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It is important to prove that supposedly terminating prograntsaly terminate, particularly if those programs
must be run on critical systems or downloaded into a client siecla mobile phone. Although termination
of computer programs is generally undecidable, it is possibte useful to prove termination of a large, non-
trivial subset of the terminating programs. In this paper wesent our termination analyser for sequential Java
bytecode, based on a program property cgtletih-length We describe the analyses which are needed before the
path-length can be computed, such as sharing, cyclicity hasirey. Then we formally define the path-length
analysis and prove it correetr.t. a reference denotational semantics of the bytecode. We stedva tonstraint
logic programP¢,p can be built from the result of the path-length analysis afabytecode progra® and
formally prove that ifPcr p terminates then als® terminates. Hence a termination prover for constraint logic
programs can be applied to prove the terminatiod®ofWe conclude with some discussion of the possibilities
and limitations of our approach. Ours is the first existingiieation analyser for Java bytecode dealing with any
kind of data structures dynamically allocated on the heapvaridh does not require any help or annotation on
the part of the user.

Categories and Subject Descriptors: F.3.ddics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programd#echanical VerificationF.3.2 [L ogics and M eanings of Programs]: Semantics of
Programming Languagesbenotational Semantic®rogram Analysis

General Terms: Languages, Theory, Verification
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1. INTRODUCTION

It is well-known that a general procedure for determiningailcomputer programs ter-
minate does not exist for Turing-complete programming leaggs [Turing 1936]. Nev-
ertheless, it is becoming ever more important to prove thagnams terminate. This is
because software is used in critical systems where noristation might lead to disaster.
Moreover, software is increasingly deployed in embeddetstsuch as mobile phones. If
a program downloaded into a mobile phone does not termittaephone might require
a tedious shutdown; worse, users might complain to theratgr of the software or to
the phone company itself, which accounts for extra costfiem part, or might decide not
to download software anymore. The software industry isqmaynore and more attention
to software quality, and would like to issuecartificateattesting that quality. A proof of
termination about the programs in the software should definbe part of the certificate.
Moreover, the compiler industry is interested in termioafproofs. For instance, the latest
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version of Sun’s Java compiler rejects non-terminating<iaitialisers; however, the test
for non-termination is so rudimentary that virtually allmterminating initialisers escape
that test. For these reasons, termination is considerecthall@nge for current software
verification [Leavens et al. 2007].

Programmers can often argue for the termination of the progtthey write. This means
that termination of computer prograrcanbe proved by humans, at least for a large class of
programs. However, programmers are often very erroneaoslyinced of the termination
of programs which are later found to diverge in sospecialor unexpected¢ases: almost
everyone has had the experience of having to stop a prograahapparently was not
terminating. This means the human proofs of terminationearer-prone and generally
unreliable. This problem becomes more acute for modernranogning languages, such
as the object-oriented ones, especially if they are lowlllanguages with a very complex
semantics.

Java bytecode [Lindholm and Yellin 1999] is a low-level, extijoriented programming
language, usually resulting from the compilation &faurceJava program. It can be seen
as a machine-independent, type-safe, object-orientgukriative assembly language. Al-
though it was born both with and for Java, it is now also used esmpilation target for
other programming languages. The Java bytecode availaliteednternet or downloaded
into mobile phones is often provided as a set of Java byteclagses without the corre-
sponding source code. The source code is hot made avaitabt:mé or more reasons:
because of commercial choice, to shorten the download timegcause source code does
not even exist since the bytecode is the result of softwarnesformations or specialisa-
tions. The above considerations entail that terminati@mofsrfor Java bytecode software
have real industrial interest. Moreover, one can prove ¢heibation of a Java source
program by proving the termination of the derived Java lydec(assuming the compiler
to be correct), while the converse is false: many Java bgtepoograms do not directly
correspond to a Java program.

Previous research has developed autonatimination analyses i.eformal techniques
for proving, automatically, the termination of large cles®f computer programs: when
these analyses prove termination, then the analysed pnogctually terminates, while
the converse is generally false. Although there is a vamétygroposed techniques, the
underlying common idea is that of finding some well-foundezhsure, called in tunmorm,
ranking functionor level mappingthat strictly decreases along loops or in recursive calls.

Most of the work on termination analysis has been applie@im trewriting systems,
functional and logic programming languages, whose segmisttypically simple and well
understood. Proofs of termination for imperative progréimas use dynamic data structures
are much more complex than the corresponding proofs fortifumal or logical languages
which do not have destructive updates. In order to foresepdbsible effects of destructive
updates, it is important to compute information about thepshof the heap of the system
at run-time. Namelysharingand cyclicity of data structures play an important role in
imperative programs, while they are forbidden or practycaéver used in functional and
logical languages. Since cyclicity can lead to non-tertiimaof some iterations over
the data structures, it must be taken into account for a cbteemination analysis. It
has been proved that sharing adds to the power of LISP pregsame it allows one to
write computationally cheaper algorithms [Pippenger 1980 similar result is known for
cyclicity. Nevertheless, the extensive use of sharing aetigity in current Java programs
entails that a realistic static analysis must take themaoctmunt.
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Things become still more complex with object-oriented laaqges, where dynamic dis-
patch, inheritance, instance and class initialisationstrha taken into account. Cyclicity
becomes omnipresent there; for instance, all exceptionsyadical in Java. If we con-
sider the Java bytecode language, its low-level natureeptedurther challenges, such as
the unstructuredness of the code and the presence of amdpstesck of variable height.
For instance, this requires the tracking of precise defalitesing between local variables
and stack elements, which is not the case for high-leveldaggs. Without such infor-
mation (or similar) abstract domains and static analysdashwdire sufficiently precise for
high-level languages might not be precise enough for a &xetllanguage [Logozzo and
Fahndrich 2008].

It therefore follows that an automatic technique for provine termination of Java byte-
code programs is a long way from being a simgk¢ensiorof similar techniques already
existing for functional and logical languages. To the camfrit requires a set of prelimi-
nary static analyses, such as sharing, cyclicity and aljpanalyses, and strict adherence
to all the details of the semantics of the language.

For this reason, we have recently defined an abstract asatydiedpath-length which
uses preliminary sharing, cyclicity and aliasing analytebuild an over-approximation
(hence, safe approximation) of the maximal length of a péthointers that can be fol-
lowed from each program variable [Spoto et al. 2006]. Thiy &aseen as an extension
to data structures of tHaear restraintsof [Cousot and Halbwachs 1978].

In this paper we make the following contributions:

(1) We define thepath-lengthanalysis for sequential Java bytecode, dealing with any kin
of data structures, and prove that it is formally correchgshe abstract interpretation
framework [Cousot and Cousot 1977];

(2) We define how &LP program is derived from the path-length analysis of a Java
bytecode program and prove that if the deriv&ddP program terminates then also the
original Java bytecode program terminates;

(3) We describe our implementation of a termination analysi sequential Java byte-
code, based on path-length, inside tbeld analyser [Spoto 2008a], coupled with the
BINTERM termination prover. It is a fully automatic system able taleaup to pro-
grams of 1200 methods, including all the analyses necessdmnyild the path-length
constraints. This shows the potential of both.th and BNTERM.

In this paper we only consider a non-trivial subset of Jav@dnyde, so that for instance
point 2 above is limited to that subset. However, note thigtithstandard in the analy-
sis of Java bytecode, since the chosen bytecodes are nefatase of a large family of
bytecodes (namely, they include those manipulating the)haad the missing bytecodes
perform tedious stack manipulations or deal with concuwydthat we do not handle). By
considerincall bytecodes, we would just make the paper clumsy.

We stress the fact that the implementation is npratotypebut a robust and reliable
system, resulting from many years of programming work; d¢tudes classpull pointer,
initialisation, sharing, cyclicity, aliasing and patmigth analyses, deals with all constructs
of Java bytecode, including ther andret instructions, deals with exceptions, has been
tested on very large programs (up to 10000 methods) andsxédndebugged; it is also
used by a big industrial company in the USA for informatiomflanalysis of very large
programs. To the best of our knowledge, it is the first fullyomoated implementation
of a termination analyser for full sequential Java bytecadéh no invention of ad-hoc
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algorithms for dealing with specific complex programs; nowes, it is the first termination
analysis for imperative programs able to deal, automdyieald with satisfying precision,
with any kind of data structures dynamically allocated immoey.

Two lines of works are strictly related to ours and deserveesdiscussion:

—In [Albert et al. 2007a; 2008] it has been shown how the resoitthe path-length
analysis can be used to translate the analysed imperatigegon into a constraint logic
program CLP) which can then be fed to a termination prover for logic pevgs. In
the same spirit, path-length has also been used in [Albeal.€2007b] to infer upward
approximations of the computational cost of Java bytecodéhaus. They use it to
translate imperative programs into constraint logic paogg over which cost analysis
is performed. Our translation intGLP programs is not identical to that used in these
papers, but [Albert et al. 2007a; 2008] remain the closesttowork. Note, in par-
ticular, that [Albert et al. 2007a] has been published teefbe first submission of our
paper. We have received the benchmarks analysed in [Albeat. 2007a; 2008] from
the authors of those papers; their analysis with our todidsv® in Figure 16.

—The TERMINATOR system [Cook et al. 2006b] proves termination of C prografinsu-
cial innovationw.r.t. termination consists in its use of transition invariantsd®iski and
Rybalchenko 2004b], which are computed using techniquekeést fixpoint calcula-
tion and abstraction. Transition invariants enable theofiseranking function generator
for simple-while programs, which can be implemented by trairgt solving [Podelski
and Rybalchenko 2004a]. Termination is proved over primitypes, without dynamic
data structures. This is the main difference from our workicl is in principle able
to deal with any data structure dynamically allocated inhbap. TERMINATOR uses
model-checking to explore the set of reachable states gfrtsgram. The use of model-
checking allows one to test also concurrent programs. Ténduishing feature of
TERMINATOR is its ability to improve the analysis by exploiting courgeamples found
during the model-checking [Cook et al. 2005]. This featwvhich is missing in our
work, can lead to very precise analyses, sometimes at thenegpof efficiency. ER-
MINATOR can deal with pointers in the sense that it models derefergndowever,
it does not deal with iterations over dynamic data struatpage 425 of [Cook et al.
2006a)). It has been successfully used for the verificatfomperating systems drivers
of non-trivial size [Cook et al. 2006a]. The weak modellifglee heap in ERMINA-
TOR has been overcome in [Berdine et al. 2006], where terminatic programs with
lists is proved by using the shape analysis in [Distefano le2@6], which is based
on separation logic [Reynolds 2000; Ishtiaq and O’Hearnl200heir work has some
similarities with ours since they build a linear constrdim the program by using
the shape analysis to gather information about the sizeeofists. However, they do
not support functions, as the underlying shape analysgy, ¢taim that their work can
be applied to many data structures, but they only consid&edl lists; the derivation
of linear constraints from the shape analysis is not prowdect. Note that they are
based on a separation logic for lists only and that also a mdvanced version of that
logic [Berdine et al. 2007a] still considers flavours ofdisinly, as well as the inter-
procedural shape analysis in [Gotsman et al. 2006]. TheikWwas been generalised
in [Berdine et al. 2007b], so that termination with lists isiastance of a generic frame-
work which proves well-founded variance of some variablespacific program point.
The generalisation does not affect the results about tleestiatctures which can be mod-
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elled in the heap during the shape analysis. Compared to oik; we remark that we
consider every kind of data structure in the heap. Althoaghtrue that more advanced
shape analyses can determine the shape of any data strimctoneznory, not just lists,
there is no mention, in the works above, of the translatiothefresults of such shape
analyses into numerical constraints that can later be uspve the termination of the
program. That is, those papers miss a formal definition of th@Alinear constraints are
built when a destructive update modifies some data struatotgust lists (seeutfield

in our Definition 37), as well as a formal definition of how tiveglar constraints are built
for method calls that might modify data structures in theph@eextend in our Def-
inition 44). Moreover, we provide formal proofs of the careess of the construction
of those numerical constraints, while this is not the caghérpapers above. This is far
from being a detail. As the reader can check, those two defisiare the most complex
in this paper and their correctness proof requires careilren-trivial arguments. For
a pratical comparison with our tool, we have analysed thfabeoprograms in [Cook
et al. 2006a]. Namely, prograhuner i cal 1 in Figure 16 is the program in Figure 3
of [Cook et al. 2006a], programuner i cal 2 is the program in Figure 11 of [Cook
et al. 2006a] and prograiumer i cal 3 is the diverging program in Figure 7 of [Cook
et al. 2006a]. The same paper contains a utility function @fiadows device driver
(Figure 1 of [Cook et al. 2006a]) and analyses a set of Windbswice drivers (in its
Figure 12); we cannot analyse such drivers because theoaway of writing Windows
device drivers in Java. The same paper analyses the Ackarfuaction (also analysed
in our Figure 16) coupled with a program that uses pointeigtegers, which do not
exist in Java (Figure 4 of [Cook et al. 2006a]). The benchmarkalysed in [Berdine
et al. 2006] are all loops of Windows device drivers whichaiagwe cannot analyse.
The simple iteration over a list in Figure 5 of [Berdine et 2006] is included in the
analysis olLi st in our Figure 16.

The rest of this paper is organised as follows. Section Zgiveoverview of our analyser
through its application to some programs, hence showingihdeals correctly with some
of the subtlest aspects of the semantics of the languagéioS&cdefines the syntax of a
small but non-trivial subset of the Java bytecode that weruser definitions and proofs.
Section 4 describes all the preliminary analyses that wéoparbefore the path-length
analysis. Section 5 defines an operational and an equivdtamdtational semantics of
our subset of the Java bytecode. Section 6 defines the paitilanalysis and proves it
correctw.r.t. the denotational semantics of Section 5. Section 7 defimasahslation from
Java bytecode int€LP over path-length and proves that, if t8&P program terminates,
then also the original Java bytecode terminates. Secti@p@ts some experiments with
our analysis. Section 9 discusses related works. Sectiatist@sses limitations, future
directions of research and then concludes. Most of the prax@f available in an electronic
appendix.

2. EXAMPLES OF OUR TERMINATION ANALYSIS

This section presents examples of termination analysts et tool. All examples can be
tested on-line through a web interface [Spoto et al. 2008k ifput of the analysis is a
Java bytecode prograi, its output is an enumeration of its methods, divided intusth
whose calls inP definitely terminate; those whose calls ifhmight diverge because of a
loop inside their code (methods thatroducenon-termination); and those whose calls in
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public class Sharing { public void expand(Shari ng)
0: aload_0
private Sharing next; 1: astore_2
2: aload_2
publ i c Sharing(Sharing next) ({ 3: ifnull 31
this.next = next; 6: aload_1
} 7: new Sharing
10: dup
public void expand(Sharing other) { 11: aconst _nul
Sharing cursor = this; 12: invokespeci a
while (cursor !'= null) { Shari ng. <i nit >(Sharing): void
ot her.next = new Sharing(null); 15: putfield next
ot her = ot her. next; 18: aload_1
cursor = cursor.next; 19: getfield next
} 22: astore_1
} 23: aload_2
} 24: getfield next
27: astore_2
28: goto 2
31: return

Fig. 1. Anexample where sharing is needed to model the efféetslestructive update.

P might diverge but only because they call one of the prevideerding methods (methods
thatinherit non-termination).

Let us start from an example which shows the problems indigethe destructive
updates. The program on the left of Figure 1 implements alsidipked list with an
expand method that scans the list corresponding totthes object and expands the first
node of the parametert her by as many nodes as the length of the list. Figure 1 shows,
on the right, the Java bytecode of ttepand method, where local variables 0, 1 and 2
stand, respectively, fdrhi s, ot her andcur sor. Thewhi | e loop has been compiled
into a nonaull check forcur sor (lines 2 and 3), which directs to the end of the loop, and
into agot o (line 28) which iterates the loop. This Java bytecode (doethin a. cl ass
file) is what we really analyse but we report the source Jade éor the convenience of
the reader, since it is easier to understand. In the restios#ttion, we will only report
source code. It must be clear, however, that our analysis doeuse the source code at
all.

