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Introduction: example

We add variable ranges to linear constraint over the real numbers
as a means to reason on the approximation of variables.

Example

» linear constraint:
» 0 < x <4 means x € [0,4].
» linear constraint with variable range:

» 0 < x <46 =1 means x belongs to one of
[max(0,a — 1), min(4, a + 1)] where the real number a € [1, 3].
» 0 < x <4 6> 3 means false.
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Introduction: basic definitions

» vars(c): the set of variables in the linear constraint c.
» A polyhedron: the set of solution points that satisfy a linear
system: Sol(Ax < b) = {x € R" | Ax < b}.
Let S = Sol(Ax < b) be a non-empty polyhedron, and x a variable
in x.
» width(S,x) = max{x | x € S} — min{x | x € S} if both min
and max exist.
» Otherwise, width(S, x) = occ.
For an empty polyhedron S = (), we set width(S, x) = 0.
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LR-constraints: syntax

Let Var be the set of linear constraint variables. We define
A = {0y | x € Var} as the set of range variables.

v

v

A primitive range constraint is an inequality dx ~ s, where ~
isin {<,>} and s >0€R.

A range constraint d is a sequence of primitive range
constraints.

v

v

A linear-range constraint (LR-constraint) ¢ A d is a sequence
of linear constraints and range constraints.

dx = s is a shorthand for §x < 's,dx > s.

v
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LR-constraints: syntax

Example
Syntax

3. x=2y,0,<1,6,>3
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LR-constraints: syntax

Example

Syntax and semantics

1. 0 < x < 2 denotes a set of values for x ranging from 0 to 2,
and hence 6, = 1.

2. 1<x<4,5,<1

3. x=2y,0,<1,6,>3
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LR-constraints: syntax

Example
Syntax and semantics

1. 0 < x < 2 denotes a set of values for x ranging from 0 to 2,
and hence 6, = 1.

2. 1 < x <4, <1 denotes a collection of intervals for x of the
form [max(1,a—0), min(4,a+J)] withae Rand 0 <§ < 1.

3. x=2y,0,<1,6,>3
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LR-constraints: syntax

Example
Syntax and semantics

1. 0 < x < 2 denotes a set of values for x ranging from 0 to 2,
and hence 6, = 1.

2. 1 < x <4, <1 denotes a collection of intervals for x of the
form [max(1,a—0), min(4,a+J)] withae Rand 0 <§ < 1.

3. x =2y,0, < 1,65 > 3 is unsatisfiable since the approximation

of x is at most 2 (the double of the approximation of y)
which contradicts 6, > 3.
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LR-constraints: semantics

» A model of a LR-constraint ¢ A d is a non-empty polyhedron:

S=Sol(ch N\ x<x<X)
dxEvars(d)
where x,X € R such that for every §x ~ s in d with ~ in
{<, >}, we have width(S, x) ~ 2s.
» c A d is satisfiable if there exists a model of it.

» c A d entails 0y < s if every model of ¢ A d is a model of
Ox <s.
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LR-constraints: semantics

» NB: when d is empty, satisfiability conservatively boils down
to the condition Sol(c) # 0.

» Towards providing a procedure for checking satisfiability in the
general case, we first compile LR-constraints into
parameterized linear systems.

» A parameterized linear system of inequalities is a linear system
Ax < b + Ba where a is a vector of parameters.
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LR-constraints: semantics

For ¢ A d, we define the parameterized linear system:

S(cnd)=cAndA /\ (ax — 0x < x < ay + 0x, 0 < d0y)
oxEvars(d)

where the ay, dx's are parameters. Intuition: a, models an
approximatively known value for x, and J, its radius.

Example

1. S(0 < x <2)is 0 < x <2 (a0-parameter linear system).

2. 85(1<x<4,0,<1)isl<x<4a,—0x <x<ay+dy,
0<d, <1

3. 8(x=2y,8, <1,6,>3)isx =2y,a, —§, <y <
ay+6y70§5y§17ax_5x§X§3x+5X7(5x23-

9/22



LR-constraints: semantics

A parameterized polyhedron is the collection of polyhedra defined
by fixing the values of the parameters in a parameterized linear
system: Sol(Ax < b+ Ba,u) = {x | Ax < b 4 Bu}, where

u € Rl is an instance of a.

