
Variable Ranges in Linear Constraints

Salvatore Ruggieri
Dipartimento di Informatica,

Università di Pisa, Italy
ruggieri@di.unipi.it

Fred Mesnard
Lim-Iremia,

Université de la Réunion, France
frederic.mesnard@univ-reunion.fr

ABSTRACT
We introduce an extension of linear constraints, called linear-
range constraints, which allows for (meta-)reasoning about
the approximation width of variables. Semantics for linear-
range constraints is provided in terms of parameterized lin-
ear systems. We devise procedures for checking satisfiability
and for entailing the maximal width of a variable. An exten-
sion of the constraint logic programming language CLP(R)
is proposed by admitting linear-range constraints.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Constraint and logic
languages; D.3.3 [Language Constructs and Features]:
Constraints

Keywords
Linear constraints, Constraint Logic Programming, Interval
Arithmetic, Parameterized Polyhedra.

1. INTRODUCTION
Interval arithmetic over the reals has been the subject of

extensive studies in the literature since the seminal work of
[9], with practical implications in computing with approxi-
mations. Programming with intervals has been proposed in
the constraint logic programming framework in languages
such as CLP(BNR), Newton and CLIP [1, 3, 4]. In this pa-
per, we are interested in linear constraints. As an example,
consider the following constraint c:

100 - R/10 - H/5 ≤ C, C ≤ 100 - R/10,

0 ≤ R, R ≤ 500, 0 ≤ H, H ≤ 100,

where R and H are distances in meters, and C is a Celsius
temperature. The constraint 100 - R/10 - H/5 ≤ C, C ≤
100 - R/10 is intended to provide an estimate of the tem-
perature at a distance R and at an height H from the center
of a heating source. The constraint 0 ≤ R, R ≤ 500, 0 ≤
H, H ≤ 100 provides the intervals of R and H for which the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

estimate holds. The linear constraint c can be used to de-
rive the temperature at a given distance and height from the
center of the heating source. For instance, the solved form
of c, R = 160, H = 20 includes 80 ≤ C, C ≤ 84, or, with a
different notation, C = 82 ± 2, or, in the interval syntax, C
∈ [80, 84]. Often, also the input variables are known with
some approximation. For instance, due to the measurement
error of a GPS device, distance and height could be known
with an approximation of ±20 meters and ±10 meters re-
spectively. In the above example, we could model such a case
by solving the constraint c, 140 ≤ R, R ≤ 180, 10 ≤ H,

H ≤ 30 to derive 72 ≤ C ≤ 84, namely that the tempera-
ture is 78±6. In general, can we conclude that the approxi-
mation of the computed C is up to ±6 when R is known with
an approximation of ±20 and H is known with an approxi-
mation of ±10? The answer is negative. In fact, by solving
c, 140 ≤ R, R ≤ 180, 80 ≤ H, H ≤ 100 we derive 72 ≤
C ≤ 86, namely that the temperature is 79± 7.

In this paper, we add range (meta-)variables to linear con-
straints as a means to reason on the approximation of vari-
ables. For a variable x, the range variable δx denotes the
maximum approximation of x. For instance, the inequality
δx ≤ 1 is interpreted as “x is known with an approximation
of up to ±1”. Differently from interval arithmetic, we are
not asserting a specific interval for x but a constraint on
the interval width for x. Linear-range constraints mix lin-
ear inequalities with upper and lower bounds on range vari-
ables. Reconsidering the above example, the linear-range
constraint c, δR ≤ 20, δH ≤ 10 models the case that R is known
with an approximation of up to ±20 and H is known with
an approximation of up to ±10. The question we posed can
then be restated as follows: does c, δR ≤ 20, δH ≤ 10 entail
δC ≤ 6? The semantics of linear-range constraints is formu-
lated by compiling them into parameterized linear systems
and the problem of entailing δx ≤ s, for s ∈ R given a linear-
range constraint is solved by reasoning over parameterized
linear systems. On these basis, we propose a conservative
extension of CLP(R), constraint logic programming over the
reals, to include linear-range constraints.