Assume thaexpand is called as follows:

public static void main(String[] args) {
Sharing shl = new Sharing(new Sharing(new Sharing(null)));
Sharing sh2 = new Sharing(new Sharing(null));
shl. expand(sh2);

}

The above call texpand terminates. This is becausél is finite, so that the iteration
inside thewhi | e loop of expand must eventually reach its end. Our analyser correctly
spots this behaviouk({ ni t > is the name of a constructor in Java bytecode):

Al calls to these methods term nate:
public static Sharing.nmain(java.lang. String[]):void
publ i c Sharing. expand(Sharing):void
publ i c Sharing. <init>(Sharing)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. MIDBth Year.



A Termination Analyser for Java Bytecode Based on Path-Length . 7

Let us now modify therai n method a bit:

public static void main(String[] args) {
Sharing shl = new Sharing(new Sharing(new Sharing(null)));
shl. expand(shl. next);

}

The listsh1 is still finite, but we get a different answer this time:

Al calls to these nethods term nate:
publ i ¢ Shari ng. <i nit>(Shari ng)

Sone calls to these nethods might not termnate:
public static Sharing.min(java.lang.String[]):void [inherits]
publ i ¢ Shari ng. expand( Sharing):void [i ntroduces]

This means thatuliA identifies a possible divergence for the callsetopand, which
induces divergence also fami n, which callsexpand. The result is perfectly correct:
while expand expands the lissh1. next, it also expands the ligh1l initially bound
to cur sor, so that the loop does not terminate. This is made possibtedogestructive
update at line 15 of the bytecode in Figure 1: the fi el d next bytecode adds new
nodes after the first two nodes i1, unlinking everything which was previously there.

The behaviour above is not featured by logic programs, whata structures are not
mutable so that the path-length constraints of the data structmmedbto a variable cannot
be updated. For instance, the logical unification of

Shl = sharing(sharing(sharing(Sh2)))

constrains the length &h1 to be3 plus the length oSh2 and this constraintannot be
changed anymoredata structures are only created in pure logic or functitaryuages,
never destroyed. In imperative programs, instead, thegnd

shl = new Sharing(new Sharing(new Sharing(sh2)))

constrains the length afh1 to be 3 plus the length o6h2, but this constraint can be
updated at any time, as soon as you upadté or sh1l. next orshil. next. next or
shl. next. next. next i.e, as soon as you update something that sharesshith In
theexpand method in Figure 1, the listh1 (i.e, t hi s) gets expanded whenewatr her
shares some data structure wathl, as in the last example ofai n. This justifies the fact
that we need a preliminaigharing analysigSecci and Spoto 2005] in order to perform a
precise termination analysis of Java bytecode programs.

Let us show now how cyclicity of data structures can affeet tbrmination of Java
bytecode methods. Consider the followimgi n method:

public static void main(String[] args) {
Sharing shl = new Shari ng(new Sharing(new Sharing(null)));
Sharing sh2 = new Shari ng(new Sharing(null));
shl. next. next.next = shi;
shl. expand(sh2);

}
The analyser cannot prove the terminatioreapand:

Al calls to these nethods terni nate:
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public class List {
private Object head;
private List tail;

public List(Cbject head, List tail) {
this. head = head;
this.tail = tail;

}

private void iter() {
if (tail '=null) tail.iter();
}

private List append(List other) {
if (tail == null) return new List(head, ot her);
el se return new List(head, tail.append(other));

}

private List reverseAcc(List acc) {
if (tail == null) return new List(head, acc);
el se return tail.reverseAcc(new List(head, acc));

}

private List reverse() {
if (tail == null) return this;
el se return tail.reverse().append(new List(head, null));

}

private List alternate(List other) {
if (other == null) return this;
el se return new List(head,other.alternate(tail));

}

public static void main(String[] args) {
List 11 = new List(new Object(), new List(new Object(),null));
List 12 = new List(new Object(), new List(new Object(),null));
I1.alternate(l2);
I2.tail.tail =12
I 1. append(| 2);
I1l.iter();
I 1. reverseAcc(null);
I 1.reverse();

Fig. 2. Alinked list ofCbj ect s with a set of recursive methods that work over it.

public Sharing. <init>(Sharing)

Sone calls to these nmethods might not termnate:
public static Sharing.min(java.lang.String[]):void [inherits]
publ i ¢ Shari ng. expand( Sharing):void [introduces]

This is correct since the statemaiitl. next . next . next = shl makesshl a cycli-
cal list. Therefeore, thehi | e loop insideexpand does not terminate. This justifies why
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public class Exc {
private int f;

public static void main(String[] args) {
Exc exc = new Exc();

int i =0;
while (i < 20) {
try {
if (i > 10) exc.f =5;
i += 2

catch (Nul | Poi nter Exception e) {}
}
}
}

Fig. 3. An example of termination in the presence of exceptions

we need a preliminargyclicity analysigRossignoli and Spoto 2006] as an ingredient of
our termination analysis of Java programs.

One might be tempted to postulate that the analysed progilamst use cyclical data
structures. This hypothesis is sensible for functionalogidal programming languages,
where cyclicity is forbidden by the so-called occur-cheélpattern-matching and unifi-
cation, or it is allowed but typically never used by the paorgmers. This hypothesis is
instead non-sense for imperative programs, where cyclisiextensively used: graphs
are often used in imperative programs and graphs are tfypmatlical; all exceptions are
cyclical in Java, because of thaause field which points to the exception itself; data
structures used by compilers are typically cyclical. Oyseximents with cyclicity analy-
sis suggest that, on the average, around one third of thestfatztures created by a Java
bytecode program are cyclical.

It must be clear, however, that taking cyclicity into accobdoes not mean that, as soon
as a method works over cyclical data structures, its tertimnaannot be proved. Consider
for instance the class in Figure 2, which implements a linlk&dof Obj ect s and a set
of recursive methods over such a list. Our analyser findshatgtl calls inside this class
terminate. Nevertheless, cyclicity is created by the siatgl 2. tail .tail =12
insidemai n andl 2 is subsequently passed as an argumertppend. However, the
calll 1. append( | 2) is not affected by the cyclicity of its2 argument but only by the
cyclicity of its implicit | 1 argument. Sincé 1 is notcyclical, termination is proved.

The latter example shows that our analysis works corretdtyia the presence of recur-
sion, as well as for methods, suchedd er nat e, whose termination depends on alternate
progression along their arguments.

Let us show some examples now where a termination analysi$ teke into account
the complex semantics of Java bytecode. The class in Fignas amai n method which
contains a loop over an integer variableThis loop terminates since the statemient-=
2 inside its body increases which is bound from above b30. Our analyser proves the
termination ofmmai n but only if we perform a preliminaryull pointer analysisof the
code. This is because, without such analysis, it is imptesstbknow if theexc. f =
5 assignment will raise &lul | Poi nt er Except i on or not. If the exception is raised,
the catcher would catch it and reenter the loop without eieguhe statemerit += 2.
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public class Init {
public void n() {
new A();

}

public void n() {
Af = 13;
}
}

Fig. 4. An example dealing with instance and class initititiea

Hence the program would diverge. This example shows thahwoalyser deals faithfully
with the semantics of this exception.

Figure 4 shows a very simple clakgi t . ClassA is not shown yet on purpose. Many
programmers would conclude that both methodmdn terminate, regardless of the way
you call them. We can havesdia prove this by running our termination analysidibrary
mode which means that the public methods of some class(es) algsaal, without making
any hypothesis on their calling context. For instance, theyeser does not assume any
order about which ofnandn is called before the other; it does not assume that any class
has been already instantiated before caltimay n, unless foil ni t itself and some system
classes. The results of this analysis might look surpri¢fr@d i ni t > is the name of a
class initialiser in Java bytecode):

All calls to these nethods term nate:
public Init.<init>()

Sonme calls to these nethods mi ght not terninate:

public Init.m):void [inherits]
public Init.n():void [inherits]
public A <init>() [introduces]
package static A <clinit>():void [introduces]

Only the (implicit) constructor of ni t is found to terminate. Methodwandn inherit
non-termination because they call some other method thgtrmmoaterminate. This is
correct, since clasais defined as follows:

public class A {
public static int f;

public A() {

while (true) {}
}

static {

int a =0;
while (a == 0) {}
}

}

The instance initialiser oA diverges, and it is (implicitly) called by methad The class
initialiser of A diverges also, and it is (implicitly) called by both methadsindn. We
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recall that the static initialiser of clagsis called, in Java bytecode, ontle first time
that a class is instantiated, or one of its static fields id @awritten, or one of its static
methods is called.

Assume now that we have the followimgai n method inside claskni t , which fixes
the calling contexts of methodsandn:

public static void main(String[] args) {

new Init().m);

new Init().n();

}

Reverting to a traditional analysis fromai n instead of the library modeuliA yields
the following result:

Al calls to these nethods term nate:
public Init.<init>()
public Init.n():void

Sonme calls to these nethods mi ght not terninate:

public Init.m):void [inherits]
public static Init.min(java.lang.String[]):void [inherits]
public A <init>() [introduces]
package static A <clinit>():void [introduces]

but only if a preliminaryclass initialisation analysiss performed. This analysis finds
out that, inside method, classA has been already initialised by thew A() statement
inside methodn so that no call to the static initialiser 8fhappens inside and that the
method terminates. It is true, however, that that metho@venreached since the callio
diverges. This example shows that the subtle aspects oéthargics of instance and class
initialisation of Java are faithfully respected by our as#.

We conclude with an example that shows that our analyses d@eatectly with the dy-
namic dispatch mechanism of object-oriented languagesagthdnon-linear data struc-
tures. Figure 5 shows a program dealing with a binary treplémented as a sequence
of Nodes of several kindsl nt er nal nodes have two successor nodes, whilé and
Di v nodes have no successor. Note that this data structure & ligttnor a one selec-
tor data structure. Thieei ght method is expected to yield the height of the tree but it
diverges forDi v nodes since it calls itself recursively indefinitely. Catlg our anal-
yser concludes thatll calls inside this program terminate. This is because, aha
Di v object is created by the first statement@fi n, that object does not flow into, so
that the calln. hei ght (), and those recursively activated by the redefinition of méth
hei ght insidel nt er nal , never lead to the redefinition bki ght insideDi v. Hence
the program terminates.

If we modify the second statementwéi n intoNode n = new Di v(), we get the
following (correct) result:

Al calls to these nethods term nate:
public Div.<init>()
public Internal.<init>(Node, Node)
publ i ¢ Node. <i nit>()

Sone calls to these nmethods might not termnate:
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public class Virtual {
public static void main(String[] args) {
Node d = new Div();
Node n = new Nil();
int | = Integer.parselnt(args[0]);
while (I-- > 0) n = new Internal (n,n);
System out. println(n. height());
}
}

public abstract class Node {
public abstract int height();

}

public class Internal extends Node {
private Node next1;
private Node next2;
public Internal (Node nextl, Node next2) {
this.nextl = nextl,;
this.next2 next 2;

}

public int height() {
return 1 + Math. max(next1. hei ght (), next2. height());
}
}

public class Nil extends Node {
public int height() {
return O;
}
}

public class Div extends Node {
public int height() {
/!l this goes into an infinite recursive |oop
return height();

}
}
Fig. 5. An example dealing with the dynamic dispatch mechanigen won-linear data structures.
public Internal.height():int [inherits]
public Div.height():int [i ntroduces]

public static Virtual.min(java.lang.String[]):void [inherits]

This time, the redefinition diiei ght insideDi v is reached by the computation and it in-
troduces divergence. As a consequence, also the redefioftiei ght insidel nt er nal
inherits divergence, while the redefinitiontoéi ght insideNi | is never called.

The results above are possible becausaAl determines precisely the set of methods
that might be called at run-time by each call to a virtual rodttsuch as. hei ght () (the
set of itspossible dynamic targets This information is computed through a preliminary
class analysi$Palsberg and Schwartzbach 1991; Spoto and Jensen 2003].
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3. OUR SIMPLIFIED JAVA BYTECODE

In this section we introduce a simplification of the Java bgtke, that we will consider in
our examples and proofs.

In the following, a total functiory is denoted by— and a partial function by-. The
domainand codomainof a function f are dom(f) andrng(f), respectively. We denote
by [v1 — t1,...,v, — t,] the functionf wheredom(f) = {v1,...,v,} andf(v;) = t;
fori = 1,...,n. Itsupdateis flwy — di,...,w, — d], Where the domain may be
enlarged (it is never reduced).

The Java Virtual Machine runs a Java bytecode program byikgem activation stack
of states Each state is created by a method call and survives untédnldeof the call.

DEFINITION 1. The set ofvaluesis Z U L U {null}, whereL is the set ofmemory
locations A stateof the Java Virtual Machine is a triplél | s | x) wherel is an array of
values, calledocal variablesand numbered fromd upwards,s is a stack of values, called
operand stackin the following, juststack, which grows leftwards, and is a memory
or heap which mapdocationsinto objects An object is a function that maps its fields
(identifiers) into values and that embeds a classdage say that itbelongs taclassk or
is an instance oflassk or has class. We require that there are no dangling pointersi.e.,
INL C dom(u), sNL C dom(p) andrng(p(€)) N L C dom(u) for everyl € dom(p).
We writel* for the value of thé:th local variable; we writes* for the value of théth stack
element £° is the base of the stack! is the element above and so on); we writg) for
the value of the fielg of an object. The set of all classes is denotedRy The set of all
states is denoted by. When we want to fix the exact numbgr € N of local variables
and+#s € N of stack elements allowed in a state, we whitg; »,. O

We will often write the stack in the forme :: y :: z :: s, meaning that: is the topmost
value on the stacky is the underlying element andthe element still below its is the
remaining portion of the stack and might be empty. The emiatgksis writtene, as well
as an empty array of local variables. Wheis empty, we often omit it and write :: y :: z
instead ofr :: y :: z :: €. Note that stacks are recursive data structures built frenempty
stacke by pushing elements on top. Hence we should writey :: z :: s :: ¢ instead of
x::y oz s. We use the second notation for simplicity.

ExAMPLE 2. Consider a memory = [{1 — 01,03 — 09, {3 — 03] whereo; = [f —
03], 02 = [f — ¢1] andog = [g — null, h — 3]. Then a state is

o= ([5,02] |y :: b3 | ),

shown in Figure 6. Local variable 0 holds integer 5; local iale 1 holds/s and is hence
bound to the objeat,. The topmost element of the stack also héldand is hence bound
to the objecto,; the underlying element, which is the base of the stack,shland is
hence bound to the objeet. We haver € ¥, 5 sinces has2 local variables an stack
elements. O

ExampPLE 3. We have
o = ([l1, 0o, la] | £3 2 Lo |[l1 = 01, Ly = 02,03 — 03,04 = 04,05 — 05]) € X3 2

whereo; = [next — /4], 02 = [next — null], o3 = [next > {5], 04 = [next — null]
andos = [next — null]. This state is shown in Figure 7]
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/)

ZITNY Tl

h| 3
0, | 02 \ 03
61 / 62 63
5]/ \
local variables stack element

Fig. 6. The state of the Java Virtual Machine considered iangple 2.

N \
next next | null next / next | null next | null
for |roaf | o3} | o 05
/g’l £, \ £, / / £ €s
| — N~

local variables stack elements

Fig. 7. The state of the Java Virtual Machine considered iange 3.

In Definition 1 we have assumed, for simplicity, that valuas only be integers, loca-
tions ornull. The Java Virtual Machine deals with other primitive typas,well as with
arrays. This simplification is useful for our presentatibnf our analyser considers all
primitive types and arrays.

DEFINITION 4. The set oftypesof our simplified Java Virtual Machine i = K U
{int,void}. Thevoid type can only be used as the return type of methods. A method
signature is denoted by.m(t1,...,t,) : t standing for a method named, defined in
classk, expectingp explicit parameters of type, respectively, ..., ¢, and returning a
value of type, or returning no value wheh= void. [

We recall that, in object-oriented languages, a method(t4,...,t,) : t has also an
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implicit parameter of type calledt hi s inside the code of the method. Hence the actual
number of parameters js+ 1.

We do not distinguish between methods and constructorsnétaactor is just a method
named<i ni t > and returningroid. Moreover, there are no static methods in our simpli-
fied Java bytecode, although the extension of our definitioieal with static methods is
not difficult and our implementation considers them.

