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Introduction: example

We add variable ranges to linear constraint over the real numbers
as a means to reason on the approximation of variables.

Example

I linear constraint:
I 0 ≤ x ≤ 4 means x ∈ [0, 4].

I linear constraint with variable range:
I 0 ≤ x ≤ 4, δx = 1 means x belongs to one of

[max(0, a− 1),min(4, a + 1)] where the real number a ∈ [1, 3].
I 0 ≤ x ≤ 4, δx ≥ 3 means false.
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Introduction: basic definitions

I vars(c): the set of variables in the linear constraint c .

I A polyhedron: the set of solution points that satisfy a linear
system: Sol(Ax ≤ b) = {x ∈ Rn | Ax ≤ b}.

Let S = Sol(Ax ≤ b) be a non-empty polyhedron, and x a variable
in x.

I width(S , x) = max{x | x ∈ S} −min{x | x ∈ S} if both min
and max exist.

I Otherwise, width(S , x) =∞.

For an empty polyhedron S = ∅, we set width(S , x) = 0.
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LR-constraints: syntax

I Let Var be the set of linear constraint variables. We define
∆ = {δx | x ∈ Var} as the set of range variables.

I A primitive range constraint is an inequality δx ' s, where '
is in {≤,≥} and s ≥ 0 ∈ R.

I A range constraint d is a sequence of primitive range
constraints.

I A linear-range constraint (LR-constraint) c ∧ d is a sequence
of linear constraints and range constraints.

I δx = s is a shorthand for δx ≤ s, δx ≥ s.
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LR-constraints: syntax

Example

Syntax

and semantics

1. 0 ≤ x ≤ 2

denotes a set of values for x ranging from 0 to 2,
and hence δx = 1.

2. 1 ≤ x ≤ 4, δx ≤ 1

denotes a collection of intervals for x of the
form [max(1, a− δ),min(4, a + δ)] with a ∈ R and 0 ≤ δ ≤ 1.

3. x = 2y , δy ≤ 1, δx ≥ 3

is unsatisfiable since the approximation
of x is at most 2 (the double of the approximation of y)
which contradicts δx ≥ 3.
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LR-constraints: semantics

I A model of a LR-constraint c ∧ d is a non-empty polyhedron:

S = Sol(c ∧
∧

δx∈vars(d)

x ≤ x ≤ x)

where x , x ∈ R such that for every δx ' s in d with ' in
{≤,≥}, we have width(S , x) ' 2s.

I c ∧ d is satisfiable if there exists a model of it.

I c ∧ d entails δx ≤ s if every model of c ∧ d is a model of
δx ≤ s.
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LR-constraints: semantics

I NB: when d is empty, satisfiability conservatively boils down
to the condition Sol(c) 6= ∅.

I Towards providing a procedure for checking satisfiability in the
general case, we first compile LR-constraints into
parameterized linear systems.

I A parameterized linear system of inequalities is a linear system
Ax ≤ b + Ba where a is a vector of parameters.
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LR-constraints: semantics

For c ∧ d , we define the parameterized linear system:

S(c ∧ d) = c ∧ d ∧
∧

δx∈vars(d)

(ax − δx ≤ x ≤ ax + δx , 0 ≤ δx)

where the ax , δx ’s are parameters. Intuition: ax models an
approximatively known value for x , and δx its radius.

Example

1. S(0 ≤ x ≤ 2) is 0 ≤ x ≤ 2 (a 0-parameter linear system).

2. S(1 ≤ x ≤ 4, δx ≤ 1) is 1 ≤ x ≤ 4, ax − δx ≤ x ≤ ax + δx ,
0 ≤ δx ≤ 1.

3. S(x = 2y , δy ≤ 1, δx ≥ 3) is x = 2y , ay − δy ≤ y ≤
ay + δy , 0 ≤ δy ≤ 1, ax − δx ≤ x ≤ ax + δx , δx ≥ 3.
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LR-constraints: semantics

A parameterized polyhedron is the collection of polyhedra defined
by fixing the values of the parameters in a parameterized linear
system: Sol(Ax ≤ b + Ba,u) = {x | Ax ≤ b + Bu}, where
u ∈ R|a| is an instance of a.

Example

1. S(0 ≤ x ≤ 2) boils down to Sol(0 ≤ x ≤ 2).

2. For S(1 ≤ x ≤ 4, δx ≤ 1), we enumerate below the polyhedra
obtained by fixing δx = 1:

Sol(1 ≤ x ≤ ax + 1) when ax ≤ 2

Sol(ax − 1 ≤ x ≤ ax + 1) when 2 ≤ ax ≤ 3

Sol(ax − 1 ≤ x ≤ 4) when 3 ≤ ax .

