Non-termination of Dalvik bytecode via compilation to CLP

Étienne Payet and Fred Mesnard

LIM, université de la Réunion

WST’14
Reunion, a part of France and Europe
Outline

Introduction

The Dalvik Virtual Machine

Compilation to CLP

Non-termination

Conclusion
Building an Android application

.dex files

- their format is optimized for minimal memory usage
- they contain Dalvik bytecode
- dex stands for Dalvik executable
Outline

Introduction

The Dalvik Virtual Machine

Compilation to CLP

Non-termination

Conclusion
Dalvik bytecode

- is run by an instance of the **Dalvik Virtual Machine (DVM)**
- **DVM ≠ JVM** (register-based vs stack-based)
- register-based VMs better suited for devices with constrained processing power
Dalvik registers

- each method has a fresh array of registers
- invoked methods do not affect the registers of invoking methods
Some Dalvik instructions

- **const** \(d, c \)
 move constant \(c \) into register \(d \)

- **move** \(d, s \)
 move the content of register \(s \) into register \(d \)

- **add** \(d, s, c \)
 store the + of the content of register \(s \) and constant \(c \) into register \(d \)

- **if-lt** \(i, j, q \)
 if the content of register \(i \) is less than the content of register \(j \)
 then jump to program point \(q \), otherwise go on

- **goto** \(q \)
 jump to program point \(q \)

- **return**
 return from a void method

- **new-instance** \(d, \kappa \)
 move a reference to a new object of class \(\kappa \) into register \(d \)
Some Dalvik instructions

- **invoke S, meth** \(S = s_0, s_1, \ldots, s_p \) is a sequence of register indexes) The content \(r^{s_0} \) of register \(s_0 \), \ldots, \(r^{s_p} \) of register \(s_p \) are the *actual parameters* of the call. Value \(r^{s_0} \) is called *receiver* of the call and must be 0 (the equivalent of `null` in Java) or a reference to an object \(o \). In the former case, the computation stops with an exception. Otherwise, a *lookup procedure* is started from the class of \(o \) upwards along the superclass chain, looking for a method with the same signature as \(m \). That method is run from a state where its last registers are bound to \(r^{s_0}, r^{s_1}, \ldots, r^{s_p} \).

- **iget d, i, f** (resp. **iput s, i, f**)
 The content \(r^i \) of register \(i \) must be 0 or a reference to an object \(o \). If \(r^i \) is 0, the computation stops with an exception. Otherwise, \(o(f) \) (the value of field \(f \) of \(o \)) is stored into register \(d \) (resp. the content of register \(s \) is stored into \(o(f) \)).
Outline

Introduction

The Dalvik Virtual Machine

Compilation to CLP

Non-termination

Conclusion
Memory model

- A *memory* is a pair \((a, i)\) where \(a\) is an array of *objects* and \(i\) is the index into this array where the next insertion will take place.

- An *object* \(o\) is an array of terms of the form

 \[[w, f_1(v_1), \ldots, f_n(v_n)] \]

 where \(w\) is the name of the class of \(o\), \(f_1, \ldots, f_n\) are the names of the fields defined in this class and \(v_1, \ldots, v_n\) are the current values of these fields in \(o\).

The first component of a memory is an array of arrays of terms and a memory location is an index into this array. Memory locations start at 1 and 0 corresponds to the null value.
Compilation rules: introduction

- we associate a predicate symbol p_q to each program point q of the Dalvik program
- we generate clauses with constraints on integer and array terms
- $a[i]$ returns the value stored at position i of the array a
 $a\{i \leftarrow e\}$ is a modified so that position i has value e
- each rule considers an instruction ins occurring at a program point q
- let r is the number of registers used by a method m, for each $i \in [0, r - 1]$, variable V_i (resp. V'_i) models the content of register i before (resp. after) executing m
- M denotes the input memory and M' the output memory
- \bar{V} and M (or $[A, I]$) in the head of the clauses are input parameters while M' is an output parameter
Compilation rules

const d, c moves constant c into register d, the output register variable V'_d is set to c while the other register variables remain unchanged (modelled with id_{-d})