In order to keep the notation reasonably low, we do not foisaedhe notion of class and
the fact that an object of classhas exactly the fields required lay we do not formalise
the subclass relation, nor the lookup procedure for a mettord a class. We will talk
about thetype of a fieldmeaning the static type required by the class that defirecketal,
as well as about thype of a local variableor stack elementmeaning the static type for
that local variable or stack element, as computed by theitfpeence algorithm described
in [Lindholm and Yellin 1999]; but will give no formal defindn of them.

Java bytecode instructions work over states, by affectieg bperand stack, local vari-
ables or memory. There are more tH&0 Java bytecode instructions [Lindholm and Yellin
1999]. However, many of them are similar and only differ ie type of their operands.
Others are not relevant in this paper, such as those thairpetédious but useful stack
manipulations. Hence we concentrate here on a very restrggt ofl 1 instructions only,
which exemplify the operations that the Java Virtual Maehgrerforms: stack manipula-
tion, arithmetics, interaction between the stack and thalleariables set, object creation
and access and method call. Our implementation considexsun$e the whole set of Java
bytecode instructions.

DEFINITION 5. The set of instructions of our simplified Java bytecode iddatiewing
(a formalisation of their semantics will be given in Secti¥n

const ¢. Pushes on top of the stack the constanwhich can be an integer atull;

dup. Pushes on top of the stack its topmost element, which hetselgplicated,;

new . Pushes on top of the stack a reference to a new object of elggshich is
properly initialised);

load 7. Pushes on top of the stack the value of local variable

store i. Pops the topmost value from the stack and writes it intolleagable i;

add. Pops the topmost two values from the stack and pushes theiimnstead,;

getfield f. Pops the topmost valueof the stack, which must be a reference to an object
o ornull, and pushes at its place f). If £ isnull, the computation stops;

putfield f. Pops the topmost two valuegthe top) and (underv) from the stack. The
valuel must be a reference to an objeocbr null. Valuew is stored intoo(f). If £isnull,
the computation stops;

ifeq of type . Pops the topmost element of the stack and checks i fvident is int)
or null (whent € K). If this is not the case, the computation stops;

ifne of type . Pops the topmost element of the stack and checks if fvident is int)
or null (whent € K). If this is the case, the computation stops;

call kr.m(ty, ..., tp) ity ... kp.m(t,. .., tp) : t. POPS the topmogt + 1 values (the
actual parameteysig, ai,. .., a, from the stack. Value, is calledreceiverof the call
and must be a reference to an objeatr null. In the latter case, the computation stops.
Otherwise, a lookup procedure is started from the clae$o upwards along the superclass
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chain, looking for a method calledh, expectingp formal parametersf typet,, ..., t,,
respectively, and returning a valtief typet. It is guaranteed that such a method is found
in a class belonging to the s¢ks, ..., ,}. That method is run from a state having an
empty stack and a set of local variables boundgoa, ..., a,. O

The above description of bytecode instructions deservege smmments. First of all,
we silently assume that the instructions are used correbtly is, that they are applied to
states where they can work. For instance dilyginstruction requires at least an element on
the operand stack, or otherwise there is nothing to duglitatgetfield f andputfield f
instructions need a reference to an objeot null, but not an integer; they require that
actually contains a field namefd putfield requires that that field has a static type consistent
with the value that it is going to write inside. We assume tilhthese constraints are
true, as well as all othestructural constraintenumerated in [Lindholm and Yellin 1999].
Among those constraints, a very important one is that, hewgsu reach a Java bytecode
instruction in a program, the number and types of the staeknehts and the number
and types of the local variables are the same. These caonisteaie checked by the Java
bytecode verifier of the Java Virtual Machine. Java bytecihds does not pass those
checks is rejected and cannot be run.

Theifeq andifne instructions stop the computation when the condition theped is
false. This corresponds to the fact that we are going to ussetmstructions afilters at
the beginning of the two branches of a conditional. Only or@bh will actually continue
the execution.

In the call instruction, the sek.m(t1,...,t,) : ¢,..., Kp.m(t1,...,tp) : ¢ is an over-
approximation of the set of itdynamic targetsthat is, of those methods that might be
called at run-time, depending on the run-time class of tkeiver. This overapproxima-
tion is always computable by looking at the class hierar€iagn et al. 1995]. A better one
is provided byrapid type analysigBacon and Sweeney 1996]. A still better approximation
is provided by other examples dfass analysissuch as that in [Palsberg and Schwartzbach
1991]. The latter, formalised in [Spoto and Jensen 2003haabatract interpretation of
the set of states, is the one used by our implementation.

Method return is implicit in our language, as we will see soon

Our 11 Java bytecode instructions can be used to write Java byggoayrams. In
order to reason about the control flow in the code, we assuatdldh code, as the one
in Figure 1, is given a structure in terms of blocks of cod&dith by arrows expressing
how the flow of control passes from one to another. These rbigffior instance thbasic
blocksof [Aho et al. 1986], but we also require thatall instruction can only occur at the
beginning of a block. For instance, Figure 8 shows the bloeksed from the code of the
methodexpand in Figure 1. The numbers on the right of each instruction laeenumber
of local variables and stack elements at the beginning ofrtsteuction. Note that at the
beginning of the methods the local variables hold the parammef the method.

The construction of the blocks can be done also in the presehcomplex control
flows as those arising from switches, exceptions and subesifthe infamougr andret
instructions of the Java bytecode), although we do not shbere.

From now on, alava bytecode programvill be a graph of blocks, such as that in Fig-
ure 8; inside each block there is one or more instructionsngntioe11 described before.

1Differently from Java, the return type of the method is usetth@lookup procedure of the Java bytecode [Lind-
holm and Yellin 1999].
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load O 2,0
store2 2]
load 2 3,0

o

ifeq of type Sharing 3,1

ifne of type Sharing 3,1
load 1 3,
new Sharing 3,
dup 3,
const null 3,

\

call Sharing.<init>(Sharing):void 3,4
putfield next ,23
load 1 3,0
getfield next 13
store 1 31
load 2 3,0
getfield next 13
store 2 31

Fig. 8. Our simplified Java bytecode for the mettedpand in Figure 1. On the right of each instruction we
report the number of local variables and stack elements gbthgtam point, just before executing the instruction.

This graph typically contains many disjoint subgraphs hemmresponding to a different

method or constructor. The ends of a method or constructarethe control flow returns

to the caller, are the end of every block with no successah s the leftmost one in

Figure 8. For simplicity, we assume that the stack thereainsexactly as many elements
as are needed to hold the return value (normalglement, but) elements in the case of
methods returningoid, such as all the constructors).

DEFINITION 6. We write a block containingy bytecode instructions and having
immediate successor blocks . .., b,,, withm > 0andw > 0, as

insy by . ins
e = - orjustas | 'ns: whenm = 0.

. b .
ins,, m ins,,

A Java bytecode prograid is a graph of such blocks.[J

In the following, P will always stand for the program under analysis.

4. PRELIMINARY ANALYSES

Before defining thepath-lengthanalysis in Section 6, we introduce here sqraiminary
analyses which we assume already performed when the pajthlanalysis is applied.
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This is because the path-length analysis uses the infaymatimputed by such prelim-
inary analyses and would be extremely imprecise withoutdtitermination proof could
realistically be obtained.

As we mentioned in Section 1, the proofs of termination fopémative programs need
information about the possible sharing of data structuegs/&en program variables, as
well as about the possible cyclicity of the data structuresnial to the variables. As a
consequence, the first two preliminary analyses gressible pair-sharin@nalysis (Sub-
section 4.1) and possible cyclicityanalysis (Subsection 4.2). We also use a further analy-
sis, which is a definitaliasing analysis (Subsection 4.3). The latter is needed due to way
that Java bytecode works, by copying values between localblas and stack elements.
Namely, a lot of aliasing is present between the local végmbnd the stack elements (due
to the instructionsad andstore) as well as between the stack elements (due to the instruc-
tion dup). Knowledge about such aliasing is important for the pienisf the path-length
analysis.

Other preliminary static analyses can contribute to theipi@n of a subsequent path-
length analysis (and hence of termination analysis) atihahey are not so essential as
pair-sharing, cyclicity and aliasing. Those analyses &@eusdsed in Subsection 4.4.

4.1 Possible Pair-Sharing

In Section 2 we have seena calil. expand(sh2) thatterminates wheshl andsh2
are bound to disjoint data structures, but does not termiwaensh2 == shl. next.
We have said that the different behaviour is a consequertte alifferentsharingbetween
shl andsh2 in the two situations. Namely, two variablsbkareif they both reach a
common location, possibly transitively [Secci and Spot63]0

The precision of our pair-sharing analysis can be improveéidis computed together
with possible updat®r, equivalently, definitgurity or constancyinformation [Salcianu
and Rinard 2005; Genaim and Spoto 2008], with a reduced ptageration [Cousot and
Cousot 1979]. Update means that for each method we know vglsichmeters might be
affected by the call, in the sense that some object reaclfi@ofethose parameters might
be modified during the call. Note that this property is mualergger than theonst
annotation of C++, which is a simple syntactical constrdat does not prevent from
modifying the objects reachable fromcanst parameter. The reduced product of pair-
sharing (as in [Secci and Spoto 2005]) with update is whatave implemented inside our
analyser, by using the abstract domain in [Genaim and S@i8]2 The update component
improves the precision of pair-sharing and cyclicity (Sedi®n 4.2). Assume for instance
that the following method

void foo(C a, Cb) {
a =b;

}

is called ad 0o( x, y) and that at the calling place variabbesandy do not share with
each other. Since, at the end of metHaab, variablesa andb share, our pair-sharing
analysis concludes, conservatively, that varialleendy are made to share by the call,
which is not the case. The update component prevents thie #iknows that no object
reachable froma or b at the moment of the call is modified during the executiof @b.
Hence, variableg andy cannot be made to share by the call. The example also works
for cyclicity: assume thay is cyclical whilex is not cyclical. The cyclicity analysis
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load 0 {
store 2 {(s0,l0)}

load2  {(10,12)}

/

ifeq of type Sharing  {(10,12),(s0,10),(s0,12)

ifne of type Sharing  {(10,12),(s0,10),(s0,12),

load 1 {(10,12)}

new Sharing {(10,12),(80}

dup {(10,)&0,11)}

const null {(10,12),(s0,11),(s2)}
call Sharing.<init>(Sharing):void  {(10,12),(s0)l{s1,s2)}
putfield next {(10,12),(s0,11)}
load 1 {(10,12)}
getfield next {(10,12),(s0,I1)}
store 1 {(10,12),(s0,11)}
load 2 {(10,12)}
getfield next 10i(2),(s0,10),(s0,12)}
store 2 {(10,12),(s0,10),(s0,12)}

Fig. 9. A pair-sharing analysis of the methexipand in Figure 8.

in [Rossignoli and Spoto 2006] concludes tiaaand hencex are cyclical after the call

f oo(x, y), which is not the case fax. The update component knows that no object
reachable fromx is modified during the call and hengecannot become cyclical. The
update component improves the precision of path-length aswe show in Section 6.

As we said above, our pair-sharing analysis is completetyed-sensitive, which means
that the analysis of a method is a function from the input extifor the method to the re-
sulting sharing information at its internal and final pragrpoints. In this sense, it is a
denotational static analysis. The advantage of being gbet@nsitive is that the approx-
imation of the result of a method can be different for everyuincontext for the call.
Consider for instance the method

public Sharing m(Sharing x) {
return x;

}

If one callst hi s. n( x) in a program point (&ontexj wheret hi s andx share, then its
result andt hi s share after the call, while they do not share if one calls & jprogram
point wheret hi s andx do not share. A context-sensitive analysis supports thid ki
of reasoning since the approximation of a method is funeligdenotationa). A non-
context-sensitive analysis, instead, provides an appratkon for the output of the method
which is consistent witlall possible calls to the method. In the previous example, a non-
context-sensitive analysis assumes thait s andx share after the call, with no regard to
the input context. All our preliminary analyses and the gatigth analysis that we will
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define in Section 6 are context-sensitive since they aredb@seenotational semantics so
that they denote methods with relational, functional agjpnations.

The implementation of a context-sensitive analysis depamdthe specific analysis.
In general, one distinguishes between properties of thetiapd properties of the out-
put of a denotation, such as pairs sharing in the input ang [ghiaring in the output.
Then one builds constraints between those properties.eltmsstraints are often logical
implications implemented as binary decision diagrams §8ty1986], as it is explained
in [Rossignoli and Spoto 2006; Spoto 2008b]. This is the adsmur pair-sharing anal-
ysis also. In other cases, they are numerical constrairds.inBtance, in Section 6, the
approximation of a method is a polyhedron over inpytand output ¢) variables, hence
expressing a relation between the input and the output xoote@ method (in general, of
a piece of code).

In order to show our pair-sharing analysis on a concrete pigmwe fix a specific input
context and show the resulting approximations. Namelyiei@® shows the result of our
pair-sharing analysis applied to the metleogpband in Figure 8, under the hypothesis that
the method is called in a context where its parameters dohaveswith each other. For
instance, we can assume that it is called b$. expand( sh2) whereshl andsh2 do
not share. On the right of each instruction we report the gas of variables which
might share, according to the analysis, just before theuosbn is executed. We refer to
theith local variable a$i and to theith stack element, from the base,ss. Figure 9
has been obtained by first computing the denotation for nadetixgpand and then fixing
the input context of the denotation to compute the resuléibgtract information at the
output of the method. Information about internal prograrmfso(those that are not at the
end of a method) has been recovered thromgityic-set§Payet and Spoto 2007]. Since
this is apossible pair-sharingnalysis, correctness is to be understood in the sense that
if two variablesv; andwv, actually share at run-time in a given program point, then the
(unordered) paifvy, v2) belongs to the approximation at that program point. The es®/
does not necessarily hold. For simplicity, we do not repofbrimation about reflexive
sharing, that is, pairév,v), since all variables of reference type share with themselve
when they are naiull. We do not report the update component either.

In many cases, sharing is actually aliasing, but this is ivedigs the case: for instance,
before the firsgetfield next instruction, the sharing information computed by the asialy
is {(10,12),(s0,11)}: the top of the stacls0 shares with 1. After reading the
next field of sO, the approximation does not change, because the value fi¢ktheext
of s0 is conservatively assumed to share with This would not be the case for aliasing.

4.2 Possible Cyclicity

In Section 2 we have said that it is important, for termima@malysis, to spot those vari-
ables that might be bound to cyclical data structures, sitecations over such structures
might diverge. Namely, ayclical variable is one that reaches a loop of locations. With-
out cyclicity information, the only possible conservatiugothesis is thall variables are
cyclical, so that often no proof of termination can be built.

Some aliasing and shape analyses are able to provide tydfirmation. However,
also in this case, it is possible to define a more abstract olpménich is just made of
sets of variables which might be bound to cyclical data $times. This abstract domain,
defined and proved correct in [Rossignoli and Spoto 2006],beaimplemented through
Boolean formulas in a completely context and flow sensitieg,vand is extremely fast in

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. MIDB&th Year.



A Termination Analyser for Java Bytecode Based on Path-Length . 21

load 0 {11}
store 2 {11}

load 2 {11}

&
ifeq of type Sharing  {I1}

ifne of type Sharing  {I11}
load 1 {11}
new Sharing {s0,11}
dup {s0,I11
const null {s0,I11

\

call Sharing.<init>(Sharing):void {s0,I1
putfield next {sG,11
load 1 {11}
getfield next {s@,I1
store 1 RELY)
load 2 {11}
getfield next 1]
store 2 {11}

Fig. 10. A cyclicity analysis of the methagkpand in Figure 8.

practice. It requires a preliminary sharing analysis taeaha good level of precision. It
exploits purity information, when available, to improve firecision further.

Let us fix again a specific calling context for methexdpand in Figure 1. Namely, let
us assume that that method is calledsad. expand( sh2) with sh1l andsh2 which
do not share and are not cyclical. Our cyclicity analysiddsihe empty approximation at
every program point insidexpand, meaning that no local variable and no stack element
can be bound to a cyclical data structure inside that method.

Let us fix another calling context faxpand. Namely, let us assume that it is called
asshl. expand(sh2) with shl andsh2 which do not share and withh2 bound to
a possibly cyclical data structure (but reth1). The result of the analysis is shown in
Figure 10, where on the right of every instruction we havettemi the set of variables
which might be bound to cyclical data structures, accordinthe analysis. Since this
is apossible cyclicityanalysis, correctness means that if a variable is actualyt to a
cyclical data structure at a given program point at run-tithen that variable belongs to
the approximation computed by the analysis at that progm@int.pThe converse is not true
in general.

