
k
), µ′in)

2. (θ(VRk), µout) ≈ (σ(VR′
k
), µ′out)

3. (a[0], µout) ≈ (a′[0], µ′out)

where µin = θ(M), µ′in = σ(M), µout = θ′(M ′) = 〈a, i〉,
and µ′out = σ′(M ′) = 〈a′, i′〉. Moreover, we say that (ps, R)
computes the same in P1 as does (pq, R

′) in P2 if and only if

(ps, R) computes a subset of (pq, R
′) and vice versa in their

respective programs.

The above definition allows us to characterise predicates
as computing the same results, even if these predicates only
partially exhibit the same behaviour. Indeed, what mat-
ters is that they compute the same return value and update
those parts of the memory pointed to by arguments in R,
respectively R′, in the same way. The parts of the memory
that are pointed to by arguments not comprised in either
R or R′ may be updated differently. Note that at the CLP
level, a predicate such as ps or pq will always be called with
all but the last argument (representing the output mem-
ory) a ground value. Consequently, the computed answer
for the call contains a single binding, binding the output
memory argument to a ground term. That explains why in
condition 2 of the definition we compare θ(VRk) and σ(VR′

k
)

(the argument values at the time of the call) with respect
to the output memories (representing the memory states at
the time of the return of the call).

Example 8. Figures 8 and 9 represent two Java meth-
ods for computing xn (where x and n are arguments of the
method) and the CLP code that was generated from the cor-
responding Dalvik code (not displayed). In order to make
the CLP code more readable, all intermediate non-recursive
predicates have been unfolded.1 If we call the CLP program
of Figure 8 Pexp1 and that of Figure 9 Pexp2, it is not hard
to see that (p1 0, 〈5, 4〉) computes the same result in Pexp1 as
does (p2 0, 〈6, 5〉) in Pexp2. Indeed, a closer look at the code
makes it clear that the arguments V4 and V3 in p1 0 repre-
sent, respectively, the arguments n and x from the original
method whereas in p2 0 this role is played by the arguments
V5 and V4. Moreover, from the original Java code it can
be clearly seen that both methods compute the same return
value for all possible values of the arguments.

The following proposition is trivial to prove:

Proposition 9. The “computes the same” relation de-
fined in Definition 7 is an equivalence relation.

As Example 8 illustrates, it is essential that we consider a
subset of arguments when comparing predicates since some
of the arguments, introduced by the compilation, are not
(or, due to the CLP transformations, no longer) used. This
is the case for V2 in p1 0 and both V2 and V3 in p2 0. More-
over, selecting a subset of arguments allows us to focus on
a (sub)computation of interest when considering semantic
equivalence of predicates. As a technical note, the programs
Pexp1 and Pexp2 both use two helper arguments represent-
ing the auxiliary variables k and w (represented in both
p1 0 and p2 0 by the arguments V0 and V1); therefore we
have also that they both compute the same result with re-
spect to an extended set of arguments, notably we have that
(p1 0, 〈1, 2, 5, 4〉) computes the same as (p2 0, 〈1, 2, 6, 5〉).

3.2 Structural equivalence
As is common practice in the literature on algorithm recog-

nition (see e.g. [17]), we will define algorithmic equivalence
using the notion of program transformation, the basic and

1Unfolding is one of the main transformations that we
will consider in our transformation-based approach towards
structural equivalence, see Section 3.2.

intuitive idea being that two programs are algorithmically
equivalent if one can be transformed into the other by a se-
ries of (semantic-preserving) transformations. However, the
fact that we use CLP as the representation language for the
algorithms allows us to restrict our attention to a limited
number of nonetheless powerful transformations (such as
slicing and unfolding) whereas more traditional approaches
[17] usually consider a wide variety of more low-level trans-
formations as they are working on the program’s source code
(such as renaming variables, loop unrolling, array manipu-
lations, etc.)

Let us consider a given set R of available program trans-
formations. We will in a moment provide examples of con-
crete transformations that might be considered in this set
but define first the notion of an R-transformation sequence
as follows, based on [20].