$$
\text{const } d, c \\
p_q(\tilde{V}, M, M') \leftarrow \{V'_d = c\} \cup id_{-d}, p_{q+1}(\tilde{V}', M, M')
$$

if-lt i, j, q'

$$
\begin{align*}
\{ & p_q(\tilde{V}, M, M') \leftarrow \{V_i < V_j\} \cup id, p_q'(\tilde{V}', M, M'), \\
& p_q(\tilde{V}, M, M') \leftarrow \{V_i \geq V_j\} \cup id, p_{q+1}(\tilde{V}', M, M') \}
\end{align*}
$$
Compilation rules

\[
\begin{align*}
\text{return} \\
p_q(\tilde{V}, M, M') &\leftarrow \{ M' = M \}
\end{align*}
\]

invoke \(s_0, \ldots, s_p, m\)

\[
\begin{align*}
p_q(\tilde{V}, M, M') &\leftarrow \{ V_{s_0} > 0 \} \cup id, \\
\text{lookup}_P(M, V_{s_0}, m, q_{m'}), \\
p_{q_{m'}}(\tilde{X}_{m'}, M, M_1), \\
p_{q+1}(\tilde{V}', M_1, M')
\end{align*}
\]

\(m' \in \text{sign}(m)\)
and \(\tilde{X}_{m'} = 0, \ldots, 0, V_{s_0}, \ldots, V_{s_p}\)
with \(|\tilde{X}_{m'}| = \text{reg}(m')\)
Compilation rules

new-instance \(d, \kappa \)
\(w \) is the name of class \(\kappa \) and \(f_1, \ldots, f_n \) are the names of the fields defined in \(\kappa \)

\[
p_q(\tilde{V}, [A, I], M') \leftarrow \{ O[0] = w, \ O[1] = f_1(0), \ldots, \ O[n] = f_n(0), \ A_1 = A\{I \leftarrow O\}, \ V_d' = I, \ I_1 = I + 1 \} \cup id_{-d}, \ p_{q+1}(\tilde{V}', [A_1, I_1], M')
\]

iget \(d, i, f \)

\[
p_q(\tilde{V}, [A, I], M') \leftarrow \{ V_i > 0, \ A[V_i, F] = f(V_d') \} \cup id_{-d}, \ p_{q+1}(\tilde{V}', [A, I], M')
\]

iput \(s, i, f \)

\[
p_q(\tilde{V}, [A, I], M') \leftarrow \{ V_i > 0, \ O = A[V_i], \ O[F] = f(X), \ O_1 = O\{F \leftarrow f(V_s)\}, \ A_1 = A\{V_i \leftarrow O_1\}\} \cup id, \ p_{q+1}(\tilde{V}', [A_1, I], M')
\]
Compilation rules

Theorem

Let P_{CLP} denote the CLP program resulting from the compilation of P.

P_{CLP} operationally mimics P.
Outline

Introduction

The Dalvik Virtual Machine

Compilation to CLP

Non-termination

Conclusion
Non-termination

Theorem
Let \(r = p(\tilde{x}) \leftarrow c, p(\tilde{y}) \) and \(r' = p'(\tilde{x}') \leftarrow c', p(\tilde{y}') \) be two CLP clauses. Suppose there exists a set \(\mathcal{G} \) such that
\[
\begin{align*}
\& [\forall \tilde{x} \exists \tilde{y} \, \tilde{x} \in \mathcal{G} \Rightarrow (c \land \tilde{y} \in \mathcal{G})] \\
\& [\exists \tilde{x}' \exists \tilde{y}' \, c' \land \tilde{y}' \in \mathcal{G}]
\end{align*}
\]
are true. Then \(p' \) has an infinite computation in \(\{r, r'\} \):
\[
r' \rightarrow r \rightarrow r \rightarrow \ldots
\]
An example