Figure 10 shows that local variable 1, which ho&ds2 in our example, is everywhere
potentially bound to a cyclical data structure. Wheloal 1 instruction pushes its value
on the stack, also the top of the stack, whicls Gsthere, becomes potentially bound to a
cyclical data structure. This is true until that elementapped from the stack.
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load 0
store 2 {(s0,10)}

load 2 {

ifne of type Sharing  {(s0,I2)}
load 1 {
ifeq of type Sharing  {(s0,12)} new Sharing {(s0,12)
dup {(s0,11)
const null {(s0,11),(s1,s2)

\

call Sharing.<init>(Sharing):void  {(s0,I1),(s1)}¥2
putfield next {(s0,I1)}

load 1 {
getfield next {(s0,11)}
store 1 {(s0,11)}
load 2 {3
getfield next {(s0,12)}

store 2 {

Fig. 11. A definite aliasing analysis of the methedpand in Figure 8.

4.3 Definite Aliasing

Two variables araliaseswhen they are bound to the same value. If this value is a loeati
then they must be bound to the same data structure (and hieegeshiare); if it is an
integer, then this integer must be the same. In both casasy praperties of the two
variables are the same, as for instance tpaih-lengthof Section 6. Hence we want
to track definite aliasingof variables since their path-length must be the same aisd thi
information improves the path-length analysis. It is inpot to remark that we need
definite aliasing introduced by Java bytecodes suchi@sl, store anddup, rather than
possible aliasing

We have developed a very simple domain for definite aliadirtgacks the set of pairs of
variables which are definitely aliases. Tihed, store anddup bytecodes introduce aliasing
into the set. When a variable is modified, the pairs where iticcare removed from the
set. Also this analysis is completely context and flow sesgsit

Figure 11 shows the aliasing information computed fordhpand method in Figure 8
for a calling context such ashl. expand(sh2) whereshl andsh2 are not aliases.
On the right of each instruction we report the set of pairsasfables which are definitely
aliases, according to the analysis. Reflexive aliasing tsreyported since a variable is
always an alias of itself. This isdefinitealiasing analysis. Hence correctness means that
if two variables are reported to be aliases in the approxonatomputed by the analysis at
a given program point, then those two variables are actu@iays aliases at that program
point at run-time. The converse is not true in general.

You can see that the analysis finds out that, whendtheinstruction is executed, the
base of the staclksO, is definitely an alias of 1. After the dup, also the two topmost
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elements on the stack are definitely aliases, so that the( pdir s2) is present in the
approximation of the subsequefinst null instruction.

If two variables are definitely aliases in a program poinéntithey are also possibly
sharing there. This is why the sets in Figure 11 are alwaysaded in the corresponding
sets in Figure 9.

4.4 Other Preliminary Analyses

In Section 2, we have seen that some analyses can improveetisipn of a subsequent
path-length analysis (and then of a termination analysieth@n path-length) if they are
able to cut away spurious execution paths from the contoal-&f the program. We have
seen examples relateddall pointer analysis (Figure 3}Jass initialisationanalysis (Fig-
ure 4) anctlassanalysis (Figure 5).

Our JLIA analyser is able to perform all such analyses. #hel pointer analysis
uses an abstract domain implemented through Boolean @unscfSpoto 2008b]. It is a
rather traditional analysis that we implement in a compyetiew and control sensitive
way. Itis true thahull pointer information is subsumed by the path-length infdroma
that we describe in Section 6: a variable contaiasl if and only if its path-length is 0.
Nevertheless, our preliminary, very cheaf 1 pointer analysis simplifies the code which
is then used for the path-length analysis. Hence it is usefuhe efficiency of the overall
termination analysis. Moreover, it determines the nafi fields more precisely than our
path-length analysis and hence it is also useful for preisClass initialisation analysis
uses a set of classes which are considered as alreadyiseitial his set can be different in
different program points since, again, we implement thdyaisin a completely flow and
control sensitive way. Class analysis is a traditional ysialfor object-oriented programs,
that we implement in the style of [Palsberg and Schwartzld@91], by using a flow
sensitive abstract interpretation [Spoto and Jensen 2003]

5. SEMANTICS OF THE JAVA BYTECODE

In this section we define an operational and an equivalertdéanal semantics for the
Java bytecode. This means that we first define, formally, hemh ©f ourl1 instructions
modifies the state of the Java Virtual Machine. Then we lii$ ttefinition to blocks of
instructions. Anoperationalsemantics is closer to the implementation of an interpreter
of the language and it is usually better understoodieAotationalsemantics is important
for our purposes since we will use it later to defineekational abstract domain that we
will call path-length(Section 6). For this reason we present both semantics,hvarie,
however, equivalent, as proved in [Payet and Spoto 2007].

We definestate transformerwith the A-notation § = \o.¢’ is a state transformer such
that 5(c) = o’ for everyo. In the following Definition 7 we often require a specific
structure foro; it is understood that whet has no such structure, théfv) is undefined.
Definition 7 defines the semantics of the bytecode instrostdifferent fromcall.

DEFINITION 7. Each instructionins different fromcall, occurring at a program point
g, is associated with itsemanticsins, : ;, s, — X, s, at g, wherel;, s;, l,, s, are the
number of local variables and stack elements definegdaatd at the subsequent program
point(s), respectively (this information is staticallydan [Lindholm and Yellin 1999], see
for instance Figure 8). We assume that, (o) is undefined on every where the pairs
of variables which are not computed @by our possible pair-sharing analysis share; or
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where the variables which are not computedgdby our possible cyclicity analysis are
cyclical; or where the pairs of variables computedgaby our definite aliasing analysis
are not aliases. Otherwiséns,, is defined as follows.

consty ¢ = AU | s | p).(U] e s] )
dup, = XU | top =2 s| p).(L| top :: top =2 s| )
newg k= AU s | p).(L| € s | pll — o])
where/l is a fresh location
ando is an object of class whose fields hold or null
loadg i = XU | s|p).(LI1" = s | p)
storeq it = X(l | top == s | w).(l[i — top] | s| )
addg = X[z =y 2 s ) (U(z +y) = s )
W (O)(f) =5 |p) if €+ mull
tfield, f = A({| ¢ :: .
getficld, f ez slm {undeﬁned otherwise

(L] s pll = pO)[f —2]l) if £ null
undefined otherwise

putfield, f = Nl[v:: € s]p). {

(s p)y if top=00rtop =null

; t t= M| top :: .
ifeq of type, (Htop:slu) {undeﬁned otherwise

(s )y if top # 0andtop # null

ifne of typeq t = Al] top :: 5] 1. {undeﬁned otherwise

O

The fact that these transformers are undefined when the stptg does not satisfy the
definiteinformation computed by our static analyses is not restdcsince an instruction
at program poing mustreceive an input state where that information is true. Fstaince,
the input state for theup instruction in Figure 8 must receive an input state wh&oes
not share with! (Figure 9), wherd® is non-cyclical (Figure 10) and whes& and{! are
aliases (Figure 11).

Note that thestore i operation might write into a local variable which was not yséd
before the same instruction. In such a case, the numberalfiagables used in the output
of the instruction is larger than the number of local vaishlsed in its input.

ExAMPLE 8. Letq be the program point where the instructidap of Figure 8 occurs.
There are 3 local variables and 2 stack elements there. Hence

dup, = A([lo,so,l2] [ st s [ ,u).([lo,so,lz] | stushsd [u) € 32— 35 .

Note that, because of the alias information in Figure 11, eguire that the base of the
stack is an alias of local variable. Moreover,, must be such that the pairs of variables not
in {(19,12), (s°, 1)} (Figure 9) do not share and the variables not{isf, i'} (Figure 10)
are not cyclical. I
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ExaMPLE 9. Consider the state

0 = ([1,02,04] ] L5 :: Lo | [€1 — 01,82 — 02,03 — 03,04 — 04,05 — 05]) € 339

1
of Example 3. Assume thjt= 3 and s; = 2 and that the pair-sharing, cyclicity and

aliasing analyses give empty definite information at sonogam pointsg and r. We
have

(dup,)(0) = ([l1, L2, €a] [ £3 :: b3 2 la | ) € B33
(loady 1)(0) = ([€1, 02, £4] | b2 :: b3 :: b | p) € B3 3
(storeq 2)(0) = ([l1, 2, Ls] | L2 | 1) € T3
(getfield,, next)(o) = ([l1, Lo, La] | €5 :: L2 | 1) € X32
((getfield,, next); (putfield, next))(o) = (putfield, next)((getfield, next)(o))
=

(01,02, la] e | 1) € B30

wherey’ = [¢1 — 01,0y — 04,03 +— 03,04 — 04,05 — 05] and oy, = oz[next — l5] =
[next — (5]. O

5.1 Operational Semantics

The state transformers of Definition 7 define the operatisaalantics of each single byte-
code different fromecall. The semantics of the latter is more difficult to define, siitce
performs many operations:

(1) creation of a new state for the callee with no local vdgatand containing only the
stack elements of the caller used to hold the actual argunadihe call;

(2) lookup of the dynamic target method on the basis of thetime class of the receiver;

(3) parameter passing, that is, copying the actual argwsrfemin the stack elements to
the local variables of the callee;

(4) execution of the dynamic target method and return.

We model (1), (2) and (3) as state transformers, and (4) as#ation of a new configura-
tion for the callee and, finally, the rehabilitation of thenfiguration of the caller. Figure 12
shows how each of these operations affects the stack anddhle/ariables.

The first operation is formalised as the following state ¢farmer.

DEFINITION 10. Letg be a program point where a call to a methedn(tq, ..., t,) : t
occurs. Let, ands, be the number of local variables and stack elemengs @spectively.
We define

args €y — 20,p+1

q,k.m(t1,...,tp):t q>5q

as

g8 om(tr,ty) = MUl ap 1o ivao s | p)(efap - ao [ p) -

|

The second operation is formalised ailer state transformer that checks, for each
possible dynamic target methed.m(t1,...,t,) : ¢, with 1 < ¢ < n, if it is actually
selected at run-time. We assume that the stack holds ongctial arguments and that the
local variables of the callee are not yet initialised.
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é \_—'_1 = ‘;‘ = e
= = oo
1] o VA Q_ B UJO ate
execution
args —» select —» makescope—»  of —»  return
3 the callee
2 o
) +
> o
o) Al — It
Q o + =
LN Y =
Fig. 12. The execution of a call to a method.
DEFINITION 11. Letk.m(ty,...,t,) : t be a method. We define
sele(Ztn.m(tl,..‘,tp):t : A0717-5-1—>0,P+1
as
o if £ # null and the lookup procedure
of amethodn(ty,...,t,) : ¢
Mel ol from the class ofi(¢)
ElfQp il ay . . . . .
P ! / selects its implementation in class
g
undefined otherwise.
|

The third operation is formalised by a state transformet ¢tbaies the stack elements
into the corresponding local variables and clears the stack

DEFINITION 12. Letx.m(t1,...,tp,) : t be amethod. We define

Makescope ;i t, . t,):t * Dopri—p+1,0

as

Melap:---mar mag | )i a; |0<i<p]|e|w.
O
Definition 12 formalises the fact that thith local variable of the callee is a copy of the

elementp — i positions down the top of the stack of the caller.
We define now the activation stack which tracks the sequehcalls to methods.

DEFINITION 13. A configurationis a pair (b| o) of a blockb of the program and a
stateo. It represents the fact that the Java Virtual Machine is gdim executé in stateo.
Anactivation stacks a stacke; :: ¢o :: - - - :: ¢, Of configurations, where; is the topmost,
currentor activeconfiguration. [J

We can define now theperational semanticsf a Java bytecode program.
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DEFINITION 14. The (small step) operational semantics of a Java bytecodgram
P is arelationa’ =p o providing the immediate successor activation statkof an
activation stack:'. It is defined by the rules:

ins is not acall
. (1)
<:; o) a= M:& - Jins(0)) 2 a
b, is the block where method; = x;.m(t1,...,t,) : t starts
o= (l]ap:---:ag:s|p), thecall occurs atprogram poing
o’ = makescope,, (select .(args g m, (0))) @
b

A R LR S = s da
l . b l/ !/ l . b l/ e ! . (3)

(0 Khos ) == oI T ) s a= (O [ vs = 8" | ) 2 a

1<1<m

(4)

<D3 ||U>3a:><bi\|cr>::a

We definei’ %4 p a” as nota’ =p a”. We also define>}, as the reflexive and transitive
closure of=p. O

Rule (1) executes an instructiams, different fromcall, by using its semanticg:s. The
Java Virtual Machine moves then forward to run the rest ofis&ructions. Rule (2) calls
a method. It chooses one of the possible callees, looks éobltitks,,,, where the latter
starts and builds its initial stat€, by usingargs, select andmakescope. It creates a new
current configuration containirtg,,, ando’. It removes the actual arguments from the old
current configuration and the call from the instructionB &iibe executed at return time.
Note that the choice of the possible callee is only apparerth-deterministic, since only
one callee will be selected by thelect function. For all the othersy’ does not exist
(select is a partial function). Control returns to the caller by r(83, which rehabilitates
the configuration of the caller but forces the memory to béahéhe end of the execution
of the callee. The return value of the callee is pushed ontdek ©f the caller. Rule (4)
applies when all instructions inside a block have been @relcit runs one of its immediate
successors, if any. This rule is normally deterministiegsiif a block of the Java bytecode
has two or more immediate successors then they start withattyiexclusive conditional
instructions and only one thread of control is actuallydaléd.

5.2 Denotational Semantics

In denotational semantics, a state transformer takegitradily the name oflenotation
Denotations can beequentiallycomposed, hence modelling the sequential execution of
more instructions.

DEFINITION 15. A denotation is a partial functiolt — X from aninput state to
an outputor final state. The set of denotations is denotedy When we want to fix
the number of local variables and stack elements in the iapdtoutput states, we write
Ay, 551,55, Standing fory, 5, — %, s,. Letdq, d2 € A. Their sequential composition
is 01502 = Ag.02(d1(0)), which is undefined when (o) is undefined or whetk (51 (o))
is undefined. O
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Since denotations are state transformers, Definition 7sgive denotation of all byte-
codes different fromall. The denotational semantics of the latter is modelled, iereoth-
tional fashion, by assuming that we already know the fumetitoehaviour of the selected
dynamic target. As specified by the official documentatioimflholm and Yellin 1999],
it must be the case that at the beginning of the callee theaadestack is empty and the
p + 1 lowest local variables hold the actual arguments of the édlits end, the operand
stack holds only the return value of the callee, if any, far #implifying hypothesis of
Section 3. Hence it has height = 1 if a return value exists angl, = 0 if the callee re-
turnsvoid. New local variables might exist at the end of the executiothe callee, used
inside its code. Hence at the end we hiyve p + 1 local variables. Note that the initial
local variables, used to store the actual parameters, rhigtg been modified during the
execution of the callee. The execution of the callee is hardEnotatiod € Ag pi1-., s,
wheres, € {0, 1} depending on the return type of the callee §n& p + 1 (Figure 12).
We canplug this § into each calling point to the callee. It is enough to obséhat the
local variables of the caller do not change during the cafl. stack must have the form

ap -+ ag - s Whereay, :: - -+ i ag are the actual arguments of the call andre the
x > 0 underlylng stack elements if any. The stack elementsdo not change during
the call. Thea, :: --- :: ag actual arguments get popped off the stack and replaced with

the return value of the callee, if any. The final memory is tieaiched at the end of the
execution of the callee. These considerations lextisndthe denotationd of a callee into
that of a call to that callee.