3. S(x = 2y , δy ≤ 1, δx ≥ 3) is unexpectedly non-empty!
Let δx = 3, δy = ax = ay = 0, then x = y = 0 is a solution.
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LR-constraints: semantics

So we explicitly restrict to parameter instances that satisfy the
lower bounds in a range constraint.

I Let S = S(c ∧ d). We say that a parameter instance u is a
solution of d in S if for every δx ≥ s in d , we have:
width(Sol(S ,u), x) ≥ 2s.

And we extend the width() function.

I Let S = Ax ≤ b + Ba be a parameterized linear system. The
width of x in S is defined as:
parwidth(S , x) = maxu width(Sol(S ,u), x), if it exists.
Otherwise, parwidth(S , x) =∞.
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LR-constraints: satisfiability

Theorem
A LR-constraint c ∧ d is satisfiable iff

I c is satisfiable,

I d ∧
∧
δx∈vars(d) 0 ≤ δx is satisfiable as a linear constraint,

I there exists a solution of d in S(c ∧ d).

For c ∧ d satisfiable and s = parwidth(S(c ∧ d), x)/2 6= ∞
I c ∧ d entails δx ≤ s.

We’ll give algorithms for checking the existence of a solution of d
and computing parwidth().
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LR-constraints: satisfiability

Example

Let c ∧ d be 0 ≤ x ≤ 10, 0 ≤ y ≤ x , δx = 3, δy ≥ 4. Satisfiable?
S = S(c ∧ d), where ax , ay , δx , δy are parameters, is:

0 ≤ x ≤ 10, 0 ≤ y ≤ x , δx = 3, 4 ≤ δy ,
ax − δx ≤ x ≤ ax + δx , ay − δy ≤ y ≤ ay + δy

I c is satisfiable,

I δx = 3, δy ≥ 4, 0 ≤ δx , 0 ≤ δy is satisfiable,
I let us find a parameter instance u such that:

width(Sol(S ,u), x) ≥ 6, since δx ≥ 3 is in d , and
width(Sol(S ,u), y) ≥ 8, since δy ≥ 4 is in d .

By defining u as: ax = 7, δx = 3, ay = 5, δy = 5, we have
width(Sol(S ,u), x) = 6 and width(Sol(S ,u), y) = 10.
Hence u is a solution for d in S .

Yes, c ∧ d is satisfiable.
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Interlude

Minkowski, Motzkin, 1953:

Theorem (Minkowski’s decomposition thm)

There exists an effective procedure that given Ax ≤ b decides
whether or not the polyhedron Sol(Ax ≤ b) is empty and, if not, it
yields a generating matrix R and a vertex matrix V such that:

I Sol(Ax ≤ b) = {x | x = Rλ,λ ≥ 0 }+{x | x = Vγ,γ ≥ 0,Σγ = 1},
I Sol(Ax ≤ 0) = {x | x = Rλ,λ ≥ 0 }.
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Interlude

Example  -1 1
1 1
-2 -1

( x
y

)
≤

 0
0
3



R =

(
1 1
-2 -1

)
V =

(
0 -1
0 -1

)
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Interlude

Loechner and Wilde, 1997:

Theorem (Minkowski’s thm for parameterized polyhedra)

Every parameterized polyhedron can be expressed by a generating
matrix R and finitely many pairs

(va(1),C1a ≤ c1), . . . , (va(k),Cka ≤ ck)

where, for i = 1..k, va(i) is a vector parametric in a, Sol(Cia ≤ ci )
6= ∅, and such that:

I Sol(Ax ≤ b + Ba,u) = {x |x = Rλ,λ ≥ 0 }
+ConvexHull({vu(i) | i = 1..k,Ciu ≤ ci }),

I Sol(Ax ≤ 0) = {x | x = Rλ,λ ≥ 0 }.
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Interlude

Example

a + b ≥ y , y ≥ a, y ≥ b, x = a
1 0
-1 0
0 1
0 -1
0 -1


(

x
y

)
≤


0
0
0
0
0

+


1 0
-1 0
1 1
-1 0
0 -1


(

a
b

)

R = 0

(

(
a
b

)
, b ≥ a ≥ 0) (

(
a
a

)
, a ≥ b ≥ 0) (

(
a

a+b

)
, a, b ≥ 0)
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Computing widths: abs()

The maximum absolute value of a linear expression over the
solutions of a non-empty polyhedron S :

I abs(S , cT x + α) = max{|cT x0 + α| | x0 ∈ S} if it exists.

I Otherwise, abs(S , cT x + α) =∞.

A direct implementation of the abs() function:

I M = max{cT x +α | x ∈ S},
I m = min{cT x + α | x ∈ S},
I abs(S , cT x +α) = r ∈ R iff M,m ∈ R and max{M,−m} = r .
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Computing widths

Theorem
Consider the Minkowski’s form of the parameterized
S = S(c ∧ d).