Consider the following Android program with the Java syntax on the left and the corresponding Dalvik bytecode \(P \) on the right, where \(v0, v1, \ldots \) denote registers 0, 1, \ldots

```java
public class Loops {
    int i;
    public void m(int n, Loops x) {
        while (this.i < n) {
            this.i++;
            x.i--;
        }
    }
}

.method public m(ILoops)V
    .registers 4
    0: iget v0, v1, Loops->i:I
    1: if-lt v0, v2, 3
    2: return-void
    3: iget v0, v1, Loops->i:I
    4: add-int/lit8 v0, v0, 0x1
    5: iput v0, v1, Loops->i:I
    6: iget v0, v3, Loops->i:I
    7: add-int/lit8 v0, v0, -0x1
    8: iput v0, v3, Loops->i:I
    9: goto 0
.end method
```
An example

The non-terminating method `loop` is called when the user taps a button. Execution of this method does not terminate because in the call to `m`, the objects `o1` and `o2` are aliased and therefore by decrementing `x.i` we are also decrementing `this.i` in the loop of method `m`.

```java
public class MyActivity extends Activity {
    /*...*/
    .method public loop(Landroid/view/View;)V

    public void loop(View v) {
        Loops o1 = new Loops();
        Loops o2 = o1;
        o1.m(2, o2);
    }
    /*...*/

    .end method
```
An example

E.g., we get the following clauses of P_{CLP} for program points 0 and 14:

\[
p_0(\tilde{V}, [A, I], M') \leftarrow \{ A[V_1, F] = i(V'_0) \} \cup id_{-0}, \]
\[
p_1(\tilde{V}', [A, I], M')
\]

\[
p_{14}(\tilde{V}, M, M') \leftarrow \{ V_0 > 0 \} \cup id, \]
\[
lookup_P(M, V_0, \text{Loops} \rightarrow \text{m(ILoops)}V, 0), \]
\[
p_0(0, V_0, V_2, V_1, M, M_1), \]
\[
p_{15}(\tilde{V}', M_1, M')
\]
An example

The set of binary unfoldings of P_{CLP} contains:

$$r: \quad p_0(\tilde{V}, [A, I], M') \leftarrow \{ V_1 > 0, \ O = A[V_1], \ O[F] = i(X), \ X < V_2, \ O_1 = O\{F \leftarrow i(X + 1)\}, \ A_1 = A\{V_1 \leftarrow O_1\}, \ V_3 > 0, \ O' = A_1[V_3], \ O'[F'] = i(X'), \ V'_0 = X' - 1, \ O'_1 = O'\{F' \leftarrow i(V'_0)\}, \ A_2 = A_1\{V_3 \leftarrow O'_1\}\} \cup id_{-0}, \ p_0(\tilde{V}', [A_2, I], M')$$

$$r': \quad p_{10}(\tilde{V}, [A, I], M') \leftarrow \{ O[0] = loops, \ O[1] = i(0), \ A_1 = A\{I \leftarrow O\}, \ I_1 = I + 1, \ I > 0\}, \ p_0((0, I, 2, I), [A_1, I_1], M_1)$$

where r corresponds to the path $0 \rightarrow 1 \rightarrow 3 \rightarrow 4 \rightarrow \cdots \rightarrow 9 \rightarrow 0$ and r' to the path $10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow 0$ in P.
An example

P has an infinite execution from program point 10.

Details:

- In r', O corresponds to both o_1 and o_2, which expresses that o_1 and o_2 are aliased. Note that I, the address of O, is passed to p_0 both as second and fourth parameter, which corresponds in r to V_1 (this in method m) and V_3 (x in m).

- Moreover, when $V_1 = V_3$ in r, we have $O' = O_1$, $F' = F$ and $X' = X + 1$, hence $V_0' = X' - 1 = X$. Therefore, we have $O_1' = O$, so $A_2 = A$.

- The logical formulas of the non-termination theorem are true for $G = \{ (\tilde{v}, \text{mem}, \text{mem'}) \in D^3 | v_1 = v_3 \}$.
Outline

Introduction

The Dalvik Virtual Machine

Compilation to CLP

Non-termination

Conclusion
Conclusion

Summary:

- a technique to detect potential loops in Dalvik bytecode

Future works:

- write a solver for array constraints and fully implement the technique
- extend the compilation rules by considering the operational semantics of components of Android
Thank you!

Questions?