DEFINITION 16. Letk.m(t1,...,t,) : t be a method and, = 0 if ¢t = void, s, =1
otherwise. Lei, > p + 1. Letq be a program point where a call to.m(t1,...,t,) : ¢
occurs. Letl,, s, be the number of local variables and stack elements used waith
sq = p+ 1+ x (at least thep 4 1 actual arguments of the call must be on the stack when
we call a method). We define

emtendn.m(tl,...,t,,):t : AO,erl—»lo,so = Alq,sqﬁlq,aﬂrso

such as, letting((c | ap = -+ 2 a1 ag [ w) = (| v | w'), extend, ... t,)+(0) is

(v s ) if dom(u) C dom(u');
everyl € dom(u)
which is not reachable
fromay, :: -+t ag ag
is such thafu(¢) = u/(¢);
Mlap -+ arap s s|p). and if thekth formal
argument is not modified
byr.m(t1,....tp) 1 t
thenay, = (I')*

undefined otherwise.
Here,v stands for the return value of the callee, if any, or otheewis=c¢. [

Note thatexztend plays the same role here asys and the rule for returning from a method,
used in the operational semantics.
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In Definition 16 we require that, which must be thought of as the current interpretation
of k.m(t1,...,tp) : t, does not erase locationgom(u) C dom(yp'). This constraint
would be too strong in the presence of garbage collectioncfwive do not model in our
formalisation). In that case, that constraint should benegfiby saying that reachable lo-
cations cannot be erased By We also require that does not modify the objects which
are not reachable from the actual parameters of the calleder, if thekth formal pa-
rameter is not modified by methodm(t,...,t,) : t, then its value is not affected by
0. Note that the latter is a syntactical property: we just lémka store & instruction in
the body ofk.m(t1,...,%,) : t. If no such instruction is found, then we assert that the
kth argument is not modified. All these hypotheses are senfiblour language. Making
extend ;.mt,,....t,):t(0) undefined when they do not hold is a reasonable definitions@he
constraints are needed in order to prove the correctnebg alistractztend operation of
Section 6.

An interpretationprovides a set of denotations for each bléalf the program. Those
denotations represent the possible runs of the programtfrefneginning ob until the end
of the method wheré occur (that is, until a block with no successorSetscan express
non-deterministic behaviours, which is not the case in ouceete semantics, but is useful
in view of the definition of the abstract semantics in Sec@oBy using sets, our concrete
semantics is already @llecting semanticfCousot and Cousot 1977]. The operations
andeztend over denotations are consequently extended to sets ofatens.

DEFINITION 17. Aninterpretation: for a program P is a mapping fromP’s blocks
into p(A). More precisely, ifb is a block such that at its beginning there dréocal
variables ands stack elements aniglis part of the body of a methadm(t4,...,t,) : ¢,
then.(b) C A, s, s, Wherel, > [ (new local variables might be declared in the body of
the method)s, = 0 if ¢ = void ands, = 1 otherwise. The set of all interpretations is
writtenT and is ordered by pointwise set-inclusiori.]

ExAMPLE 18. The interpretation of the topmost block in Figure 8 must belasst of
Az 03,1 Since, at the end of methakpand, there are three local variables and one
stack element only. For the same reason, the interpretaifothe block containing the
load 2 instruction, in the same figure, must be a subseigf_,5 ;. O

Given an interpretation providing an approximation of the functional behaviour o t
blocks of P, we can define an improved interpretation denotedlby

DerINITION 19. Let: € I. We define thdenotations in of an instructionns which is
notcall as

[ins], = {ins}
whereins is defined in Definition 7. Foeall, letm; = k;.m(t1,...,tp) :tforl <i <mn.
We define

[call my,...,m,], = U extend,,, ({selecty, }; {makescope,, };1(bm,))
1<i<n

whereb,,, is the block where method, starts. The functiofj_], is extended to blocks as

[[ s | b ﬂL _ {[[insl]]b;-“ i [insw]. ifm =0

insy b lins1].; - 5 [insw].; (e(b1) U+ Ue(by)) ifm > 0.
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O

Note that the semantics o4ll is computed as the extension of the sequential composition
of denotations that select each given possible run-tingetanethod, then pass the param-
eters and finally run the target method (Figure 12). Only drnth@se compositions will
be defined, that leading to the target method that is seletteth-time. Note also that the
semantics of a block takes all its followergd,, .. ., b, into account, so that it represents
all runs of the method wheteoccurs fronmp itself until its end.

The blocks of P are in general interdependent, because of loops and reoui@nd
a denotational semantics must be built through a fixpointmgdation. Given an empty
approximation. € I of the denotational semantics, one improves it ifitg(:) € I and
iterates the application dfp until a fixpointi.e., az such thatl'r(7) = 7. That fixpoint
will be the denotational semantics &% since it corresponds to the minimal solution of
the set of equations expressedfy. Our analyser actually performs smaller fixpoints on
each strongly-connected component of blocks rather tharga fixpoint over all blocks.
This is important for efficiency reasons but irrelevant Hereour theoretical results.

DerINITION 20. Thetransformefl'’s : 1 — I for P is defined as
Tp(1)(b) = [b].
for every. € I and blockb of P. [

PROPOSITION 21. Tp is additive, that iSTp(Ujcst;) = UjesTp(1;), SO its least
fixpoint exists and is equal ta;>07T5, whereT2(b) = @ for every blockb of P and
THH = Tp(T}) for everyi > 0 [Tarski 1955]. [

DEFINITION 22. Thedenotational semantic®p of P is the least fixpoint of p, as
computed in Proposition 21.0]

Our denotational semantics is defined over ¢thacretedomaing(A), uses the deno-
tations of Definitions 7, 11 and 12 which are singleton setg (). It also uses the
operators;, U and extend over p(A) of Definitions 15 and 16( is just set union). In
order to define aabstract denotational semantjcse have to provide an abstract domain,
abstract domain elements correctly approximating theleiog sets of denotations and
abstract operators correetr.t. the concrete ones. In the next section we will apply this
technique to the definition of an abstract domaingdath-lengthof data structures.

As we said at the beginning of this section, our operationdldenotational semantics
are provably equivalent, as stated by the following result.

THEOREM 23. Letb a block of a programP and o,,, an initial state forb. The func-
tional behaviour ofh, as modelled by the operational semantics of Subsectigrcbif-
cides with its denotational semantics of Subsection 5.2:

{oout | (] oin) =3 (V' | oou) #p} ={0(0in) | 0 € [b]Dy, 6(0in) is defined}.
O

5.3 Dealing with Exceptions

We describe here how we deal with exceptions in our semafittcaework.
Figure 13 shows the transformation into basic blocks of tthedmai n of the program
in Figure 3. There are instructions that have not been cersitlin our simplification of
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dup
call Exc.<init>():void

]

store 1
const 0
store 2

|

load 2
const 20

/

if_cmplt
if_cmpge load 2

const 10

catch
throw

if_cmpgt
load 1
const 5
putfield f

if_cmple

AN

catch \in{ment 2 by #
A

top_is_not_instance_of java.lang.NullPointerExceptiol top_is_instance_of java.lang.NullPointerException
throw store 3

Fig. 13. Our simplified Java bytecode for the metin@d n in Figure 3.

the Java bytecode. The conditiondlempXX are similar to théfeq andifne instructions
but they work on the topmogtvo values on the stack. The instructieatch is more
interesting. It is put after each instruction that mighbothiran exception. The idea is that
it catchessuch exceptions. Hence it represents the entry point toxdteption handlers of
the method. The instructiathrow throws back an exception to the caller of the method.

In order to formalise the semantics @ftch andthrow, we start by expanding the se-
mantics of the other instructions. The state is split inteamal state and aexceptional
state. For instance, the semantics ofdhe instruction (Definition 7) becomes

dup, = M(l | top :: s | ), 00).((L] top :: top :: s | ), undefined)

which means thadup does not use the state resulting from an exception that is thrown
before it and does not throw any exception (the output exmegit state isundefined).
Instructions that can throw an exception are modelled dsaridllowing example

) (O (f) == s | p), undefined)  if £ # null

getfieldy f =AU E=: s, 0c). {(undeﬁned, (10|t — npe])) otherwise
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where?’ is a fresh location andpe is aNul | Poi nt er Except i on object. This means
that the input exceptional state is not used but there miglarboutput exceptional state,
when the object whose field is read is actuallyll. In the latter case, the exceptional
state has a stack of one element only, which is a pointer texbeption object; the output
normal state is undefined.

On the same line, we can define the semantics ofithev instruction:

(undefined, (L || €] w)) if £ # null

throwy = AU €:: 5] ), o). {(undeﬁned, A1 | ]l — npe]))

where/’ is a fresh location andpe is aNul | Poi nt er Except i on object. This means
that the input exceptional state is not used and that thisuiction always throws an ex-
ception, so that there is no output normal state. The outpceptional state is built
from the original input normal state, by throwing away aldt elements but the top-
most, which must be a pointer to an exception object. If tluatter is actuallynull, a
Nul | Poi nt er Except i on is thrown instead.

The catch instruction catches an exceptierwhich has been thrown just before that
instruction. This is modelled by using the input exceptiatate to finde. This is the only
instruction which uses the input exceptional state andadilscthe input normal state:

catchg = MNon, 0¢).(0¢, undefined).

Since some instructions might throw more than one type ofjgtian (for instancegalls
might throw all exceptions thrown by the method that they) cade need to select the right
exception handler on the basis of the run-time type of thegtian. This is done through
top_is_instance_of andtop_is_not_instance_of instructions. They check the class tag of the
exception object on top of the stack:

(1] €| i), undefined) if u(f)isax

top-ts-nstance-ofq 1 = MU El k) o). {(undeﬁned undefined) otherwise

With the use of split states and of the instructieasch, throw, top_is_instance_of and
top_is_not_instance_of, one can define the operational and denotational semaifticva
bytecode exactly as we already did in this section. No othange is required. It is only
for simplicity that, in the next sections, we do not consieezeptions in the formalisation.

We conclude this section by observing thahifl1l pointer analysis is applied to the
method in Figure 3 then the lowest two blocks rootedaath and the block containing
catch are removed since thautfield is found to never throw any exception. Without this
analysis, there is instead an (apparent) infinite loop pgssirough the lowetatch in-
struction and termination is not proved.

6. PATH-LENGTH ANALYSIS

In this section we define an abstraction of the denotationSeztion 5. Namely, their

variablesv are abstracted into an integaaith-length if v is bound to a location then the
path-length ofy is the maximal length of a chain of locations that one caroffromv; if

v is bound to an integey then the path-length afis i itself?. Since the exact determination
of the possible path-lengths of a variable at each givenrarogpoint is undecidable, we

2In our implementation we also consider variables bound to/arfBheir path-length is the length of the array.
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must content ourselves with an approximation of the possihge for the path-lengths.
This leads to the use of numerical constraints which areedgmlyhedra [Cousot and
Halbwachs 1978].

The above definition of path-length is formalised below. Westfilefine an auxiliary
function len’ which follows the chains of locations up tosteps of dereference. This
function is then used in the definition of the path-lengthction len.

DEFINITION 24. Letyu be a memory (Definition 1). Let
len? (null, p) = 0
len(i,p) =i ificZ
len®(6, 1) =0 if £ € dom(p)
len? ™1 (€, 1) = 1 + max {len’ (¢, ) | € € rng(u(€)) L} if £ € dom(p)
for everyj > 0. We assume that the maximum of an empty det Ehepath-length of a
valuev in wis len(v, u) = jlggo len’ (v, ). O

In the last case of the definition @én’, the intersection with. is needed in order to
consider only the values of the fields of the obje¢f) which are locationd’. The fields
of type integer of the objects are not used in the definitiothefpath-length.

Note that ifi € Z thenlen(i,n) = len’ (i, ) = i for everyj > 0 and memoryy.

Similarly, len(null, u) = len’ (null, u) = 0 for every memoryu. Moreover, if¢ is a
location bound inu to a cyclical data-structure, théen (¢, 1) = oo.

ExXAMPLE 25. Consider the memory
p=[l1 > 01,03 = 03,03 = 03, Ly > 04, l5 — 03]

whereo; = [next — /4], 03 = [next — null], o3 = [next +— l5], o4 = [next —
null] andos = [next — null] (Example 3). We haven (¢, u) = 2, len(ly, n) = 1,
len(¢3, 1) =2andlen(ly,p) =1. O

We can now map a state intgath-length assignmerthat is, a function specifying the
path-length of its variables. This comes in two versionghiinput versionien, the state
is considered as the input state of a denotation. Irotitput versionlen, it is considered
as the output state of a denotation. We recall thag the value of thé:th local variable in
I ands” is the value of théith stack element from the basefDefinition 1).

DEFINITION 26. Let(l|s| u) € 4 4. Itsinput path-length assignmeist

len((1]s] ) = [IF — len(I®, 1) | 0 < k < #1 U[5" — len(s*, 1) | 0 < k < #s]
and, similarly, itsoutput path-length assignmeat

len((1]s|p)) =[IF— len(*, 1) | 0 < k < ) U[* — len(s®, n) | 0 < k < #s] .

|

ExAMPLE 27. Consider the state

o = ([l1,l2,04] | U3 :: bo | [€1 = 01,02 — 09,3 — 03, L4 > 04,05 — 05])

I
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of Example 3. By using the results of Example 25 we concluate th

len(o) = 1 — len(ty, p), 1" — len(la, p), 1> — len(Ly, )
B ‘§1 = len(£37,u>7§0 = ZETL(KQHU,)

=" —2,' 1,2 1,523 —1].
Similarly, we have
lén(a) = [[0 — 2,[1 —1,2—1,8— 28 — 1].
U
ExXAMPLE 28. Consider the state of Example 3 and the state

dupq(or) = ([€1,02, 4] | €5 :: £ :: Lo || [€1 — 01,05 > 09, €3 — 03,4 — 04,05 — 05])

w
of Example 9. By Example 25 we have
len(dupy (o)) = [I°+ 2,0" = 1,12~ 1,5 - 2,8" 2,5 — 1]
|

DEFINITION 29. Letl;, s;, 1o, 50 € N. The sePLy, 5, i, 5, Of thepath—lgngth polyhe-
dracontains all finite sets of integer linear constraints ovee t/ariables{/* | 0 < k <
LYU{E" |0<k<stU{l*P|0<k<l,}u{s¥|0<k<s,}, using only the<
comparison operator. [J
Although only< is allowed in a path-length constraint, we will also writenstraints such
asr = y, standing for bothxr < y andy < z.

ExAmPLE 30. The following polyhedron belongs ;s 5.3 3:

OO =L 2=]250 _350 51 _ gl
pl=4q 3 =000>0,0'>0,2>0,5°>0,5">0
gt =42

O

A path-length assignment fixes the values of the variableseW#hose values satisfy a
path-length constraint, we say that they araadelof that constraint.

DerINITION 31. Letpl € PL;, 5,1, s, @andp be an assignment from a superset of the
variables ofpl into Z U {co}. We say thap is a modelof pl and we writep = pl when
plp is true, that is, by substituting, ip/, the variables with their values provided pywe
get a tautological set of ground constraintg.]

ExampPLE 32. Consider the path-length constraipt of Example 30 and the state
of Example 3. By Examples 27 and 28 we have that

P2 —1,2—1,5—235—1

p=len(o) Ulen(dupy (@) = { jo o iy 201,420,380 1 2,80 o 1

is such that
2=21=1,1=1,1=1,2=2
plp=4¢1=1,2>0,1>0,1>0,1>0,2>0
2=2
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Hencep is a model ofpl. [

We can now define theoncretisationof a path-length constraint. It is the set of de-
notations that induce input and output assignments thggther, form a model of the
constraint.

DEFINITION 33. Letpl € PLy, 4,1, s, Its concretisatioris

forall o € 3, 5, such thatzS (o) is defined}

1(pl) = {5 € Alisi=loso | e have(len( ) Ulen(d )) = pl

O

ExampPLE 34. Consider the path-length constraipt of Example 30. In Example 32
we have seen that the stateof Example 3 is such thdten (o) U lén(dupq(o—))) E pl,
Wheredupq is the denotation of theéup instruction in Figure 8, given in Example 8. How-
ever, this is true foreveryinput statecr such thatdup, (o) is defined. This is because
every suchr has the form([1°, s%,1?] | s' :: s | u) and satisfies the static information of
Figures 9, 10 and 11. Hence

p = len(o) U lén(dupq( )

= len (([1 s, 1] | s* s | ) U U len ([0, 8%, 2] | 8" w8t o s” | )
0 len(l w), [t — len( 0 n), % — len( )
s len(st, u), 3% — len(s%, u)
10— len(lo ), l1 — len(s%, ), 12 — len(lQ,,u)
32— len(st, ), 81 — len(st, u), 8% — len(s%, u)

It follows that

len(1° 1) = len(1%, ), len(s°, ) = len(s°, u)

= ] 100 = fen(E ) om0 ) = fen(sd, ), fen(s% ) = lens' )
pp= len(s°, p) = len(s°, ), len(1°, ) > 0, len(s®, ) >0

len(12, ) > 0,len(s®, ) > 0, len(st, ) > 0, len(s ,u) = len(s!, p)

which is true since variable®, s, [? ands' do not have integer type at the beginning of
the execution of theup instruction in Figure 8 and hence their path-length is negative
(Definition 24). In conclusion, we have

dup, € v(pl) .
0

We want to order our path-length constraints on the basisedf toncretisationpl; <
ply if and only if y(pl;) C ~v(pl,). This results in a poset of polyhedra. Theperation
over sets of constraints is the union of the constraietsthe intersection of the polyhedra
that they represent, and thisoperation is th@olyhedral hull[Stoer and Witzgall 1970] of
the polyhedra that they represémt, the smallest closed polyhedron which includes both.