1.1 Notation and Background
We adhere to standard notation of linear algebra [10]. R

is the set of real numbers. Small capital letters (a, b, . . .)
denote column vectors, while capital letters (A, B, . . .) de-
note matrices. 0 is the column vector with all elements equal
to 0. ai denotes the ith element in a, and row(A, i) the row
vector consisting of the ith row of A. cTx denotes the in-
ner product of column vectors c and x. Ax ≤ b denotes
a system of linear inequalities over the variables in x. We

assume that the dimensions of vectors and matrices in inner
products and linear systems are of the appropriate size. An
equivalent formulation of linear systems is provided in terms
of logic formulas. A primitive linear constraint is an expres-
sion a1 ·x1 + . . . an ·xn ≤ a0, where a0, . . . , an are constants
in R and x1, . . . , xn are variables. We will also use the inner
product form by rewriting it as cTx ≤ α. A linear constraint
c is a sequence of primitive constraints, whose interpretation
is their conjunction. Inequalities cTx ≥ α and equalities
cTx = α can be reduced to linear constraints. We write
vars(c) to denote the set of variables occurring in the linear
constraint c. A polyhedron is the set of solution points that
satisfy a linear system: Sol(Ax ≤ b) = {x ∈ Rn | Ax ≤ b}.
Next, we define the width of a variable.

Definition 1.1 (width). Let S = Sol(Ax ≤ b) be a
non-empty polyhedron, and x a variable in x. We define:
width(S, x) = max{x | x ∈ S} − min{x | x ∈ S} if both
min and max exist. Otherwise, width(S, x) = ∞. For an
empty polyhedron S = ∅, we define: width(S, x) = 0.

The radius of a variable is the half of its width. Notice
that ∞ ≥ s and ∞ 6= s hold for every s ∈ R. Also, we set
max S =∞ if ∞ ∈ S, and max S = 0 if S = ∅.

2. LINEAR-RANGE CONSTRAINTS
Let us first introduce some syntactic means for denoting

variable ranges.

Definition 2.1. Let V ar be the set of linear constraint
variables. We define ∆ = {δx | x ∈ V ar} as the set of range
variables.

Intuitively, for a variable x appearing in a linear constraint
c, the interpretation of δx is that “the range of x is ±δx”, or,
more formally, that the radius of x in the solutions of c is
δx. Range constraints are now introduced.

Definition 2.2. A primitive range constraint is an in-
equality δx ' s, where ' is in {≤,≥} and s ≥ 0 ∈ R.

A range constraint d is a sequence of primitive range con-
straints. A linear-range constraint c ∧ d is a sequence of
linear constraints and range constraints.

We write δx = s as a shorthand for δx ≤ s, δx ≥ s.
What is the semantics of a linear-range constraint? In-

tuitively, 0 ≤ x ≤ 2 denotes a set of values for x rang-
ing from 0 to 2, and, under this interpretation, one would
conclude δx = 1. The linear-range constraint 1 ≤ x ≤
4, δx ≤ 1 denotes a collection of intervals for x of the form
[max(1, a − δ),min(4, a + δ)] with a ∈ R and 0 ≤ δ ≤ 1.
Finally, given x = 2y, δy ≤ 1, δx ≥ 3, we should conclude
its unsatisfiability since the approximation of x is at most
2, namely the double of the approximation of y, which is in
contradiction with δx ≥ 3.

Definition 2.3 (semantics). A model of a linear-ran-
ge constraint c ∧ d is a non-empty polyhedron:

S = Sol(c ∧
∧

δx∈vars(d)

x ≤ x ≤ x)

where x, x ∈ R such that for every δx ' s in d with ' in
{≤,≥}, we have: width(S, x) ' 2s.
c ∧ d is satisfiable if there exists a model of it.
Finally, c ∧ d entails δx ≤ s if every model of c ∧ d is a

model of δx ≤ s.

When d is empty, satisfiability conservatively boils down
to the condition Sol(c) 6= ∅. Towards providing a proce-
dure for checking satisfiability in the general case, we first
compile linear-range constraints into parameterized linear
systems. A parameterized linear system of inequalities (or,
parameterized linear constraint) is a linear system Ax ≤
b + Ba where a is a vector of parameters. Parameter-
ized linear systems trace back to late 60’s in the context
of (multi)parametric linear programming [2].

Definition 2.4. For a linear-range constraint c ∧ d, we
define the parameterized linear system:

S(c ∧ d) = c ∧ d ∧
∧

δx∈vars(d)

(ax−δx ≤ x ≤ ax+δx, 0 ≤ δx),

where the ax, δx’s are parameters.