Definition 10. Let R be a set of program transforma-
tions and P a CLP program. Then an R-transformation
sequence of P is a finite sequence of CLP programs, denoted
〈P0, P1, . . . , Pn〉, where P0 = P and ∀i (0 < i ≤ n) : Pi is
obtained by the application of one transformation from R on
Pi−1.

Given a predefined set of program transformations R and
CLP programs P and Q, we will often use P ;∗R Q to
represent the fact that there exists an R-transformation se-
quence 〈P0, P1, . . . , Pn〉 with P0 = P and Pn = Q. Two
transformations of particular interest for our purpose are
the unfolding [20] and slicing [25] transformations.

Definition 11. Given a program P , let c be a clause
A← {C}, B in P , Bs one of the atoms in B, and

H1 ← {C1}, L1

...
Hn ← {Cn}, Ln

the (renamed apart) set of clauses in P such that C ∧ Ci ∧
(Bs = Hi) is satisfiable for all 1 ≤ i ≤ n. Then unfolding
the atom Bs in the clause c consists in replacing c by the set
of clauses

{A← {C ∧ Ci ∧Bs = Hi)}, B′i|1 ≤ i ≤ n}

where B′i represents the conjunction obtained by replacing,
in B, the atom Bs by the conjunction Li.

Example 12. Reconsider the program Pexp1 defined at
the right hand side in Figure 8. Unfolding the single body
atom in the clause defining p1 0 results in the program de-
fined in part (a) of Figure 11.

Definition 13. Given the definition of a predicate p in
a program P . A slice of p is a predicate p′ that is obtained
from p by removing a (possibly empty) subset of its clauses
and removing, for each remaining clause, a (possibly empty)
subset of the arguments, constraints and atoms therein.

Example 14. Consider the program Pexp2 depicted on the
right-hand side of Figure 9. We can compute the slice given
in Figure 10 by removing the third and fourth arguments
(V2 and V3) from each clause and from each call therein, as
well as removing the superfluous atom V ′2 = 1 from the last
clause’s body.

int exp1(int x, int n) {
int w = 1;
int k = n;
while (k>0) {

w = w*x;
k--;

}
return w;

}

p1 0(V0, V1, V2, V3, V4,M,M ′)←
{V ′1 = 1},
p1 2(V4, V

′
1 , V2, V3, V4,M,M ′).

p1 2(V0, V1, V2, V3, V4, 〈A, I〉, 〈A′, I〉)←
{V0 ≤ 0, A′ = A{0← V1}}.

p1 2(V0, V1, V2, V3, V4,M,M ′)←
{V0 > 0, V ′0 = V0 − 1, V ′1 = V1 ∗ V3},
p1 2(V ′0 , V

′
1 , V2, V3, V4,M,M ′).

Figure 8: The exponentiation method (version 1) and its translation into CLP, Pexp1.

int exp2(int x, int n) {
int w ;
if (n<=0)
w = 1;

else {
w = x;
int k = n;
while (k>1) {

w = w*x;
k--;

}
}
return w;

}

p2 0(V0, V1, V2, V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V5 ≤ 0, A′ = A{0← 1}}.

p2 0(V0, V1, V2, V3, V4, V5,M,M ′)←
{V5 > 0},
p2 6(V5, V4, V2, V3, V4, V5,M,M ′).

p2 6(V0, V1, V2, V3, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V0 ≤ 1, A′ = A{0← V1}}.

p2 6(V0, V1, V2, V3, V4, V5,M,M ′)←
{V0 > 1, V ′0 = V0 − 1, V ′1 = V1 ∗ V4, V

′
2 = 1},

p2 6(V ′0 , V
′
1 , V

′
2 , V3, V4, V5,M,M ′).

Figure 9: The exponentiation method (version 2) and its translation into CLP, Pexp2.

p2 0(V0, V1, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V5 ≤ 0, A′ = A{0← 1}}.

p2 0(V0, V1, V4, V5,M,M ′)←
{V5 > 0},
p2 6(V5, V4, V4, V5,M,M ′).

p2 6(V0, V1, V4, V5, 〈A, I〉, 〈A′, I〉)←
{V0 ≤ 1, A′ = A{0← V1}}.

p2 6(V0, V1, V4, V5,M,M ′)←
{V0 > 1, V ′0 = V0 − 1, V ′1 = V1 ∗ V4},
p2 6(V ′0 , V

′
1 , V4, V5,M,M ′).