In the following, we identify in the same equivalence cldéslaments having the same
concretisation. For instancéy < y + 1} and{z + 2 < y + 3} are the same abstract
elementsince({z <y +1}) =v{z+2<y+3}).

DEFINITION 35. Thepath-length polyhedr®L;, 5, ., s, are ordered aspl; < pl,
if and only ify(pl;) C ~(ply). They form aposeti.e., < is reflexive, transitive and
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antisymmetric. Their elements silently stand for theiriegjence class. Their top element
is the tautological constraintrue (which stands for an empty set of linear constraints).
Their least element is the constrafiaise (which stands for a constraint such &s< 0). [

By the theory of abstract interpretation, we get a correstrabt denotational semantics
DY for path-length as soon as we substitute the concrete dierst@f Definition 7 with
elements oL which include them in their concretisation. Moreover, westqurovide the
abstract counterparts ovBL of the operations, U andextend over p(A).

We first define a constraint stating that no local variableramstack element is modified,
that if two variables are definitely aliases, then they mastehthe same path-length and
that all variables of reference (non-integer) type have megative path-length.

DEFINITION 36. Let L, S C N and ¢ be a program point where there afg local
variables ands, stack elements. We define

Unchanged, (L, S) = {I' = 1" | i € L}
u{s=4s"1]iecS}
i .i|0<14,j < sg,ands" is an alias ofs? atq
Uqds =35 . . . L .
according to our definite aliasing analysi
U {s =0

u{ﬁ_ﬁ

U{s" >0|0<i<s,ands’ does not have integer type @t

0<i<s, 0<j<l,ands’isan alias ofl’ atq
according to our definite aliasing analysis

0 <i,j <l,andlis an alias ofl/ atq
according to our definite aliasing analysi

U{l">0]0 <1<, andl’ does not have integer type @} .

Letl,s € N. ThenUnchanged (I, s) = Unchanged ({0, ...,1 = 1},{0,...,s —1}). O

Let us define the abstract counterparts of#txedenotations now.

DEFINITION 37. Let #1, #s be the number of local variables and stack elements at
a program pointg. The abstract counterparts of the denotations of Definiffoare the
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following:
= A#S i
constPL ¢ — Unchanged ,(#1,#s) U {c = 57°} !f cel
1 Unchanged ,(#1, #s) U {0 = 575} if c = null
PL _ wHs—1 _ adts
dup,” = Unchanged  (#l, #s) U {57571 = g#s)
newfﬂ“ x = Unchanged ,(#1, #s) U {1= §#S}
load]{};}L i = Unchanged ,(#1, #s) U {I" = 5%}
store]gﬂ‘ 1= Unchangedq({O, o #HL—13N\,{0,...,#s—2}H) U {5#571 = i’}
addg]L Unchanged ,(#1,#s — 2) U {57572 4 gHs—1 — g#s—2)
Unchanged ,(#1, #s — 1)
if f has integer type
Unchanged ,(#1, #s — 1) U {57s—1 > g#s—1}
if f does not have integer type as@*~! might be cyclical ay
Unchanged ,(#1,#s — 1) U {s#s~1 > 1+ g#s—11
if f does not have integer type asti*~! cannot be cyclical af

getﬁeld]gﬂ‘ f=

Unchanged ,(#1, #s — 2)
if f has integer type

Unchanged (L, S)

putfield,” f = if s#5—2 might share withs#<—! at ¢

Unchanged (L, S) U{li + 5#>=1 > [1 |0 < i < #tl,i ¢ L}
U{ 4+ 871> 5 |0<i<#s—2,i¢gS}
otherwise

whereL are the indexes of the local variables which cannot shark wiit —2 at ¢
and .S the indexeg: of the stack elements, with< = < #s — 2,
which cannot share witk”*~2 at ¢

. PL ~#s—1
ifeq of type, t = Unchanged ,(#1,#s — 1) U {3571 = 0}

Unchanged ,(#1,#s — 1) U {§#71 > 1} if ¢t # int

, tupefl t —
ifne of type, {Unchangedq(#l, #s—1) otherwise.

O

The abstract operations use thechanged constraint for the part of the state which
they do not modify. The part which is modified is modelled &ifly. For instance, the
const®™ constraint says that the new top of the staék has path-lengtla whenc is an
integer value and whenc isnull. Thedup™™ constraint copies the path-length of the old
top of the stack”*~! into the path-length of the new top of the stadk.

The definition ofgetﬁeldf]L states that if we read the field of an object then we get a
value whose path-length is no larger than the path-leagth! of the object. Moreover,
if the object cannot be cyclical, the path-length of its fisldtrictly smaller thas#*—1.
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For the definition ofputfield: ", remember that#*—2 holds the object whose fielflis
going to be modified, and that**—! holds the value which is going to be written insifle
(Definition 7). Definition 37 states that ff has integer type then no path-length changes.
Otherwise, the local variablek and stack elementS which do not share at with the
object whose field is modified.€., with s#*~2), and that still exist in the output of the
instruction, do not change their path-length. The otherntdes are affected by thpitfield
instruction. Namely, if theputfield might build a cycle, that is, if the variable#s—2
holding the object might share with the variabl&*—! holding the value which is going to
be written inside the fielgh of the object, then the path-length of the variables ndt and
notin S is not approximated (it might become infinite). Otherwisesih only grow by the
path-length of the valug#*~! which is stored inside the field.

EXAMPLE 38. Consider thedup instruction in Figure 8. We know that and s° are
aliases at the program point where the instruction occurs (Figure 11). HenaizzleplgIL is
the constrainip! of Example 30. [

ExAamMPLE 39. Letq be now the program point at the beginning of the code in Figure
Consider thdoad 0 instruction atq. There are 2 local variables at (the parameters of
the method), both of non-integer type, and no stack elemiotsariables are aliases at
(Figure 11). Hence

load]sl‘ 0 = Unchanged ,(2,0) U {I° = 5%
={°="0"=01"0°>0,I'>0}u{l’ =35}
PP =05 0.0 50,00 = )

O

ExamMPLE 40. Letr be the program point at the beginning of there 2 instruction
in the topmost block in Figure 8. There are 2 local variablés §the parameters of the
method), both of non-integer type, and 1 stack element, mimeger type. Variables®
and!® are aliases at- (Figure 11). Hence

store?™ 2 = Unchanged,.({0,1}, @) U {3° = I?}
PP = = PR30 20,83 0pU (s = )

={"="1=1"3=0°0">0">0,5>03 =0%}.
O

EXAMPLE 41. Letr be the program point at the beginning of the figstfield next
instruction in the lowest block in Figure 8. Assume that tiguanent of the method might
be a cyclical list. There are 3 local variables at all of non-integer type, and 1 stack
element, of non-integer type. That stack element mightd&aif the input argument of
the method might be cyclical (Figure 10). Variabk¥sandi! are aliases at- (Figure 11).
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Hence
getfield:" next = Unchanged, ({0,1,2}, @) U {3° > 5}

O =0 =1 j2=j2
_{gozil,iozo,il20,2220,5020}

O (O A W A R RO
:{50:51,50>0,Z1>07Z2>0,§0>07§0>§0} '
0

EXAMPLE 42. Letr be the program point at the beginning of thetfield next instruc-
tion in the lowest block in Figure 8. Assume that the argunoéhe method might be a
cyclical list. There are 3 local variables at all of non-integer type, and 2 stack elements,
of non-integer type. Variabled and/! are aliases at (Figure 11). Only variables® and
' and variabled® and{' might share at- (Figure 9). Hence we are in the third case for
putfield:" in Definition 37. We havé = {I°,1?} andS = @. Hence

putfield™ next = Unchanged, (L, S) U {I* + 5 > '}

[ozio [2222
{gozil,iozo,il >0,12>0,5>0

}u{l'1+élzil}

0 = [o 2 = Z2
- { 50 =J100>0,01>0,2>0,3 >0 +35 > } '
The intuition of this result is that locald and 2 do not change their path-length, since
they are not affected by the modification of the field. Ldaddhat is,ot her in Figure 1),

instead, might increase its path-length by as much as theleaigth of the value which is
written inside the fielshext . [

We also provide correct approximations for the denotatiesl for a method call.

DEFINITION 43. Letk.m(t1,...,t,) : t be a method. We define
TGSy, = 18° P =g [0 <i<p+1}

selectg‘m(t t,):t = Unchanged(0,p + 1)

Tyeers
makescopeg‘m(tlw,tp):t ={&=0"0<i<p+1}.
|

We define now the abstract counterparts of the operatorsand extend over sets of
denotations. Foy, we sequentially compose two path-length constraints bigimrzg the
output variables of the first with the input variables of tlee@nd. This is accomplished
by renaming such variables into new overlined varialilehich are then projected away
with the3; operation. The)"™ operation is just the polyhedral hull operation. Eotend,
recall that we assume already performed many preliminatcsanalyses (Section 4).
Namely, we assume that at the program point wherslanstruction occurs we know:

(1) which stack elements or local variables of the callerhh@hare;

(2) which stack elements or local variables of the callertrbesaliases of each other;

(3) which formal parameters of the callee might be updatethduhe execution of the
callee (that is, some reachable object might change itsjield
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(4) which formal parameters of the callee might be modifiednduthe execution of the
callee. This is just a syntactical property: paraméter modified if astore k instruc-
tion occurs inside the code of the callee.

DEFINITION 44. Letpl, € PL;, 5,1, s, @andpl, € PLy, 5,1, ,s,. Let us also define

T={",... JNE0 ,5°% 1. We definenl;;F& pl, € PLy, 5, 1,5, S

plyFEply = 37 (ply [0 =T | TE T U ply[o — T | T € T)) .

Letpl,, ply € PLy, 5,1, .5, We define

pl, UPE pl, = polyhedral hull ofpl, and pl., .
Let k.m(t1,...,tp) : t be a method and, = 0 if ¢t = void, s, = 1 otherwise. Let
lo > p+ 1. Letq be a program point where a call to.m(t1,. .. ,t,) : t occurs. Let,, s,

be the number of local variables and stack elements usegwith s, = p + 1 + = (at
least thep + 1 actual arguments of the call must be on the stack when yowacakthod).
The actual parameters of the call @atare held ins*** with 0 < k < p + 1. We define

PL

emtendﬁ.m(tl,“.,tp):t (PLopt1—10,5, = Plag,s,—ig,2+5,

as

ea:tendi]%m(t],,._,tp):t(pl) =

_ 5 pllo—v | T e T|[EF— 47 |0 <k <p+1][8° — 57
- T UUS U MSAU ULU MLA

where
T={",.. 1"
US = {5' = §"| 0 <i < x ands’ cannot share with any possibly updated paramgter

W 0<i<z, 0<k<p+1,
MSA ={1 = 3"|s'is adefinite alias of théth parameter
and the latter is not modified inside the callge

lo—1

UL={I’=1"|0<i<l,andl’ cannot share with any possibly updated paramgter

G 0<i<ly, 0<k<p+1,
MLA ={ 1" =1["|1"is a definite alias of th&th parameter
and the latter is not modified inside the callge

0
EXAMPLE 45. Consider the constraints of Examples 39 and 40. We have
(load{?L 0);" (storetl 2)
={"="1"=1"1>0,0">0,"=35%
PLO 0 U =1 30 =0 J0 > 0,5° > 0,8 = 2}

. P =101 =7",0>0">0,0" =5
= 70 71 _ | A = N —0 —f ~
CES =07 =150 =11 > 0,5° > 0,5° = 2

— )

S =P = >0, >0, = 2}
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O

The extend™ operation is rather complex. Do not consider 84 and MLA sets for

the moment. Then the definition says that if we know the patigth behavioup! of the
called method(s), we just havelift the input stack elements pf by = positions, since the
callee starts witlp + 1 stack elements which are copies of the highestl stack elements
of the caller. The latter, however, hasmore underlying elements (Definition 16). The
same must be performed for the only output stack elementhumight be used by the
callee to yield its return value. The output local varialdes renamed into new overlined
variables inT" which are finally removed by¥;. This definition would be already correct,
but extremely imprecise. In fact, it does not say anythingualthe effect of the call on the
set of variabley” = {I' | 0 < i < [,} U {s’ | 0 < i < z} which contains all the local
variables of the caller and thelower stack elements of the caller, those which are not
used to hold the + 1 parameters. This is the purpose of @& and US sets, respectively.
They say that the path-length of anye Y is not modified by the call, but only if cannot
share with any of the parameters of the call which might beatgaiduring the execution
of the callee. This is correct since in such a case the cadlsanb way of modifying the
objects reachable fromand hence the path-length@tannot be affected by the call.

The definition in [Spoto et al. 2006] stopped here and actudil not even use the
update information, so that it only required non-sharinthimdefinition of the set&’S and
UL. Hence it was less precise. We improve it here further byguie sets of constraints
MSA and MLA. They consider the case when some Y is well sharing with thekth
actual parameter, but is actually an alias of it. Furtheentinat parameter must not be
modified inside the callee. In such a case, it is enough to &tdke final path-length of
that parameter, held itf inside the callee, to determine the final path-length.of

Note that since integer variables cannot share, the pattHeof anyv € Y of integer
type is not affected by eall instruction (it will always be included in th&S or UL sets).

We can now state theprrectnessesults for our path-length analysis. Namely, we prove
that the path-length constraints computed by our analysiside their concrete counter-
parts in their concretisation. We start with the instruetio

PROPOSITION 46. Letinstructionins, different fromeall, occur at program poing. We
have

IP’]L) )

insy € y(ins,

O

Then we consider the auxiliary path-length constraintsifethod call.

PROPOSITION 47. Letk.m(ty,...,tp,) : t be a method. We have
arg‘sq,m.m(tl,...,tp):t € ’Y(a’rgsl(};],l;@xm(tl,...,tp):t)

PL
select e m(ty,....t,):t € 'y(select,\@'m(t1 11111 tp):t)

PL
Makescope,. i, ..., )+ € Y(makescope, b, 1)) -
O

Hence we consider the operators over the path-length eomistr
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PropPOSITION 48. In the conditions of Definition 44, we have

v(ply); v(ply) € v(ply;™ ply)
v(ply) Ux(ply) € v(ply Ut pls)
ewtendm.m(tl7...,tp):t(7(pl)) - 7(6xt6nd2%n(t1,...,tp):t(pl)) .
O

We now lift to our path-length polyhedra the notion of intetation of Definition 17.

DEFINITION 49. A path-length interpretation for P is a map fromP’s blocks into
PLL. More precisely, ifb is a block such that at its beginning there dréocal variables
and s stack elements anbl is part of the body of a method.m(t,...,t,) : ¢, then
u(b) € PL; s, s, Wherel, > [ (new local variables might be declared in the body of
the method)s, = 0 if ¢t = void and s, = 1 otherwise. The set of all path-length
interpretations is writted*™ and is ordered by the pointwise extension<of [J

Hence we lift the definition of denotation of an instructiarbdock (Definition 19).

DEFINITION 50. Let: € I, We define theath-length denotations inof an instruc-
tion ins which is notcall as

[ins]P* = ins™ .