Example 2.5. Consider the three linear-range constraints
previously introduced.
S(0 ≤ x ≤ 2) is 0 ≤ x ≤ 2, that is a zero-parameter linear

system or, equivalently, a linear system.
S(1 ≤ x ≤ 4, δx ≤ 1) is 1 ≤ x ≤ 4, ax − δx ≤ x ≤

ax + δx, 0 ≤ δx ≤ 1. Intuitively, here ax models an approxi-
matively known value for x, and δx models its radius.

Finally, S(x = 2y, δy ≤ 1, δx ≥ 3) is x = 2y, ay − δy ≤
y ≤ ay + δy, 0 ≤ δy ≤ 1, ax − δx ≤ x ≤ ax + δx, δx ≥ 3.

The notion of parameterized polyhedra [8] models the so-
lutions of a parameterized linear system.

Definition 2.6. A parameterized polyhedron is the col-
lection of polyhedra defined by fixing the values of the pa-
rameters in a parameterized linear system: Sol(Ax ≤ b +

Ba,u) = {x | Ax ≤ b+Bu}, where u ∈ R|a| is an instance
of the parameters a.

Sol() is now a binary function. In addition to a system of
parameterized linear inequalities, an assignment to parame-
ters is required.

Example 2.7. Consider Ex. 2.5. The parameterized poly-
hedron of S(0 ≤ x ≤ 2) boils down to the polyhedron Sol(0 ≤
x ≤ 2), as one would expect.

For S(1 ≤ x ≤ 4, δx ≤ 1), we enumerate below the poly-
hedra obtained by fixing δx = 1, namely by assuming the
largest approximation possible for x:

Sol(1 ≤ x ≤ ax + 1) when ax ≤ 2

Sol(ax − 1 ≤ x ≤ ax + 1) when 2 ≤ ax ≤ 3

Sol(ax − 1 ≤ x ≤ 4) when 3 ≤ ax.

Finally, S(x = 2y, δy ≤ 1, δx ≥ 3) is, unexpectedly, non-
empty. For instance, by fixing δx = 3, δy = 0, ax = 0, ay = 0,
we have that x = 0, y = 0 is a solution.

From Def. 2.3, when d contains only upper bounds to
range variables, the set of models of c ∧ d coincides with
the set of non-empty polyhedra obtained by instantiating the
parameters of S(c ∧ d). However, the last example points
out that this is not the general case. The problem is that
lower bounds are not monotonic in the precise sense that
Sol(S(δx ≥ 3), (ax = 0, δx = 3)) is a model of δx ≥ 3, and
Sol(S(x = 2y, δy ≤ 1), (ay = 0, δy = 0)) is a model of x =
2y, δy ≤ 1, but Sol(S(x = 2y, δy ≤ 1, δx ≥ 3), (ax = 0, δx =
3, ay = 0, δy = 0)) is not a model of x = 2y, δy ≤ 1, δx ≥ 3.
Then, we explicitly restrict to parameter instances that sat-
isfy the lower bounds in a range constraint.

Definition 2.8. Let S = S(c ∧ d). We say that a pa-
rameter instance u is a solution of d in S if for every δx ≥ s
in d, we have: width(Sol(S,u), x) ≥ 2s.

Also, we extend the width() function in the context of
parameterized polyhedra.

Definition 2.9 (parwidth). Let S = Ax ≤ b + Ba
be a parameterized linear system. The width of x in S is
defined as: parwidth(S, x) = maxu width(Sol(S,u), x), if
it exists. Otherwise, parwidth(S, x) =∞.

We postpone to the next section the problem of effectively
computing parwidth() and checking the existence of a solu-
tion of d. The next result shows how to check satisfiability of
a linear-range constraint. Since parwidth(S(c ∧ d), x) turns
out to be an upper bound to the maximal width of x in any
model of a satisfiable c ∧ d, it can be adopted in the entail-
ment problem.

Theorem 2.10. A linear-range constraint c ∧ d is satis-
fiable iff c is satisfiable, and d ∧

∧
δx∈vars(d) 0 ≤ δx is satis-

fiable as a linear constraint, and there exists a solution of d
in S(c ∧ d).

For c∧d satisfiable and s = parwidth(S(c ∧ d), x)/2 6= ∞,
we have that c ∧ d entails δx ≤ s.

