
Non-termination of Dalvik bytecode via
compilation to CLP

Étienne Payet and Fred Mesnard

LIM, université de la Réunion

WST’14

Reunion, a part of France and Europe

Outline

Introduction

The Dalvik Virtual Machine

Compilation to CLP

Non-termination

Conclusion

Building an Android application

http://developer.android.com/tools/building/index.html

http://developer.android.com/tools/building/index.html

.dex files

I their format is optimized for minimal memory usage

I they contain Dalvik bytecode

I dex stands for Dalvik executable

Outline

Introduction

The Dalvik Virtual Machine

Compilation to CLP

Non-termination

Conclusion

Dalvik bytecode

I is run by an instance of the Dalvik Virtual Machine (DVM)

I DVM 6= JVM (register-based vs stack-based)

I register-based VMs better suited for devices with constrained
processing power

Dalvik registers

I each method has a fresh array of registers

I invoked methods do not affect the registers of invoking
methods

Some Dalvik instructions

I const d , c
move constant c into register d

I move d , s
move the content of register s into register d

I add d , s, c
store the + of the content of register s and constant c into
register d

I if -lt i , j , q
if the content of register i is less than the content of register j
then jump to program point q, otherwise go on

I goto q
jump to program point q

I return
return from a void method

I new -instance d , κ
move a reference to a new object of class κ into register d

Some Dalvik instructions

I invoke S ,meth (S = s0, s1, . . . , sp is a sequence of register
indexes) The content r s0 of register s0, . . . , r sp of register sp

are the actual parameters of the call. Value r s0 is called
receiver of the call and must be 0 (the equivalent of null in
Java) or a reference to an object o. In the former case, the
computation stops with an exception. Otherwise, a lookup
procedure is started from the class of o upwards along the
superclass chain, looking for a method with the same
signature as m. That method is run from a state where its
last registers are bound to r s0 , r s1 , . . . , r sp .

I iget d , i , f (resp. iput s, i , f)
The content r i of register i must be 0 or a reference to an
object o. If r i is 0, the computation stops with an exception.
Otherwise, o(f) (the value of field f of o) is stored into
register d (resp. the content of register s is stored into o(f)).

Outline

Introduction

The Dalvik Virtual Machine

Compilation to CLP

Non-termination

Conclusion

Memory model

I a memory is a pair (a, i) where a is an array of objects and i is
the index into this array where the next insertion will take
place

I an object o is an array of terms of the form
[w , f1(v1), . . . , fn(vn)] where w is the name of the class of o,
f1, . . . , fn are the names of the fields defined in this class and
v1, . . . , vn are the current values of these fields in o

The first component of a memory is an array of arrays of terms
and a memory location is an index into this array.
Memory locations start at 1 and 0 corresponds to the null value.

Compilation rules: introduction

I we associate a predicate symbol pq to each program point q
of the Dalvik program

I we generate clauses with constraints on integer and array
terms

I a[i] returns the value stored at position i of the array a
a{i ← e} is a modified so that position i has value e

I each rule considers an instruction ins occurring at a program
point q

I let r is the number of registers used by a method m, for each
i ∈ [0, r − 1], variable Vi (resp. V ′i) models the content of
register i before (resp. after) executing m

I M denotes the input memory and M ′ the output memory

I Ṽ and M (or [A, I]) in the head of the clauses are input
parameters while M ′ is an output parameter

Compilation rules

const d , c moves constant c into register d , the output register
variable V ′d is set to c while the other register variables remain
unchanged (modelled with id−d)

const d , c

pq(Ṽ ,M,M ′)← {V ′d = c} ∪ id−d , pq+1(Ṽ ′,M,M ′)

if -lt i , j , q′

{ pq(Ṽ ,M,M ′)← {Vi < Vj} ∪ id , pq′(Ṽ ′,M,M ′),

pq(Ṽ ,M,M ′)← {Vi ≥ Vj} ∪ id , pq+1(Ṽ ′,M,M ′) }

Compilation rules

return

pq(Ṽ ,M,M ′)← {M ′ = M}

invoke s0, . . . , sp,m8>><>>:
pq(Ṽ ,M,M ′) ← {Vs0 > 0} ∪ id ,

lookupP(M,Vs0 ,m, qm′),

pqm′ (X̃m′ ,M,M1),

pq+1(Ṽ ′,M1,M
′)

m′ ∈ sign(m)

and X̃m′ = 0, . . . , 0,Vs0 , . . . ,Vsp

with |X̃m′ | = reg(m′)

9>>=>>;

Compilation rules

new -instance d , κ
w is the name of class κ and f1, . . . , fn are the names of the fields defined in κ

pq(Ṽ , [A, I],M ′)←
˘
O[0] = w , O[1] = f1(0), . . . , O[n] = fn(0),

A1 = A{I ← O}, V ′d = I , I1 = I + 1
¯
∪ id−d , pq+1(Ṽ ′, [A1, I1],M ′)

iget d , i , f

pq(Ṽ , [A, I],M ′)←
˘
Vi > 0, A[Vi ,F] = f (V ′d)

¯
∪ id−d , pq+1(Ṽ ′, [A, I],M ′)

iput s, i , f

pq(Ṽ , [A, I],M ′)←
˘
Vi > 0, O = A[Vi], O[F] = f (X), O1 = O{F ← f (Vs)},

A1 = A{Vi ← O1}
¯
∪ id , pq+1(Ṽ ′, [A1, I],M ′)

Compilation rules

Theorem
Let PCLP denote the CLP program resulting from the compilation
of P.
PCLP operationally mimics P.