Figure 10: A slice of Pexp2.

While unfolding preserves the computed answer seman-
tics of a program [20], slicing obviously does not. However,
slicing can be used to restrict the definition of a predicate
to those computations that depend only on a given subset
of the predicate’s arguments. We therefore limit ourselves
to slices that are correct in the sense that they preserve the
predicate’s semantics with respect to a given sequence of
argument positions.

Definition 15. Given a predicate p from a program P ,
a sequence R of argument positions, and a slice p′ of p. We
say that the slice p′ is correct w.r.t. R if (p′, R) computes
the same in P as does (p,R).

The above notion of correctness with respect to a sequence
of argument positions is easily generalised to a transforma-
tion sequence as a whole:

Definition 16. Given a set of program transformations
R, predicates p and p′, and sequences of argument positions
R and R′. A R-transformation sequence 〈P0, P1, . . . , Pn〉

correctly transforms (p,R) into (p′, R′) if and only if (p,R)
computes the same result in P0 as (p′, R′) in Pn.

Definition 16 essentially defines what we will see as a cor-
rect transformation sequence: one that preserves the com-
putation performed by a predicate of interest, at least with
respect to a subset of its arguments. Note that the definition
is parametrized with respect to the set R of allowed trans-
formations. Also note that the definition is quite liberal, in
the sense that it allows predicates to be renamed, arguments
(and thus computations) to be left out of the equation, and
arguments to be permuted. We are now in a position to de-
fine algorithmic equivalence, which we define with respect to
the combination of a program, a predicate, and a sequence
of argument positions. The definition is loosely based on the
notion of a semantic clone pair [8].

Definition 17. Given predicates p1 and p2 defined in,
respectively the programs P1 and P2, and sequences of ar-
gument positions R1 and R2. Then we define P1 and P2

algorithmically equivalent for (p1, R1) and (p2, R2) if and
only if there exists a program Q, predicate q and set of ar-
guments R such that P1 ;∗R Q correctly transforms (p1, R1)
into (q,R) and P2 ;∗R Q correctly transforms (p2, R2) into
(q,R).

Our approach towards defining algorithmic equivalence
is somewhat different from other transformation-based ap-
proaches in the sense that we consider programs algorith-
mically equivalent if each of them can be transformed into
a third, common, program while preserving the semantics
(with respect to a subset of argument positions). As such,
the third program captures the essence of the computations
performed by the two given programs. Note that if all trans-
formations from R are reversible, then this is equivalent to
transforming P1 into P2 or vice versa, as is the more com-
mon approach towards defining algorithmic equivalence by

transformation [17]. Observe that our definition requires
that the same predicate occurs in both program fragments;
while this may seem strange, it is easily justified by the fact
that renaming a predicate may be considered to be part of
any suitable set of transformations R.

Example 18. Let us recall the programs Pexp1 and Pexp2
from Example 8. Figure 11 shows a possible transformation
sequence starting from Pexp1. As a first step, the call to p1 2

in the definition of p1 0 is unfolded (part (a) of Figure 11),
the third argument (V2) is removed from each definition and
call by slicing (part (b)), and then the functor +1 is intro-
duced around the first argument of p1 2 both in the head of
the predicate as in each call (part (c)). Note that, in con-
trast with the slice we computed for Pexp2, only a single ar-
gument is removed during the transformation of Pexp1. Sub-
sequently, constraint simplification is applied to obtain the
final result of the transformation, Pexp (Figure 12). Since
each transformation (except the slicing operation) preserves
the semantics of the predicate of interest, p1 0, we trivially
have that the transformation sequence Pexp1 ;∗R Pexp cor-
rectly transforms (p1 0, 〈4, 5〉) into (p1 0, 〈3, 4〉). Note the
shift in argument positions due to the argument that was
removed in the process. Now, it is not hard to see that the
slice we computed of Pexp2 (see Figure 10) is nothing but
a renaming of Pexp and we have thus a transformation se-
quence Pexp2 ;∗R Pexp that correctly transforms (p2 0, 〈5, 6〉)
into (p1 0, 〈3, 4〉).