Notice that when d contains only upper bounds to range
variables, satisfiability of c ∧ d reduces to satisfiability of c.
In fact, by setting δx = 0 for every x, we readily have that
d ∧

∧
δx∈vars(d) 0 ≤ δx is satisfiable.

Example 2.11. Let c ∧ d be 0 ≤ x ≤ 10, 0 ≤ y ≤ x, δx =
3, δy ≥ 4. The parameterized linear system S = S(c ∧ d) is:

0 ≤ x ≤ 10, 0 ≤ y ≤ x, δx = 3, 4 ≤ δy,
ax − δx ≤ x ≤ ax + δx, ay − δy ≤ y ≤ ay + δy,

where ax, ay, δx, δy are parameters. Since c and δx = 3, δy ≥
4 are readily satisfiable, in order to use Thm. 2.10, we have
to find a parameter instance u such that width(Sol(S,u), x)
≥ 6, since δx ≥ 3 is in d, and width(Sol(S,u), y) ≥ 8, since
δy ≥ 4 is in d. By defining u as:

ax = 7, δx = 3, ay = 5, δy = 5,

we have width(Sol(S,u), x) = 6 and width(Sol(S,u), y) =
10, namely u is a solution for d in S.

3. COMPUTING WIDTHS
We recall an intermediate notion to capture the maximum

absolute value r, if it exists, of a linear expression over the
solutions of a (non-parameterized) polyhedron.

Definition 3.1. For S = Sol(Ax ≤ b) 6= ∅, we define
abs(S, cTx + α) = max{|cTx0 + α| | x0 ∈ S} if it exists.
Otherwise, abs(S, cTx + α) =∞.

A direct implementation of the abs() function relies on
standard linear programming problems. For M = max{cTx
+α | x ∈ S} and m = min{cTx + α | x ∈ S}, we have
that abs(S, cTx + α) = r ∈ R iff M ∈ R,m ∈ R and
max{M,−m} = r. Let us now tackle the problem of com-
puting parwidth() by reasoning on the Minkowski’s form of
parameterized linear systems, a generalization due to [8] of
the well-known Minkowski’s theorem. An implementation
of the following result is provided in the polylib library [7].

Theorem 3.2 ([8]). For a parameterized linear system
Ax ≤ b + Ba there exist:

• a generating matrix R,

• and finitely many pairs (va(1),C1a ≤ c1), . . ., (va(k),
Cka ≤ ck) where, for i = 1..k, va(i) is a vector para-
metric in a and Sol(Cia ≤ ci) 6= ∅,

such that:

Sol(Ax ≤ b + Ba,u) = Cone(R)+

ConvexHull({vu(i) | i = 1..k,Ciu ≤ ci }).

A column of R is called a ray. The set Cone(R) =
{x | x = Rλ,λ ≥ 0 } is the cone generated by the rays.

A vector va(i) is called a parameterized vertex. The set
ConvexHull(V) = {x | x = Vγ,γ ≥ 0,Σγ = 1 }, where V
is a finite set of vectors, is the convex hull of the vertices,
namely the smallest convex set which contains all vertices.

A system Cia ≤ ci is called the validity domain of the
vertex va(i). For a parameter instance u, the convex hull
set is built from the (instantiated) vertices whose validity
domain includes u. The special case k = 0 models empty
parameterized polyhedra, which are empty for every instance
of the parameters.

Example 3.3. Consider S(c ∧ d) from Ex. 2.11.
The generating matrix of its Minkowski’s form has no ray.
Fig. 1 shows the set of parameterized vertices and domains.
The parameter instance ax = 7, δx = 3, ay = 5, δy = 5 be-
longs to the domains of vertices: 1, 2, 4, 5, 7, 8, 9, 10, 12,
13, 14, 15.

The next result states that parwidth(S, x) can be com-
puted by scanning the pairs of parameterized vertices of S.
For each pair, we calculate the maximum distance of the x
component of the two vertices over the intersection of their
domains, if not empty. The maximum value over all the
pairs of vertices is then the result of parwidth(S, x).

Theorem 3.4. Consider the Minkowski’s form as stated
in Thm. 3.2 of the parameterized linear system S = S(c ∧ d).
We have: parwidth(S,xi) = r ∈ R iff row(R, i) = 0; and,

r = max({0} ∪ {s | 1 ≤ m < n ≤ k, Sol(Pm,n) 6= ∅,
s = abs(Sol(Pm,n),va(m)i − va(n)i)}),

where Pm,n = Cma ≤ cm,Cna ≤ cn.
Moreover, there exists a solution of d in S iff the following

constraint over parameters:∧
δxi
≥s∈d,
s>0,

row(R,i)=0

∨
1≤m<n≤k

(Pm,n ∧ |va(m)i − va(n)i| ≥ 2s)

is satisfiable.