Outline

Introduction

The Dalvik Virtual Machine

Compilation to CLP

Non-termination

Conclusion

Non-termination

Theorem
Let r = p(x̃)← c , p(ỹ) and r ′ = p′(x̃ ′)← c ′, p(ỹ ′) be two CLP
clauses. Suppose there exists a set G such that

I
[
∀x̃∃ỹ x̃ ∈ G ⇒ (c ∧ ỹ ∈ G)

]
I

[
∃x̃ ′∃ỹ ′ c ′ ∧ ỹ ′ ∈ G

]
are true. Then p′ has an infinite computation in {r , r ′}:
r ′ → r → r → . . .

An example

Consider the following Android program with the Java syntax on
the left and the corresponding Dalvik bytecode P on the right,
where v0, v1, . . . denote registers 0, 1, . . .

public class Loops { .method public m(ILoops)V

int i; .registers 4

public void m(int n, Loops x) { 0: iget v0, v1, Loops->i:I

while (this.i < n) { 1: if-lt v0, v2, 3

this.i++; 2: return-void

x.i--; 3: iget v0, v1, Loops->i:I

} 4: add-int/lit8 v0, v0, 0x1

} 5: iput v0, v1, Loops->i:I

} 6: iget v0, v3, Loops->i:I

7: add-int/lit8 v0, v0, -0x1

8: iput v0, v3, Loops->i:I

9: goto 0

.end method

An example

The non-terminating method loop is called when the user taps a
button. Execution of this method does not terminate because in
the call to m, the objects o1 and o2 are aliased and therefore by
decrementing x.i we are also decrementing this.i in the loop of
method m.

public class MyActivity extends Activity {

... .method public loop(Landroid/view/View;)V

public void loop(View v) { .registers 5

Loops o1 = new Loops(); 10: new-instance v0, Loops

Loops o2 = o1; 11: invoke-direct {v0}, Loops-><init>()V

o1.m(2, o2); 12: move-object v1, v0

} 13: const/16 v2, 0x2

... 14: invoke-virtual {v0, v2, v1},

Loops->m(ILoops)V

} 15: return-void

.end method

An example

E.g., we get the following clauses of PCLP for program points 0
and 14:

p0(Ṽ , [A, I],M ′)← {A[V1,F] = i(V ′0)} ∪ id−0,

p1(Ṽ ′, [A, I],M ′)

p14(Ṽ ,M,M ′)← {V0 > 0} ∪ id ,
lookupP(M,V0, Loops->m(ILoops)V, 0),
p0(0,V0,V2,V1,M,M1),

p15(Ṽ ′,M1,M
′)

An example

The set of binary unfoldings of PCLP contains:

r : p0(Ṽ , [A, I],M ′)←
{

V1 > 0, O = A[V1], O[F] = i(X), X < V2,

O1 = O{F ← i(X + 1)}, A1 = A{V1 ← O1},
V3 > 0, O ′ = A1[V3], O ′[F ′] = i(X ′), V ′0 = X ′ − 1,

O ′1 = O ′{F ′ ← i(V ′0)}, A2 = A1{V3 ← O ′1}
}
∪ id−0,

p0(Ṽ ′, [A2, I],M ′)

r ′ : p10(Ṽ , [A, I],M ′)← {O[0] = loops, O[1] = i(0), A1 = A{I ← O},
I1 = I + 1, I > 0},
p0((0, I , 2, I), [A1, I1],M1)

where r corresponds to the path 0→ 1→ 3→ 4→ · · · → 9→ 0
and r ′ to the path 10→ 11→ 12→ 13→ 14→ 0 in P.

An example

P has an infinite execution from program point 10.

Details:
I In r ′, O corresponds to both o1 and o2, which expresses that o1 and o2

are aliased. Note that I , the address of O, is passed to p0 both as second
and fourth parameter, which corresponds in r to V1 (this in method m)
and V3 (x in m).

I Moreover, when V1 = V3 in r , we have O ′ = O1, F ′ = F and X ′ = X + 1,
hence V ′0 = X ′ − 1 = X . Therefore, we have O ′1 = O, so A2 = A.

I The logical formulas of the non-termination theorem are true for
G = {(ṽ ,mem,mem′) ∈ D3|v1 = v3}.

Outline

Introduction

The Dalvik Virtual Machine

Compilation to CLP

Non-termination

Conclusion

Conclusion

Summary:

I a technique to detect potential loops in Dalvik bytecode

Future works:

I write a solver for array constraints and fully implement the
technique

I extend the compilation rules by considering the operational
semantics of components of Android

Thank you!

Questions?

	Introduction
	The Dalvik Virtual Machine
	Compilation to CLP
	Non-termination
	Conclusion