The following easy to prove result justifies our definition
for algorithmic equivalence by establishing a formal link be-
tween structural equivalence as defined by a transformation
sequence and semantic equivalence of the involved programs.

Proposition 19. Given programs P1 and P2, predicates
p1 and p2 and sequences of argument positions R1 and R2.
If P1 and P2 are algorithmically equivalent for (p1, R1) and
(p2, R2), then (p1, R1) computes the same result in P1 as
does (p2, R2) in P2.

Proof. By algorithmic equivalence (Definition 17) there
exist a program Q, predicate p and sequence of argument po-
sitions R such that P1 ;∗R Q correctly transforms (p1, R1)
and P2 ;∗R Q correctly transforms (p2, R2). By Defini-
tion 16, it follows that (p1, R1) computes in P1 the same as
does (q,R) in Q and, by the same definition and the symme-
try of the “computes the same” relation (q,R) computes in
Q the same as does (p2, R2) in P2. Transitivity of the “com-
putes the same” relation allows us to conclude the proof.

We conclude this section with a discussion of our ap-
proach. Algorithmic equivalence can be seen as an approxi-
mation of semantic equivalence, but quite stronger as it in-
corporates a syntactical component: indeed, the considered
algorithms should not only compute the same results, their
syntactical representation (at the Horn clause level) should
be related by means of the transformations in R. The fact
that our notion of algorithmic equivalence is parametrized
with this set R is coherent with the fact that there is no
single universally accepted definition for algorithmic equiva-
lence [5] and essentially allows us to define a whole hierarchy
of characterizations of R-algorithmic equivalence, for differ-
ent instantiations of R. For instance, by instantiating R to
just {id} – with id being the identity transformation – we
obtain a very strong characterization in which algorithmic

equivalence is basically a synonym for having an identical
Horn clause representation. Adding more transformations
to R allows for more liberal characterizations of algorith-
mic equivalence. For instance, when R is instantiated with
the unfolding rule, we obtain an R-algorithmic equivalent
criterion that characterises algorithms as equivalent if their
Horn clause representation is identical modulo unfolding.
Even with a limited set of transformations in R, the defini-
tion allows for multiple degrees of liberty when considering
algorithmic equivalence. In particular when a slicing trans-
formation is present, algorithms could – in an extreme case –
be characterised as equivalent even if they do not share any
computation (i.e. when all computations are sliced away
in the transformation sequence). This illustrates that the
definition, even with a suitable incarnation for R must be
tuned for the application at hand, in particular when the
application of interest is related to plagiarism detection.

4. RELATED WORK
The seminal idea of translating imperative programs into

CLP for static analysis has been introduced in [19], where a
semantics-based interpreter of an imperative programming
language is expressed as a CLP program. This interpreter
together with a term representation of the imperative pro-
gram to be analyzed is partially evaluated. The residual
CLP program is statically analyzed and the results – in-
variants expressed as linear inequalities between program
variables [7] – are brought back to the initial imperative
program. As another example, [9] proposes a method for
automatically generating verification conditions for impera-
tive programs by program specialization. The approach of
[19] has also been applied to Object-Oriented programs. For
instance, the Java bytecode static analyzer Julia [23] is able
to generate a CLP program whose termination implies the
termination of the initial Java bytecode program. As a last
example, in [1] Java bytecode programs are rewritten into a
rule based formalism similar to Horn clauses. Then, given a
cost model, cost relations are derived. A cost analysis is au-
tomatically inferred by solving such cost relations with the
help of a dedicated constraint solver.

Algorithm recognition is a well-established topic in pro-
gram analysis. We present below some of the main existing
works.

Two of the oldest related research projects are the MIT’s
Programmer’s Apprentice (see e.g., [21]) and the Knowledge
Based Software Assistant, a research program funded by the
United States Air Force (see e.g., [11]). The underlying idea
was to adapt artificial intelligence techniques to help soft-
ware development.