Summarizing, Thm. 3.4 provides us with a decision proce-
dure for the existence of solutions of d, and with a procedure
for computing parwidth(S(c ∧ d), x).

Example 3.5. Consider c ∧ d from Ex. 2.11, and the pa-
rameterized vertices and domains in Fig. 1. The intersection
of the domains 2 and 14, namely P2,14 is:

0 ≤ ay − δy ≤ ax + 3, ax + 3 ≤ 10, 4 ≤ δy, δx = 3,

7 ≤ ax ≤ 13, 10 ≤ ay + δy, ay − δy ≤ 10,

x = (x, y) a = (ax, ay, δx, δy)

va(1) = (ax + 3, ay + δy)

when 0 ≤ ay + δy ≤ ax + 3,

ax + 3 ≤ 10

va(2) = (ax + 3, ay − δy)

when 0 ≤ ay − δy ≤ ax + 3,

ax + 3 ≤ 10

va(3) = (ax − 3, ay + δy)

when 0 ≤ ay + δy ≤ ax − 3,

ax − 3 ≤ 10

va(4) = (ax − 3, ay − δy)

when 0 ≤ ay − δy ≤ ax − 3,

ax − 3 ≤ 10

va(5) = (ay + δy, ay + δy)

when 0 ≤ ay + δy ≤ ax + 3,

ax − 3 ≤ ay + δy ≤ 10

va(6) = (ay − δy, ay − δy)

when 0 ≤ ay − δy ≤ 10,

ax − 3 ≤ ay − δy ≤ ax + 3

va(7) = (ax + 3, ax + 3)

when 0 ≤ ax + 3 ≤ 10,

ay − δy ≤ ax + 3 ≤ ay + δy

va(8) = (ax − 3, ax − 3)

when 0 ≤ ax − 3 ≤ 10,

ay − δy ≤ ax − 3 ≤ ay + δy

va(9) = (ax + 3, 0)

when 0 ≤ ax + 3 ≤ 10,

0 ≤ ay + δy, ay − δy ≤ 0

va(10) = (ax − 3, 0)

when 0 ≤ ax − 3 ≤ 10,

0 ≤ ay + δy, ay − δy ≤ 0

va(11) = (0, 0)

when − 3 ≤ ax ≤ 3,

0 ≤ ay + δy, ay − δy ≤ 0

va(12) = (10, ay + δy)

when 7 ≤ ax ≤ 13,

0 ≤ ay + δy ≤ 10

va(13) = (10, ay − δy)

when 7 ≤ ax ≤ 13,

0 ≤ ay − δy ≤ 10

va(14) = (10, 10)

when 7 ≤ ax ≤ 13,

10 ≤ ay + δy, ay − δy ≤ 10

va(15) = (10, 0)

when 7 ≤ ax ≤ 13,

0 ≤ ay + δy, ay − δy ≤ 0

Figure 1: Parameterized vertices for S(c ∧ d) from Ex. 2.11. The additional constraint 4 ≤ δy, δx = 3 must be added
to the domain of every vertex. It is omitted for lack of space and to enhance readability.

which readily simplifies to:

ax = 7, 0 ≤ ay − δy ≤ 10, 10 ≤ ay + δy, 4 ≤ δy, δx = 3.

For i = 2, xi is y and va(2)i − va(14)i is (ay − δy) − 10.
The absolute value of such an expression over P2,14 is 10,
and it can be obtained by the parameter instance u defined as
ax = 7, δx = 3, ay = 5, δy = 5. Notice this is the parameter
instance used in Ex. 2.11.

Since the absolute value over all other pairs of vertices
cannot be greater than 10 (due to the original constraint 0 ≤
x ≤ 10, 0 ≤ y ≤ x), by Thm. 3.4, we can conclude:

parwidth(S(c ∧ d), y) = 10.

In addition to |vu(2)2 − vu(14)2| = 10 ≥ 8 covering δy ≥
4, we also observe that the parameter instance u above is a
solution of P10,14 and |vu(10)1−vu(14)1| = 6 ≥ 6, covering
δx ≥ 3. From Thm. 3.4, there exists a solution of d, and, as
noticed in Ex. 2.11, u actually turns out to be one of them.