Example

1. §(0 < x < 2) boils down to Sol(0 < x < 2).

2. For §(1 < x < 4,6, <1), we enumerate below the polyhedra
obtained by fixing 6, = 1:

Sol(1<x<a,+1) when a, <2
Sol(ax —1 < x < a,+1) when 2 < a, < 3
Sol(axy —1 < x < 4) when 3 < ay.

3. S(x =2y,d, < 1,0, > 3) is unexpectedly non-empty!
Let 0x = 3,0, = ax = a, = 0, then x = y = 0 is a solution.
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LR-constraints: semantics
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So we explicitly restrict to parameter instances that satisfy the
lower bounds in a range constraint.
» Let S = S(c A d). We say that a parameter instance u is a
solution of d in S if for every éx > s in d, we have:
width(Sol(S, u), x) > 2s.

And we extend the width() function.

» Let S = Ax < b + Ba be a parameterized linear system. The
width of x in S is defined as:
parwidth(S, x) = max, width(Sol(S,u), x), if it exists.
Otherwise, parwidth(S, x) = o.



LR-constraints: satisfiability
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Theorem
A LR-constraint ¢ N d is satisfiable iff

> c is satisfiable,
> d A Ns,cvars(d) O < Ox is satisfiable as a linear constraint,

> there exists a solution of d in S(c A d).

For ¢ A d satisfiable and s = parwidth(S(c A d),x)/2 # oo
> c A d entails §, <s.

We'll give algorithms for checking the existence of a solution of d
and computing parwidth().



LR-constraints: satisfiability

Example
Let c Adbe0<x<10,0<y<x,0x=3,0, > 4. Satisfiable?
S =8(c A d), where ay, ay, 0, d, are parameters, is:
0<x<10,0<y <x,0x =3,4<9y,
ax —0x <x<ac+dc,a, -0, <y<a, +0,

» c is satisfiable,
> 0 = 3,0, > 4,0 <4,,0 <9, is satisfiable,
> let us find a parameter instance u such that:

width(Sol(S,u), x) > 6, since 6y > 3 isin d, and
width(Sol(S,u),y) > 8, since 6, > 4 is in d.
By defining u as: ax =7,6x = 3,a, = 5,0, =5, we have
width(Sol(S,u), x) = 6 and width(Sol(S,u), y) = 10.
Hence u is a solution for d in S.
Yes, c A d is satisfiable.
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Interlude
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Minkowski, Motzkin, 1953:

Theorem (Minkowski's decomposition thm)

There exists an effective procedure that given Ax < b decides
whether or not the polyhedron Sol(Ax < b) is empty and, if not, it
yields a generating matrix R and a vertex matrix \V such that:

> Sol(Ax <b) ={x|x=RAA>0}+{x|x=Vv,v>0,Xvy =1},
> Sol(Ax <0)={x|x=RX\AX>0}.



Interlude

Example
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Interlude
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Loechner and Wilde, 1997:

Theorem (Minkowski's thm for parameterized polyhedra)

Every parameterized polyhedron can be expressed by a generating
matrix R and finitely many pairs

(v*(1),Cia<c1),...,(v¥(k),Cka < ck)

where, for i = 1..k, v3(i) is a vector parametric in a, Sol(C;a < c;)
# 0, and such that:
> Sol(Ax < b+ Ba,u) ={x|[x=RA,A>0
+ ConvexHull({v" (i
> Sol(Ax <0)={x|x=RA,A>0}.

}
) | = ]...k, C,-u <c }),



Interlude
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Example
atb>y,y>ay>bx=a

1 0 0 1 0
100 0 100
0 1 <X>g 0 |+] 1 1 <z>
0 -1 y 0 10
0 -1 0 0 -1
R=0



Computing widths: abs()

The maximum absolute value of a linear expression over the
solutions of a non-empty polyhedron S:

> abs(S,cTx +a) = max{|cTxq + a| | xo € S} if it exists.
» Otherwise, abs(S,c”x + a) = oo.

A direct implementation of the abs() function:
» M = max{c"x +a | x € S},
» m=min{c"x+a | xe S},
> abs(S,c"x+a) =r e Riff M,m € R and max{M,—m} = r.