I parwidth(S , xi ) = r ∈ R iff row(R, i) = 0 and

r = max({0} ∪ {s | 1 ≤ m < n ≤ k, Sol(Pm,n) 6= ∅,
s = abs(Sol(Pm,n), va(m)i − va(n)i )}),

where Pm,n = Cma ≤ cm,Cna ≤ cn.

I There exists a solution of d in S iff the following constraint
over parameters is satisfiable:∧

δxi≥s∈d ,
s>0,

row(R,i)=0

∨
1≤m<n≤k

(Pm,n ∧ |va(m)i − va(n)i | ≥ 2s)
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Example

Let c ∧ d be 0 ≤ x ≤ 10, 0 ≤ y ≤ x , δx = 3, δy ≥ 4. The
generating matrix R has no ray. Parameterized vertices for
S(c ∧ d), together with their domains:

The additional constraint 4 ≤ δy , δx = 3 must be added to the domain of every vertex.

va(1) = (ax + 3, ay + δy )

if 0 ≤ ay + δy ≤ ax + 3,

ax + 3 ≤ 10

va(2) = (ax + 3, ay − δy )

if 0 ≤ ay − δy ≤ ax + 3,

ax + 3 ≤ 10

va(3) = (ax − 3, ay + δy )

if 0 ≤ ay + δy ≤ ax − 3,

ax − 3 ≤ 10

va(4) = (ax − 3, ay − δy )

if 0 ≤ ay − δy ≤ ax − 3,

ax − 3 ≤ 10

va(5) = (ay + δy , ay + δy )

if 0 ≤ ay + δy ≤ ax + 3,

ax − 3 ≤ ay + δy ≤ 10

va(6) = (ay − δy , ay − δy )

if 0 ≤ ay − δy ≤ 10,

ax − 3 ≤ ay − δy ≤ ax + 3

va(7) = (ax + 3, ax + 3)

if 0 ≤ ax + 3 ≤ 10,

ay − δy ≤ ax + 3 ≤ ay + δy

va(8) = (ax − 3, ax − 3)

if 0 ≤ ax − 3 ≤ 10,

ay − δy ≤ ax − 3 ≤ ay + δy

va(9) = (ax + 3, 0)

if 0 ≤ ax + 3 ≤ 10,

0 ≤ ay + δy , ay − δy ≤ 0

va(10) = (ax − 3, 0)

if 0 ≤ ax − 3 ≤ 10,

0 ≤ ay + δy , ay − δy ≤ 0

va(11) = (0, 0)

if − 3 ≤ ax ≤ 3,

0 ≤ ay + δy , ay − δy ≤ 0

va(12) = (10, ay + δy )

if 7 ≤ ax ≤ 13,

0 ≤ ay + δy ≤ 10

va(13) = (10, ay − δy )

if 7 ≤ ax ≤ 13,

0 ≤ ay − δy ≤ 10

va(14) = (10, 10)

if 7 ≤ ax ≤ 13,

10 ≤ ay + δy , ay − δy ≤ 10

va(15) = (10, 0)

if 7 ≤ ax ≤ 13,

0 ≤ ay + δy , ay − δy ≤ 0
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Example (Continued)

I c ∧ d entails δy ≤ 5

I The intersection of the domains 2 and 14, namely P2,14 is:

0 ≤ ay − δy ≤ ax + 3, ax + 3 ≤ 10, 4 ≤ δy , δx = 3,

7 ≤ ax ≤ 13, 10 ≤ ay + δy , ay − δy ≤ 10,

i.e., ax = 7, 0 ≤ ay − δy ≤ 10, 10 ≤ ay + δy , 4 ≤ δy , δx = 3.
For i = 2, xi is y and va(2)i − va(14)i is (ay − δy )− 10.
Its absolute value over P2,14 is 10, obtained by u: ax = 7,
δx = 3, ay = 5, δy = 5.
Since the absolute value over all other pairs of vertices cannot
be greater than 10 due to the original constraint 0 ≤ x ≤ 10,
0 ≤ y ≤ x , parwidth(S(c ∧ d), y) = 10.

I there exists a solution of d in S

I In addition to |vu(2)2 − vu(14)2| = 10 ≥ 8 covering δy ≥ 4, u
is a solution of P10,14 and |vu(10)1 − vu(14)1| = 6 ≥ 6,
covering δx ≥ 3. Hence u a solution of d .
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Conclusion

I Variable ranges in linear constraints: syntax, semantics,
correct and complete algorithms for satisfiability and
entailment based on linear parametric programming.

I In the paper, a corresponding conservative extension of
CLP(R).

I Future work:
I disequalities δx 6= s,
I generic inequalities, e.g., δx ≤ δy ,
I extension of the entailment procedure to lower bounds,
I experimental evaluation.
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