4. RANGE CONSTRAINTS FOR CLP(R)

4.1 Operational Semantics of CLP(R)
The operational semantics of a CLP(R) program P con-

sists of derivations from states to states [5, 6]. Here, we
consider derivations via the leftmost selection rule. A state
〈Q‖cs〉 is a pair of a query Q and a linear constraint cs called
the constraint store. A query Q = [c,]A1 , . . . , An is a se-
quence of n ≥ 0 atoms, with possibly a linear constraint
c before them. A state 〈[c,]A1 , . . . , An ‖cs〉 is reduced to
another state, called a resolvent, as follows:

R1 If a linear constraint c appears at the left of the query,
and cs ∧ c is satisfiable, the resolvent is:

〈A1, . . . , An‖cs ∧ c〉.

R2 If an atom A1 = p(x1, . . . , xh) appears at the left of
the query, and p(y1, . . . , yh) ← c,B1 , . . . , Bk is a re-
named apart clause from P , then the resolvent is:

〈c,B1, . . . , Bk, A2, . . . , An‖cs ∧
∧

i=1..h

xi = yi〉.

A derivation from an initial state state S0 = 〈Q‖true〉 is a
(finite or infinite) maximal sequence of states S0, S1, . . .Sn,
. . . such that there is a reduction from Si to Si+1, for i ≥ 0.
A derivation for a query Q is a derivation from 〈Q‖true〉.
The last state of a finite derivation is of the form 〈Q′‖cs〉.
If Q′ is not empty, the derivation is failed. Otherwise, it is
successful, or a refutation: ∃−vcs is called the answer con-
straint, where the final constraint store is projected over the
set v of variables appearing in the initial state S0.

4.2 Adding Linear-Range Constraints
Assume now that range constraints are admitted in queries

and program clauses.
We extend the operational semantics of CLP(R) by assum-

ing that a constraint store is now a linear-range constraint
cs ∧ ds. We have to specify further: (1) the notion of satis-
fiability of a constraint store, which is used in rule R1; (2)
a new rule dealing with assertion of range constraints; and
(3) the definition of the answer constraint in presence of the
variable range constraint ds.

Concerning (1), we resort to Def. 2.3 for the notion of
satisfiability of linear-range constraints, and to Thm. 2.10
for a checking procedure. The transition rule R1 becomes:

R1′ If a linear constraint c appears at the left of the query,
and cs, c ∧ ds is satisfiable, the resolvent is:

〈A1, . . . , An‖cs, c ∧ ds〉.

Concerning (2), the following intuitive rule can be defined:

R1′′ If a range constraint d appears at the left of the query,
and cs ∧ ds, d is satisfiable, the resolvent is:

〈A1, . . . , An‖cs ∧ ds, d〉.

Finally, consider (3). The answer constraint ∃−vcs projects
the linear constraint store cs over the variables v of the ini-
tial query. How does this extend to linear-range constraints
cs ∧ ds? Two issues must be taken into account:

• The linear-range constraint cs ∧ ds may not explicitly
contain all range constraints entailed from it. As an
example, if cs ∧ ds is y ≤ x ≤ y+ 1, δy ≤ 1, one would
expect that δx ≤ 1.5 is in the answer constraint.

• The projection should consider also range variables,
not just linear constraint variables.

We tackle the first issue by adding to ds the range constraint
d′ = entail(cs ∧ ds,v) defined as the conjunction of entailed
inequalities δx ≤ s, for every x ∈ v, where, as shown in
Thm. 2.10, s = parwidth(S(cs ∧ ds), x)/2 6= ∞. In the
example, d′ = δy ≤ 1, δx ≤ 1.5. For the second issue, we
project the final range constraint over the appropriate set
of range variables. Summarizing, the answer constraint of a
refutation with final constraint store cs ∧ ds is defined as:

(∃−vcs) ∧ (∃−δv (ds, entail(cs ∧ ds,v))),

where v is the set of variables appearing in the initial state
and δv = {δx | x ∈ v}.

As an example, consider the classic Mortgage program.

(m1) mortgage(P,T,R,B) :-

T = 0, B = P.