As an offspring of the Programmer’s Apprentice, Linda
Mills describes an automated program recognition system
in [28, 29]. It aims at helping software maintenance, trans-
lation, and debugging. Given a program and a library of
clichés, i.e., programming stereotypes and associated struc-
tures, the system builds a hierarchical description of the pro-
gram in terms of the clichés found and their relationships.

In [16], the authors present a tool called PAP Recognizer,
where PAP stands for Parallelizable Algorithmic Patterns.
It implements a plan-based technique for the hierarchical
recognition of concept-instances in the program. It aims
at automatically parallelizing the code. Another approach
to automatically replace the sequential parts of a program
with their parallelized versions is described in [17]. Although

p1 0(V0, V1, V2, V3, V4, 〈A, I〉, 〈A′, I〉′)←
{V4 ≤ 0, A′ = A{0← 1}}.

p1 0(V0, V1, V2, V3, V4,M,M ′)←
{V4 > 0, V ′0 = V4 − 1, V ′1 = 1 ∗ V3},
p1 2(V ′0 , V

′
1 , V2, V3, V4,M,M ′).

p1 2(V0, V1, V2, V3, V4, 〈A, I〉, 〈A′, I〉)←
{V0 ≤ 0, A′ = A{0← V1}}.

p1 2(V0, V1, V2, V3, V4,M,M ′)←
{V0 > 0, V ′0 = V0 − 1, V ′1 = V1 ∗ V3},
p1 2(V ′0 , V

′
1 , V2, V3, V4,M,M ′).

(a)

p1 0(V0, V1, V3, V4, 〈A, I〉, 〈A′, I〉′)←
{V4 ≤ 0, A′ = A{0← 1}}.

p1 0(V0, V1, V3, V4,M,M ′)←
{V4 > 0, V ′0 = V4 − 1, V ′1 = 1 ∗ V3},
p1 2(V ′0 , V

′
1 , V3, V4,M,M ′).

p1 2(V0, V1, V3, V4, 〈A, I〉, 〈A′, I〉)←
{V0 ≤ 0, A′ = A{0← V1}}.

p1 2(V0, V1, V3, V4,M,M ′)←
{V0 > 0, V ′0 = V0 − 1, V ′1 = V1 ∗ V3},
p1 2(V ′0 , V

′
1 , V3, V4,M,M ′).

(b)

p1 0(V0, V1, V3, V4, 〈A, I〉, 〈A′, I〉′)←
{V4 ≤ 0, A′ = A{0← 1}}.

p1 0(V0, V1, V3, V4,M,M ′)←
{V4 > 0, V ′0 = V4 − 1, V ′1 = 1 ∗ V3},
p1 2(V ′0 + 1, V ′1 , V3, V4,M,M ′).

p1 2(V0 + 1, V1, V3, V4, 〈A, I〉, 〈A′, I〉)←
{V0 ≤ 0, A′ = A{0← V1}}.

p1 2(V0 + 1, V1, V3, V4,M,M ′)←
{V0 > 0, V ′0 = V0 − 1, V ′1 = V1 ∗ V3},
p1 2(V ′0 + 1, V ′1 , V3, V4,M,M ′).

(c)

Figure 11: The transformation of program Pexp1 from Example 8.

p1 0(V0, V1, V3, V4, 〈A, I〉, 〈A′, I〉′)←
{V4 ≤ 0, A′ = A{0← 1}}.

p1 0(V0, V1, V3, V4,M,M ′)←
{V4 > 0},
p1 2(V4, V3, V3, V4,M,M ′).

p1 2(V0, V1, V3, V4, 〈A, I〉, 〈A′, I〉)←
{V0 ≤ 1, A′ = A{0← V1}}.

p1 2(V0, V1, V3, V4,M,M ′)←
{V0 > 1, V ′0 = V0 − 1, V ′1 = V1 ∗ V3},
p1 2(V ′0 , V

′
1 , V3, V4,M,M ′).

Figure 12: The transformed program Pexp.

similar to the previous work, this approach focusses on the
computationnally intensive parts of the program.