For call, letm; = k;.m(t1,...,tp) : tfor 1 <i < n. We define
PL
[callmy,. .., m, ] = U1<i<n ewtendﬁg‘i (select%‘i;IP>1L makescopeﬂnmil‘i P L(bmi))

whereb,,,. is the block where method; starts. The functiofi_]*" is extended to blocks as

[[ e ] o ]]M [ [ins JP5FE - P ins,, JPE if m = 0
T Tinsi JPR5PE - P ins, [P (u(by) UPE - - WP 4(by,,))  if > 0,

L

insy, bm

O

We can finally define @ath-lengthdenotational semantics. A technical difficulty is that
we cannot define it as the least fixpoint df g operator, since that fixpoint does not exist
in general (the union of an infinite set of polyhedra might beta polyhedron). Hence
we content ourselves with a post-fixpoint of that operatayan interpretation such that
TFH(z) < 7. A postfixpoint can be computed in a finite number of iteratidhrough

a wideningoperator over polyhedra, which forces the analysis to agev§Cousot and
Halbwachs 1978]. We actually use the more precise widernegator defined in [Bagnara
et al. 2005].

DEFINITION 51. Thetransformef5- : IFL — TFL for P is defined as
TE(1)(b) = [b],*

for every. € T and blockb of P. We define gost-fixpointD3- of TH-, computable in
a finite number of iterations, by using the widening operatefined in [Bagnara et al.
2005]. Note that this widening operator keeps the polyhetitaed. Hence we can define
the path-length semantiesf P asDY-. [
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load_q 0

b1 store_r 2

b2 | load 2

/ne of type Sharing

load 1

b3 | ifeq of type Sharing b4 new Sharing
dup

const null

\

call_s Sharing.<init>(Sharing):voi
putfield_t next
load_u 1
getfield next
store 1
load 2
getfield next
store_z 2

b5

Fig. 14. The program in Figure 8, where each block is decdratth a unique name.

THEOREM 52. The path-length semantics is correct w.r.t. the concreteotiional
semantics of Section 5i.e.,

Dp < (D).
O

In this section, for simplicity, we have not considered g@tmms. If exceptions are taken
into account, as modelled in Subsection 5.3, then the maitth polyhedra are split into
pairs of two polyhedra: the first polyhedron relates the outprmal state to the input nor-
mal state. The second polyhedron relates the output excegpistate to the input normal
state. Our implementation uses this technique to deal wibrams with exceptions.

We have seen that the path-length might be infinite (Defimi#i¢) and thatc is allowed
in the models of a polyhedron (Definition 31). Nevertheldiss,polyhedra build for each
bytecode do not mentioso explicitly (Definitions 37 and 43) and the operators on such
polyhedra (Definition 44) are standard and easily implewmtaet for instance, in terms of
the operators available in the Parma Polyhedra Library fAeget al. 2008]. Hence that
library or a similar one can safely be used to implement the-fength analysis.

7. COMPILATION INTO CONSTRAINT LOGIC PROGRAMS

In this section we prove that the result of a path-lengthyaigican be used to translate a
Java bytecode program into a constraint logic programddaffid Maher 1994] over path-
length polyhedra@LP(IPLL)), whose termination entails the termination of the ordjiiava
bytecode program. Itis important to remark that we assurpecialised semantics @fiLP
computations here, where variables are always bound tpantalues [Spoto et al. 2008].
This means that we do not allofree variables in a call to a predicate. This is consistent
with the fact that we model the path-length of the variabies istate, which assigns an
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integer value to all the variables in the state. For instaimcéne CLP(PL) program:

p(#): - {5 = 0},b(y).
b(z): -{# =9 +1,§ > 0},b(g).

we assume that a call to predicatéeads to a call to predicatewith a given, non-negative
argumenty. That is, a specific value fay is chosen, provided that it is non-negative, and
the computation continues with. This entails that any call tp terminates, while this
is not the case with the traditional semanticsGafP, which allows partially constrained
variables [Jaffar and Maher 1994].

From now on, we assume that the blocks of code have been ded¢avdah a unique
name, as in Figure 14. In that figure, we also report the narhesme program points,
that we will use in the examples below.

DEFINITION 53. Let P be a Java bytecode program. The CEBR{J program Py p
derived fromP is built as follows. For each block

insy b
plins2 | = ot

. b,
ins. m

in P, letc = [insi]pu;™" - -+ - [ins, ] i - We generate the CLP clauses
P P

b(vars): - ¢, by (vdrs).
()

b(vdrs): - ¢, by, (vdrs).

wherewvars are the input local variables and stack elements at the eggof blockd
andwvars are the output local variables and stack elements at the émdbakd (in some

fixed order). Moreover, ifns; = call, ma, ..., m,, Wherem; = k;.m(t1,...,t,) : t, then
we also add a clause
b(vars): - (argslghi PL selectﬁ]}‘i PL makescopeﬁg“i) y b, (le, ol ip) (6)

for eachl < i < n, whereb,,, is the block where method,; begins. [

The clauses (5) mimic the execution of blogkfollowed by the execution of one of its
followers. The relation between the input staté ahd that of its followers is approximated
by the path-length constraintof the code inside block. Hence those clauses say that the
execution ofb from an input stater leads to the execution @f, . .., b,, from a states’
where the variables is (seen as input variables) and thosefir{seen as output variables)
satisfyc. Note that no clause is generated in (5) for those blocks matfollowers, since
they cannot be part of a loop, so that they are not relevarddotermination analysis. If
the first instructiorins; of block b is acall instruction (remember that we assume ttk
instructions can only occur at the beginning of a block),dlagises (5) assumecamplete
execution of that call, that is, they express a computatiomhich control has come back
to the callee. This would not be enough to prove our corrastnesult (Theorem 56). This
is because non-termination very often occurs as a consegquémn infinite recursion, so
that we must also consider the case whenladoes not complete its execution. To that
purpose, we introduce the clauses (6). They mimic, expli¢hie execution of the callee.
Namely, they single out from the stack the actual argumefrttseocall (args*™) then they
check which dynamic target is selectedi¢ct™) then they move the actual arguments
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from the stack to the lowest local variablesdkescope’™) and they finally run the callee
from blockb,,,. The latter starts its execution in a state where the staekjsty and the
p + 1 lowest local variables hold the actual arguments of the call

Our translation intaCLP(PL) is similar in spirit to that in [Albert et al. 2007a; 2008].
In both cases, &LP program is constructed from the structure of the code, seargsaph
of blocks of code. The main difference is that they use thesda (5), but they do not use
the clauses (6). This second kind of clauses is meaningftiéfmination analysis, but not
for cost analysis.

ExAMPLE 54. Only one clause is generated for the bldxk in Figure 14, whose in-
structions occur at program points that we calandr, respectively:

b1(1%, 1) : - ([toad, OJ5%: ™ [store, 25 ) ,b2( 1,1, ).
which by Example 45 is:
b1 (0,0 :- {I°=1°0"=1"1°>0,I' >0,0°=1?},b2(°,1",1%).
1

ExaMPLE 55. Consider blockb5 in Figure 14. At its beginning there are 3 local
variables and 4 stack elements (Figure 8). We build two @adsr it. The first belongs to
the set(5):

bs(°, 1,12, 5% 5,82 5% - ([call; Sharing.(init)(Sharing) : vmd]]%ﬂﬁ Pl

[putfield, next]pe, ;™ [load, 175" -

FL [store, }]Dm) b2(1°,i",?).

The second is built sindeb starts with acall instruction (with only one possible dynamic
target). Itis

b5( [07Z17Z27§07§17§27§3) PL

((J/I"gSS Sharing.(init)(Sharing):void’

PL
SeZBCtSharing. (init)(Sharing):void’

k PL )
MARESCOPEeharing. (init)(Sharing):void)»
70 71
bSharing. (init)(Sharing):void (l ) ! ) .
U

Figure 15 shows th€LP(PL) program generated from the blocks of metieodgand
in Figure 14. Since that method calls the constructor ofscliar i ng, the last clause in
Figure 15 links the code faxpand with that for the constructor (not shown in the figure).
It is interesting to observe that the last but one clauseatosithe constraing — 1 > 2
i.e, block b5 strictly decreases the path-length of local variable 2igde cur sor in
Figure 1). Together with the fact that that variable hasrezfee type and hence has non-
negative path-length, this is the key for a proof of termoafor the methoexpand.

We can now state the correctness of our translation. Notewhassume that th€'Z P
predicates are called with concrete integer values for #n@bles, according to our spe-
cialised semantics.
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b1(°, 0y - {I°=0°1" =I"I°>0,0* >0,° =0%},b2(°,1,0?.

b2(I°, 0N 2): - {2 =02,8°=P1"=0",I°=1°,5°>0,I' >0,5° > 0},b3(1°,1',i?,35%.

b2(I°, 02 - {2 =12, =P1" =1",I°=1°,5">0,I' >0,5° > 0},ba(°,i',i?,3%.
P=01=72=0235>1>0

ba( i, 12,5 - r>0,02>08 >0, =2 ,b5(1°,0t,02,50, 8", 8%, 8%).

0>1,1=38382=1,81=1,8=0

o :[0’[1 > 17[1 +§1 >

b5(1°,0",02,5°, 5,82, 8% : - 2-1>0212>0°>0,1 L b2( 10,0, 1?).

2>0,5°>0,5 =38,52 > 1,

b5( [07 [17 ZQ: 5;07 gl» '§27 '§3) - {‘§2 = an 8= lAl}v bSharing.(init)(Sharing):void( i()v il) .

Fig. 15. TheCLP(PL) program generated from the Java bytecode metwopand in Figure 14. Block

bsnaring. (init) (Sharing):voia IS the first block of the code of the constructor of cl&bsr i ng.

THEOREM 56. Let P be a Java bytecode program aidch block of P. If the query
b(vars) has only terminating computations P, p, for any fixed integer values fawurs,
then all executions of a Java Virtual Machine started at klbterminate. [0

PROOF We prove this result by contradiction. That is, we prove thtébere is an exe-
cution of the Java Virtual Machine from bloékhat diverges, according to the operational
semantics of Subsection 5.1, then the qugmyrs) has a divergent computation Py, p
for some fixed integer values fotrs.

Let hence

O_liE)]0_2iE>2.“inSi)_1o_kiﬂc.” (7)
be an infinite operational execution of the Java Virtual Maetirom blockb, starting at a
states;. The states in the sequence are those that are, at eachrstep,af the activation
stack of the Java Virtual Machine. Instructions, is the instruction which makes the
state on top of the activation stack evolve frefto o ;. Note that in general we have
[insk]pp (oK) # ors1 Since, wherinsy, is the last instruction of a method, statesy 1
is derived fromo;,, which was on top of the activation stack at the moment of éisedall
to m, by replacing the actual parameters with the return valuefigidion 14). That call
was executed by somell m, ..., m, instruction in the program, witlm = m,; for some
0 < i < n. Insuch a case, we can identify a portion of (7):
args,,, select,,, makescope,,, insy

Op = Opy1 — Opg2 = Opg3cccccs O) — Okt1 (8)
whereoy, is the top of the activation stack at the moment of the lasvatidn of m and
ins;, terminates that activation. By the equivalence of our daimal and operational
semantics (Theorem 23), we know that

op+1 = extend,, ({select,,}; {makescope,,}; Dp(by,)) (on)

and, since our language is deterministic, we have

Oht1 = U extend,,, ({select,, }; {makescope,, };Dp(bm,)) (on)
1<i<n
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thatis[call m1,--- ,my]p,(0n) = ox+1. Hence we can systematically rewrite each such
subsequence in (7) into a subsequence
call my,--- ,m,
Op i O'k;_;’_l .
Let
. . ins/ _ .
Jilﬂgélg--~ Qlaklﬂcu- (9)

be the resulting, still infinite sequence. We now have

[insIpy. (04) = ohss (10)
for everyk > 0. This sequence can still contain instructiangs,,,, but they must cor-
respond to activations of method that do not reach completion in (9). Sincecal
instruction can only occur at the beginning of some bladke sequence (9) must have as
a prefix:

. . insy
y Insy ;) NSy,

—o) = o040, = ol -, Whereb=| ins2 |

ins,,

args,, . select,, . makescope,,, . ‘
—Or O'i " a-é — " O_g N i 0—211 whereb = Callml‘ 77777 mn and1 S i S n.

After that prefix, we will see another prefix. In the first case new prefix will correspond
to a blockd’ among the successors bf in the second case, it will correspond to the
beginningp,,,, of methodm,;. By Definition 53, in the first cas€¢,p contains the clause

b(vdrs): - ([[insl]]IF;)H]i‘;L;[P]L ... EL [[inswﬂ]%ﬂjg_) LU (vdrs).
and in the second case it contains the clause
b(vars): - ([[argsmi]]I%H%L;]P]L [[selectm,i]]]g[u;»;m;]P’]L [[makescopemi]]lg[%) D, (10, 1P).

If we continue unwinding the infinite sequence (9), we hene &én infinite sequence of
clauses ofP¢ p:

by (varsy): - ([[ins’l]]l%ﬂu;,};m P [[ins@J]%%)  bo(virss).

bo(vdrss): - ([[insiulﬂ]]lggl,};m ... PL [[insiw]]%ﬂi}) ,bs(vdrss).

bt(ﬂdTSt): _ ([[insiut_lJrl IP’EH.@A;IP’L o ;P]L ﬂinsiutﬂ%%‘) ,bt+1(v(f’l’8t+1).

whereb(vars) = by(varsi). This is not enough to conclude th&g.p has a diver-
gent computation from the quetyvdrs), since aCLP computation stops when its con-
straint store is unsatisfiable. Since the unification of@h® atomb; (vdrs;) with the atom

bs (vdrs;) corresponds to thé™ operation (renaming of the variables into new overlined
variables and existential quantification), then we stillén¢o prove that, for every > 1,

the constraint store

. /7PL PL PLp. s 7PL .PL PL [ PL .PL PL ./ TPL
csy = [[lnsl]]D%, cees [['nswlﬂle}v cee [[lnswt_1+1]]D]§3L, oy [insy,, D
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is satisfiable. By the correctness of our path-length aiga{f$ieorem 52) and by Proposi-
tions 46, 47 and 48, we conclude that

linsi]pps-- - [insiy, Ipp; - s linsy, 1lpps - slinsy, lpps € v(ese)  (11)

and by Equation (10) we conclude that

([insiTops -+ 3 Tinsiy,Jopi -+ 3 [insty,_, 1lopi -+ 5 Tinsl Iy ) (01) = Ol -

By (11) and Definition 33 this entails that

(lén(o’i) U lén(o*;}ﬁl)) E csy

i.e, cs; has a model and is hence satisfiable. Note that a model psogalerete integer

values to each input variable and the existential operated by:" requires the existence
of concrete integer values for the variables at each predezadl. Hence we have found a
divergent computation according to our specialised seicgant_]

Let bs:q,+ be the initial block of our Java bytecode progrdm Once theCLP(PL)
program Pqpp is built from P, we can use @ermination proverfor (constraint) logic
programs to prove the termination 8% p from b+ (vars), and hence (Theorem 56)
that of P from bt

We use the BN\TERM termination prover. Compared to traditional logic prognaimg
termination provers, BITERM deals with integer valued variables instead of non-negativ
integer valued variables and takes advantage of the sigeciabperational semantics of
CLP(PL). The prover, see Algorithm 1 at page 50, relies on the twicstémalysis tech-
nigues summarised below.

The first one combines closure computation with local raglimctions, as in [Codish
and Taboch 1999; Dershowitz et al. 2001; Lee et al. 2001; sPoeli al. 2005; Avery
2006]. We use two abstract domains: convex polyhedra anatonitity constraints [Brod-
sky and Sagiv 1989] augmented with bounds. For each donteribary unfoldings of
the abstraction oP¢;,p are computed. Then for each binary recursive rule in theldnfo
ings, we try to detect a local affine ranking function.

The second technique is a specialisation of that in [Mesaad Serebrenik 2008].
The call graph ofP¢p is decomposed into its maximal strongly connected compsnen
(SCQ). For each predicate in each intra-component, a globalnpetric affine ranking
function is defined so that it takes non-negative values autledses of a fixed amount
from the head of each clause to its body. Then the existensaiadf an affine ranking
function is decided by linear programming. The last part tfokithm 1, from line 10,
could include the search for more sophisticated rankingtfans as proposed for instance
in [Cousot 2005].