(m2) mortgage(P,T,R,B) :-

T >= 1,

NP = P + P * 0.05 - R,

NT = T - 1,

mortgage(NP,NT,R,B).

A query δR ≤ 5, mortgage(P, 3, R, 0) is intended to
calculate the principal P one could be granted for a 3 years
mortgage with final balance of zero and annual repay of R,
where R is known with an approximation of 5 units. The
constraint in the final store is NP1 = P * 1.05 - R, NP2 =

NP1 * 1.05 - R, NP3 = NP2 * 1.05 - R, NP3 = 0, δR ≤
5. By projecting over R and P, we get the answer constraint P
= R * 2.723, δR ≤ 5, δP ≤ 13.615. Notice that 13.615 =
5 · 2.723. Summarizing, under the stated conditions, the
granted mortgage can vary up to ± 13.615 units.

An example with linear-range constraints in programs can
be devised for the sum of a list of measures, restricted to
those that are known with an approximation of at most ±1.

(s1) sum([], 0).

(s2) sum([X|Xs], S) :-

δX ≤ 1, S = S1 + X, sum(Xs, S1).

(s3) sum([X|Xs], S) :-

sum(Xs, S).

The query sum([X, Y], S) returns the answer constraints:

• S = X + Y, δX ≤ 1, δY ≤ 1, δS ≤ 2, stating that
when X and Y have an approximation of up to ±1, then
the sum is S = X + Y, and with an approximation up
to ±2;

• S = X, δX ≤ 1, δS ≤ 1, stating that when Y has an
unknown approximation and X has an approximation
up to ±1, then the sum is S = X, and with an approx-
imation up to ±1;

• S = Y, δY ≤ 1, δS ≤ 1, is symmetric to the previous
case;

• S = 0, δS = 0, stating that when both X and Y have
an unknown approximation then the sum is zero, and
it is a definite value.

The query δX ≥ 2, δY ≤ 0.5, sum([X, Y], S) returns
the answer constraint S = Y, δX ≥ 2, δY ≤ 0.5, δS ≤ 0.5.

5. CONCLUSIONS
To some extent, linear-range constraints are a form of in-

terval (linear) constraints, where intervals s0 ≤ δx ≤ s1
refer to the minimal (s0) and the maximal (s1) radius of val-
ues (i.e., approximation) that a variable x can assume. We
adopted a controlled form of parameterized linear systems to
devise correct and complete algorithms for satisfiability and
entailment. Also, we extended CLP(R) with linear-range
constraints, hence providing a form of meta-level reasoning
about the range of variables.

Future work includes an experimental evaluation of the
approach, an enhancement of the syntax of range constraints
to admit disequalities (i.e., δx 6= s) and generic inequalities
(e.g., δx ≤ δy), and the extension of the entailment proce-
dure to lower bounds on range variables.

6. REFERENCES
[1] F. Benhamou and W. J. Older. Applying interval

arithmetic to real, integer, and boolean constraints.
Journal of Logic Programming, 32(1):1–24, 1997.

[2] T. Gal. Postoptimal Analyses, Parametric
Programming, and Related Topics. de Gruyter, Berlin,
Germany, 2nd edition, 1995.

[3] P. V. Hentenryck, L. Michel, and F. Benhamou.
Newton - Constraint programming over nonlinear
constraints. Science of Computer Programming,
30(1-2):83–118, 1998.

[4] T. J. Hickey. CLIP: A CLP(Intervals) dialect for
metalevel constraint solving. In Practical Aspects of
Declarative Languages, volume 1753 of LNCS, pages
200–214. Springer, 2000.

[5] J. Jaffar and M. Maher. Constraint logic
programming: A survey. Journal of Logic
Programming, 19,20:503–581, 1994.

[6] J. Jaffar, M. Maher, K. Marriott, and P. J. Stuckey.
The semantics of constraint logic programs. Journal of
Logic Programming, 37(1-3):1–46, 1998.

[7] V. Loechner. Polylib: a library for manipulating
parameterized polyhedra, 2007. Available at
http://icps.u-strasbg.fr/polylib, Version 5.22.3.

[8] V. Loechner and D. K. Wilde. Parameterized
polyhedra and their vertices. International Journal of
Parallel Programming, 25:525–549, 1997.

[9] R. E. Moore. Interval Analysis. Prentice Hall, 1966.

[10] A. Schrijver. Theory of Linear and Integer
Programming. J. Wiley & Sons, 1986.