While most techniques for algorithm recognition are based
on using some kind of pattern or template matching, others
try to capture the essence of the algorithm at hand. In [2],
for example, algorithms are converted into a system of recur-
rence equations. In [26, 27], Ahmad Taherkhani proposes to
statically summarize programs by means of software metrics
and program schemas. Then a decision tree classifier acts
as an algorithm recognizer. The approach is evaluated by
classifying sorting algorithms written by students.

More recently, [31] specifically targets algorithm plagia-
rism detection. Their detection mechanism is based on ab-
stracting the algorithm by a signature that is computed from
a sequence of core values that should arise in any implemen-
tation of the algorithm. One of the advantages of such value
based signature is the resilience with respect to several ob-
fuscation techniques.

5. CONCLUSION
We have presented a generic approach to algorithm recog-

nition in binary code. Its genericity stems from two points.
On the one hand, the technique is generic with respect to
the input language, as soon as we can translate it into an
Horn-clause based representation mimicking the operational
semantics of the original target processor. On the other
hand, the approach is generic with respect to the notion of
algorithmic equivalence, via its parametric set of program
transformation rules.

One key aspect of our approach is the use of Horn clauses
as a language for representing what is basically the model of
the algorithms being compared. In addition to the before-
mentioned genericity advantage, the use of Horn clauses al-
lows one to instantiate R using a limited number of power-
ful, general, and well-understood transformations such as
unfolding, folding and slicing without the need to resort
to more low-level and less-general (or language-dependent)
transformations. Nevertheless, the question remains about
what are desirable incarnations ofR and whether one should
impose restrictions on the transformation sequences used in
the proof of algorithmic equivalence.

While a general equivalence relation on algorithms might
not exist [5], suitable incarnations of R will most proba-
bly depend on the particular application at hand. Defining
such an incarnation (and the particular notion of algorith-
mic equivalence that comes with it) remains an open and
challenging question, in particular when applications such
as plagiarism detection are concerned.

Future work will focus on developing other front-ends deal-
ing with various input languages as well as on investigat-
ing the feasibility of implementing the procedure described
in Section 3 for a limited instantiation of R. Even when
only a limited number of transformations are present in R,
developing a search procedure trying to construct an R-
transformation sequence is a non-trivial and daunting task
that might need guidance and global analysis of the pro-
gram’s at hand.

6. ACKNOWLEDGMENTS
The authors are grateful to the anonymous reviewers for

their helpful comments.

7. REFERENCES
[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and

D. Zanardini. Cost analysis of object-oriented
bytecode programs. Theor. Comput. Sci.,
413(1):142–159, 2012.

[2] C. Alias and D. Barthou. Algorithm recognition based
on demand-driven data-flow analysis. In Proceedings of
the 10th Working Conference on Reverse Engineering
(WCRE), pages 296–305, 2003.

[3] http://developer.android.com.

[4] http://source.android.com/devices/tech/dalvik/.

[5] A. Blass, N. Dershowitz, and Y. Gurevich. When are
two algorithms the same? Bull. Symbolic Logic,
15(2):145–168, 06 2009.

[6] A. R. Bradley, Z. Manna, and H. B. Sipma. What’s
decidable about arrays? In E. A. Emerson and K. S.
Namjoshi, editors, Proc. of VMCAI’06, volume 3855
of LNCS, pages 427–442. Springer, 2006.

[7] P. Cousot and N. Halbwachs. Automatic discovery of
linear restraints among variables of a program. In
Conference Record of the Fifth Annual ACM
Symposium on Principles of Programming Languages,
POPL’78, Tucson, Arizona, USA, January 1978,
pages 84–96, 1978.

[8] C. Dandois and W. Vanhoof. Semantic code clones in
logic programs. In E. Albert, editor, Proc. of the 22nd
International Symposium on Logic-Based Program
Synthesis and Transformation (LOPSTR’12), volume
7844 of LNCS, pages 35–50. Springer, 2012.