18/22



Computing widths

Theorem
Consider the Minkowski's form of the parameterized
S=38(c Ad).

» parwidth(S,x;) = r € R iff row(R,i) = 0 and

r=max({0} U{s |1 <m< n<k,Sol(Pmn,) #0,
s = abs(Sol(Pm.n),v?(m); —v¥(n)i)}),

where Pp, , = Cha < ¢, Cha < c,,.

> There exists a solution of d in S iff the following constraint
over parameters is satisfiable:

A V' (Pmn A V3 (m)i = v?(n)i| > 25)
Ox;2s€d, 1<m<n<k

s>0,
row(R,i)=0
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Example

Let cAdbe0<x<10,0<y <x,0x=3,6, >4. The
generating matrix R has no ray. Parameterized vertices for
S(c A d), together with their domains:

The additional constraint 4 < §y, §x = 3 must be added to the domain of every vertex.

vi(1) = (ax + 3,3, + )
if 0 <ay +9, <ax+3,
ax+3<10
vl(2) = (ax + 3,3, — dy)
if0<a —9d, <ax+3,
ax+3<10
vl(3) = (ax — 3,3y + dy)
if 0 <ay +9, <ax —3,
ax—3<10
v3(4) = (ax — 3,3, — &)
if0<a —96 <ax—3,
ax —3<10
vl(5) = (ay + 8y, a, + 3y)
if 0 <ay +9, < ax+3,
ax —3 < a, +46, <10

v(6) = (ay — 8y, ay — &)
if 0 < a, — §, < 10,
ax —3<ay —9dy <ax+3
V(7)) = (ax + 3, ax + 3)
if 0 < ay +3 < 10,
ay — 0y <ax+3 < ay + 9y
v3(8) = (ax — 3,ax — 3)
if 0 < ay — 3 < 10,
ay — 0y <ax —3 < ay + 9y
v¥(9) = (ax +3,0)
if 0 < ax +3 < 10,
0<a,+dy,a, —6, <0
v3(10) = (ax — 3,0)
if 0 < ay —3< 10,
0<ay+dy,a —6, <0

v¥(11) = (0, 0)
if —3<ay <3,
0<ay +3dy,a —6, <0
v(12) = (10, ay + &)
if 7 < ay <13,
0<a, +4, <10
v(13) = (10, ay — &)
if 7 < ay <13,
0<a —4, <10
v¥(14) = (10, 10)
if 7 < a <13,
10 < ay +8y,a, — 3§, < 10
v3(15) = (10, 0)
if 7 < ay <13,
0<ay +dy,a, —6, <0
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Example (Continued)

» ¢ A d entails 6, <5

» The intersection of the domains 2 and 14, namely P 14 is:
0<a, —0dy<a,+3,a,+3<10,4<6,,00=3,
7<a,<13,10< ay + 6,8, — 6, <10,

ie,ax=7,0<a,—90,<10,10<a, +6,,4 <6,,0, = 3.
For i =2, x; is y and v*(2); — v?(14); is (a, — J,) — 10.
Its absolute value over P 14 is 10, obtained by u: a, =7,
0x =3,a,=5,0, =5.
Since the absolute value over all other pairs of vertices cannot

be greater than 10 due to the original constraint 0 < x < 10,
0 <y < x, parwidth(S(c A d),y) = 10.

> there exists a solution of d in S

> In addition to |[v*(2)2 — v“(14)2| = 10 > 8 covering 0, > 4, u
is a solution of Pig 14 and |v*(10); — v*(14):| =6 > 6,
covering dx > 3. Hence u a solution of d.



Conclusion

» Variable ranges in linear constraints: syntax, semantics,
correct and complete algorithms for satisfiability and
entailment based on linear parametric programming.

» In the paper, a corresponding conservative extension of
CLP(R).

» Future work:

» disequalities 0, # s,

» generic inequalities, e.g., 0, < 4,

» extension of the entailment procedure to lower bounds,
> experimental evaluation.

22/22



	Introduction
	Example
	Basic definitions

	LR-constraints
	Syntax
	Semantics
	Satisfiability

	Interlude
	Computing widths
	Conclusion