[9] E. De Angelis, F. Fioravanti, A. Pettorossi, and
M. Proietti. Semantics-based generation of verification
conditions by program specialization. In Proceedings
of the 17th International Symposium on Principles
and Practice of Declarative Programming, Siena, Italy,
July 14-16, 2015, pages 91–102, 2015.

[10] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard,
and P. J. Stuckey. Horn clauses as an intermediate
representation for program analysis and
transformation. TPLP, 15(4-5):526–542, 2015.

[11] C. Green, D. Luckham, R. Balzer, T. Cheatham, and
C. Rich. Report on a knowledge-based software
assistant. Technical report, Kestrel Institute, 1983.

[12] J. Jaffar and J. L. Lassez. Constraint logic
programming. In Proc. of the ACM Symposium on
Principles of Programming Languages, pages 111–119.
ACM, 1987.

[13] J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey.
The semantics of constraint logic programs. Journal of
Logic Programming, 37(1-3):1–46, 1998.

[14] T. Lindholm and F. Yellin. The JavaTM Virtual
Machine Specification. Addison-Wesley, second
edition, 1999.

[15] J. W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, 1987.

[16] B. D. Martino and G. Iannello. PAP recognizer: A
tool for automatic recognition of parallelizable
patterns. In 4th International Workshop on Program
Comprehension (WPC), page 164, 1996.

[17] R. Metzger and Z. Wen. Automatic Algorithm
Recognition and Replacement. The MIT Press, 2000.

[18] E. Payet and F. Mesnard. Non-termination of Dalvik
bytecode via compilation to CLP. In C. Fuhs, editor,
Proc. of the 14th International Workshop on
Termination (WST’14), pages 65–69, 2014.

[19] J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis
of imperative programs through analysis of constraint
logic programs. In Static Analysis, 5th International
Symposium, SAS ’98, Pisa, Italy, September 14-16,
1998, Proceedings, pages 246–261, 1998.

[20] A. Pettorossi and M. Proietti. Transformation of logic
programs. In Handbook of Logic in Artificial
Intelligence and Logic Programming, volume 5, pages
697–787. Oxford University Press, 1998.

[21] C. Rich, H. E. Shrobe, and R. C. Waters. Overview of
the programmer’s apprentice. In Proceedings of the
Sixth International Joint Conference on Artificial
Intelligence (IJCAI), pages 827–828, 1979.

[22] https://github.com/JesusFreke/smali.

[23] F. Spoto, F. Mesnard, and É. Payet. A termination
analyzer for Java bytecode based on path-length.
ACM Trans. Program. Lang. Syst., 32(3), 2010.

[24] M. D. Storey. Theories, methods and tools in program
comprehension: Past, present and future. In 13th
International Workshop on Program Comprehension
(IWPC), pages 181–191, 2005.

[25] G. Szilágyi, T. Gyimóthy, and J. Ma luszyński. Static
and dynamic slicing of constraint logic programs.
Automated Software Engineering, 9(1):41–65, 2002.

[26] A. Taherkhani. Using decision tree classifiers in source
code analysis to recognize algorithms: An experiment
with sorting algorithms. Comput. J.,
54(11):1845–1860, 2011.

[27] A. Taherkhani and L. Malmi. Beacon- and
schema-based method for recognizing algorithms from
students’ source code. Journal of Educational Data
Mining, 5(2):69–101, 2013.

[28] L. M. Wills. Automated program recognition: A
feasibility demonstration. Artificial Intelligence,
45(1-2):113–171, 1990.

[29] L. M. Wills. Flexible control for program recognition.
In Proceedings of Working Conference on Reverse
Engineering (WCRE), pages 134–143, 1993.

[30] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu.
Viewdroid: Towards obfuscation-resilient mobile
application repackaging detection. In Proceedings of
the 2014 ACM Conference on Security and Privacy in
Wireless and Mobile Networks, WiSec ’14, pages
25–36. ACM, 2014.

[31] F. Zhang, Y.-C. Jhi, D. Wu, P. Liu, and S. Zhu. A
first step towards algorithm plagiarism detection. In
Proceedings of the 2012 International Symposium on
Software Testing and Analysis, ISSTA 2012, pages
111–121. ACM, 2012.