We have actually used an improvement of the first techniqbéwgives better results
in some cases. The idea is that, whenever predic@tea binary recursive rule of the
form b(vars): - ¢, b(vdars’) is called, some invariant might hold for the variabless, as
a consequence of the execution of the predicates of the grogihich have been called
beforeb. This invariant can be useful to prove the terminatiorb.of-or this reason, we
compute acall contexts analysignspired by [Gabbrielli and Giacobazzi 1994; Codish
and Taboch 1999] for the predicates in the binary unfoldihthe program and use the
resulting invariants to improve the quality of the termioatproof for the recursive rules.
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As an example, consider the followin@L P(PL) program, already unfolded in its binary
form:

entry - {§ >0}, p(9)
p(z):- {£=9+1,9=>0}p(H)
p(‘%) - {j < _17g:j}7p(@)

The entry point of the program is predicaat ry. Predicatep does not terminate in
general, because of its second clause. However, any rungiredicatesnt r y terminates,
sincep(z) is invoked with a call context > 0 which disables its second clause. Situations
like this are found, for instance, Bubbl eSort andDoubl e in Figure 16. As another
example, the first test of IRTERM (lines 1-2 of Algorithm 1) proves the termination of
the program:

entry : - {true},di v2(z).
div2(z):- {E=2%2,2 > 1},di v2(2).
while the second test of IRTERM (lines 5-7) fails, also by using call contexts. On the
other hand, the presence of that second test is crucial fosimgy the termination of a
predicate with two arguments, decreasimgt. a lexicographical ordering:
entry : - {true},| ex(&q,I2).

| eX(.fl,QVSQ) L= {561 > O,ig > O,i’g > O,i‘l >1 +i1},| eX(fl,ig).

| EX(.fl,i‘g) L {.f?l >0,29 20,87 = 21,32 > 1 +i‘2},| EX(i'l,i‘g).
Finally, the following example:

entry :- {true},gcd(&y,z2).
ng(i‘l,i‘Q) L {f1 >1,%9 > l,i‘l = .fl,.i‘Q = jg},ngZ(.ﬂ’z‘l,i‘g).
9cd2(Z1,22) i - {&1 > o + 1,81 = &1 — &2, &2 = T2},9Cd(Z1, Z2).
ngZ(i’l,(EQ) .- {i’g > "Z'l =+ 1,5%1 = (i’l,fg = 1'2 — i’l},ng(.’il,fg).

is proved terminating thanks to the last test oRBBERM (line 10) and with the help of the
call contexti; > 1,%5 > 1 which holds for any internal call tgcd2 (&1, 45).

8. EXPERIMENTS

In this section we describe our implementation of the teatiam analyser for full Java
bytecode and report some experimental results.

The analyser [Spoto et al. 2008] is the combination of theld generic static analyser
for Java bytecode [Spoto 2008a], written in Java, with thheTB=RM termination prover for
constraint logic programs over numerical constraintsttemiin Prolog. We now describe
the different phases of the analysis, in their order of ajaion.

(1) The user specifies thecl ass file containing therai n() method of the application
under analysis. Alternatively, ilibrary mode the user specifies the set .ofl ass
files whose public methods must be analysed. In both cases) &lso analyses all
reachable methods, which typically requires to load ottesses than those specified
by the user. This phase is implemented througlajplication extractioralgorithm
based on [Palsberg and Schwartzbach 1991]. It is an instdrnidass analysignd is
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Algorithm 1 BINTERM: a termination test

Require: a programPc¢y p
Ensure: if BINTERM returnstrue then we have a termination proof

1:
2:
3:

11:
12:
13:
14:
15:
16:

© 0N g

P« the binary unfoldings oP¢zp W.r.t. the polyhedral domain
if for each recursive rule a?;" there is an affine ranking functiaghen
return true
else
P, « the abstraction oP¢yp w.r.t. the bounded monotonicity domain
P; «— the binary unfoldings of;
if for each recursive rule a5 there is an affine ranking functidhen
return true
else
if for eachSCCof P¢y,p, for each predicate in this component, there is an affine
ranking functiorthen
return true
else
return unknown
end if
end if
end if

(@)
(3)

(4)

()

hence used also to compute the set of possible run-timetsaigreeach method call
(Section 3). The cl ass files are parsed using theciL library for bytecode ma-
nipulation fttp://jakarta. apache. org/ bcel ). Most native methods are
replaced with handwritten code which simulates their bahrav

Number and types of local variables and stack elemenéaett program point are
computed through the Kindall algorithm [Lindholm and Yel999];

Aliasing, pair-sharing and cyclicity analyses are caitep using the corresponding
abstract domains implemented insideL0a. Our pair-sharing analysis is described
in [Secci and Spoto 2005] and is computed in reduced proditictourity information
(asiin [Genaim and Spoto 2008]); our cyclicity analysis isatibed in [Rossignoli and
Spoto 2006]. All these analyses are computed using absteasibns of the denota-
tional semantics of Section 5. These denotational anabresfocused at internal pro-
gram points usingnagic-set§Payet and Spoto 2007]. Pair-sharing and cyclicity ab-
stract domain elements are implemented through binansidecdiagrams, using the
BuDDy library (ht t p: // sour cef or ge. net/ pr oj ect s/ buddy). Thenull
pointer [Spoto 2008b] and class initialisation analysesadso performed since they
might be useful for the precision of the subsequent patgtleanalysis (Section 2);

Path-length analysis is computed with our domain dbedrin Section 6. Abstract
domain elements are closed polyhedra and have been impiedngmough the PPL
(Parma Polyhedra Library) [Bagnara et al. 2008]. When thepdexity of the op-
erations over the polyhedra explodes (for instance beaafusdigh number of local
variables) a worst-case assumption is made, that is, thel@agith of the highest vari-
ables is not approximated;

A constraint logic program is generated from the Javadiyde program, by using the
result of our path-length analysis (Section 7), and is thmmeed to the BNTERM
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[ program [M] B PRI PA] PL] proof [ TE]LP [ N]S]
Nest ed 4 724 158 | 55 60 179 4 1/1 1 0
Nurreri cal 1 5 635 144 | 65 90 445 5 11 1 0
Nuneri cal 3 5 852 || 154 | 61 | 83 212 4 o1 | 0|0
Factori al 5 741 159 | 49 43 101 5 1/1 1 0
Acker mann 5 765 144 | 57 78 222 5 /1| 1|0
Diff 5 805 165 | 71 | 577 | 12118 5 1/1 1 1
Bubbl eSort 5 804 153 | 70 | 172 660 5 1/1 1 1
Doubl e 5 749 147 | 53 49 218 5 11 1 0
Nuneri cal 2 6 675 || 170 | 64 | 185 | 140 6 1| 110
Exc 6 762 || 150 | 75 | 108 | 132 6 1|10
Fact Sum 6 773 || 151 | 46 | 70 116 6 22 | 2|0
Hanoi 7 874 168 | 88 | 318 216 5 1/1 1 0
Sharing 7 855 161 | 112 | 169 115 7 1/1 0 1
BTree 7 845 162 | 85 | 150 135 7 2/2 1 1
Fact Sunii st 8 844 164 | 78 84 156 8 2/2 1 1
Init 10 | 811 || 150 | 68 | 34 109 8 02| 0|0
Bi narySearchTree | 10 | 921 173 | 120 | 158 | 137 10 | 1/2 | 0 | 1
Virtual 11 | 908 174 | 107 | 202 108 11 2/2 1 1
Li stlnt 11 | 981 189 | 178 | 359 292 11 5/5 0 5
Li st 11 | 1044 || 188 | 256 | 462 213 11 5/5 0 5

Fig. 16. The termination analyses of some programs. Times ardlisaoonds.M is the number of methods of
the program;B is the number of its bytecode#R is the time for the preprocessing of the prografa is the
time for the preliminary analyses$}L is the time for the path-length analysis;oof is the time to find a proof
with BINTERM; TE is the number of methods whose termination is provel;is the number of loops whose
termination is proved]N is the number of loops whose termination is proved by using nigaleargumentsS

is the number of loops whose termination is proved by usingraegis related to dynamic data-structures in
memory.

termination prover for constraint logic programs. Thedatboks for appropriate ter-
mination proofs (Section 7). The results of the analysisfialy provided to the
user.

Our experiments have been performed on a Linux machine basexd 64 bits dual
core AMD Opteron processor 280 running at 2.4Ghz, with 2 lgjtes of RAM and 1
megabyte of cache, by using Sun Java Development Kit vedsiand SICStus Prolog
version 3.12.8.

Figure 16 reports the results of the termination analys&oafe small programs, which
are distributed together withulia. The source code of these programs is available, but we
have not used it for the analysis, which is performed ovectimpiled bytecode. Programs
Factorial,D ff, Bubbl eSort, Fact Sum Hanoi , BTr ee, Fact Sunli st and
Bi nar ySear chTr ee are taken from [Albert et al. 2007a; 2008], whiNener i cal 1,
Nuneri cal 2 andNurrer i cal 3 are taken from [Cook et al. 2006a] and contain numer-
ical loops only (that ifNuner i cal 3 can actually diverge). The others have been chosen
in order to test the practicability of the analysis, sinagitkermination depends on cycles,
nested cycles, iterations over one or multiple data strastuexceptions. The standard
Java classes are not included in the analysis, which meanththcalls to the libraries are
assumed to terminate. For each program we report the nurhbegtbods; the number of
bytecodes; the time spent for preprocessing (phases (1(Raatbove); the time spent for
the preliminary analyses (phase (3)); the time spent fdn-pEtgth analysis (phase (4));
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[progmm | M [ B [[ PR PA | PL [ proof [ TE|] LP [NJ] S]]
RayTracer | 243 [ 13680 [ 1191 [ 7209 | 17678 13309 || 232 | 8over19 | 5 | 4
NQueens 480 | 33533 || 1464 | 9232 | 42191 | 54910 || 412 [ 33over80| 33 | 14
Kitten 1201 | 66941 [| 2664 | 34856 | 88909 | 105365 || 1168 | 44 over 98| 38 | 15

Fig. 17. The termination analyses of some larger programs. Tare# milliseconds.M is the number of
methods of the progrand3 is the number of its bytecode®.R is the time for the preprocessing of the program;
PA is the time for the preliminary analyse®&,L is the time for the path-length analysisroof is the time to
find a proof with BNTERM; TFE is the number of methods whose termination is proves;is the number of
loops whose termination is proved is the number of loops whose termination is proved by using nigaler
arguments;S is the number of loops whose termination is proved by usingraems related to dynamic data-
structures in memory.

the time spent while looking for a termination proof througiINTERM (phase (5)). All
times are in milliseconds. Figure 16 reports how many mettmaye been proved to termi-
nate. In all these programs a proof of termination is fourrdefeery terminating method,

so that the analysis is actually optimal. HFari t , there are 2 methods whose termination
could not be proved, since they actually diverge. They agectinstructor and the static
initialiser of the clas#A shown in Section 2. Figure 16 then reports how many loops are
proved to terminate. Bloop we mean a strongly-connected component of blocks of code
containing a cycle. Hence nested Java loops result in onedaty. Similarly, mutually
recursive methods form one loop only. Figure 16 reports &lsocnumber of such loops
whose termination has been proved by using numerical angtsmaad the number of loops
whose termination has been proved by reasoning over dyra@atécstructures. In the first
case, the ranking function for the loop uses variables opthgram whose type isnt ; in

the second case, it uses variables of reference type. Sinkiang functions in general use
more than one variable, it is possible for a loop to be prowedding both numerical and
structural arguments.

Figure 17 reports the results of the termination analysikmgfer programs. We have
chosen such programs so that they do not use native methatlls sandard Java library
beyond those that we have already specified, nor reflectmmaultithreading (these limi-
tations are discussed in Section 10). This figure shows tivaralysis scales to programs
of up to 1000 methods, computing non-trivial calculatioRay Tr acer is a ray-tracing
program involving complex floating-point calculations. eTsource code of this program
is not available to usNQueens is a solver of thex-queens problem, based on a library
for binary decision diagrams. This library is included i thnalysis.Ki t t en is a di-
dactic compiler for a simple imperative object-orientedgaage, used by the first author
for his classes. It uses highly cyclical dynamic data stmed, such as abstract trees (with
sharing subtrees) and graphs of basic blocks. In all thesmpbes, the standard Java li-
braries have been included in the analysis. The number diadstwhose termination is
not proved does not include the methods that are not provedrtonate only because they
call another method whose termination is not proved. Thatésonly count the methods
thatintroducepossible non-termination according to our analyser.

Figure 18 shows the methods called Bgy Tr acer and whose termination is not
proved by our analyser. We have investigated why our anafgils to prove their ter-
mination. MethodAbst ract St ri ngBui | der. stringSi zeOf I nt (i nt) iterates
over the elements of an array stored in a field of an object. é¥ew instead of loading
that array on the stack once and then using that referenaggdbe iteration, it reloads the
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int AbstractStringBuilder.stringSizeO Int(int)

Abstract StringBuil der Abstract StringBuil der.append(int)

Abstract StringBuil der AbstractStringBuil der.append(String)

bool ean C ass. desiredAssertionStatus()

String(char[],int,int)

void String.getChars(int,int,char[],int)

StringBuffer StringBuffer.append(String)

StringBuil der StringBuil der.append(String)

String StringBuilder.toString()

RayTr aci ngEngi ne. cl osest I ntersection(Ray, Surface[]):Intersection
RayTr aci ngEngi ne. render (Surface[], Canmera, Light[],int,int,...):RGB[][]

Fig. 18. The methods called 8ay Tr acer and whose termination is not proved by our analyser

array at every iteration. As a consequence, our analysaermmainderstand that the length
of the array does not change across iterations and that théeruof iterations is conse-
guently bound from above. Methd@ ass. desi redAsserti onSt at us() contains
the following instructions:

43: astore_3

44: al oad_2

45:  nonitorexit

46: al oad_3

47: at hrow

Exception tabl e:

from to target type
18 42 43 any
43 46 43 any

Our analyser thinks that theoni t or exi t instruction at line 45 might throw an excep-
tion which leads back to line 43, hence entering an infinisgld/NVe do not know if this can
ever be the case. The proof is not easy smzei t or exi t can throw an exception when
it is invoked onnull (but this is already excluded by ontll pointer analysis here) but
also when the rules for correct bracketing withni t or ent er are not satisfied [Lind-
holm and Yellin 1999]. Our analyser does not include at thenerat any analysis for this
correct bracketing. Such a recursive exception handléssldaowever, very strange to us
and might actually be a bug in the standard Java libraries.riéthods in Figure 18 deal-
ing with strings and related classes are not proved to tet@isince they might throw a
Stri ngl ndexQut OF BoundsExcept i on, whose constructor calls back the methods
for creating and appending strings. Such call-backs migtawt again an exception and
so on infinitely often. We suppose that such behaviour canappen in practice, but our
analyser fails to prove it. Methad osest | nt er sect i on terminates because of some
geometrical reasoning about rays of light, as we have cliebikedecompiling the byte-
code. Our analyser has no hope of proving this. Methedder contains a large number
of local variables. The complexity of our analysis exploseshat a worst-case assumption
is made for the method, whose termination is not proved.

Our analyser fails to prove the termination of some methddseostandard Java library
also for the other two test programs. Furthermore, it alfle fa prove the termination
of some methods of the application. RdQueens, the methods which are not proved to
terminate are mainly those of the library for binary deaisiltagrams that perform bitwise
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operations, since binary decision diagrams are efficigeflyesented through bitmaps. To
prove their termination, one needs a precise model of suehsei operations, which our
analyser currently lacks (as well as other analysers, sesatime limitation foferminator
in[Cook et al. 2006a]). For thiéi t t en compiler, our analyser fails to prove that methods
dealing with the graph of basic blocks of code actually teate. This is a limitation
of our analysis: those methods terminate since a block ismeésited twice but this is
not captured by our analysis (Section 10). Other methodsareroved to terminate
because of some imprecision in the non-cyclicity analytsis:analyser fails to prove that
the hierarchy of classes in the compiled program is noniggicl Non-cyclicity of this
hierarchy is guaranteed by the semantical analysis phabe abmpiler, but our analyser
is not clever enough to understand this.

9. RELATED WORK

There is a huge literature on termination analysis of coerppitograms and on the formal
specification of the semantics and of the analysis of Javamvarldytecode. Here we provide
a terse survey of the most relevant papers in those areas.

Termination Analysis for Logic and Functional Languagésitomatic termination of
logical rules was studied in [Ullman and Gelder 1988].0fRer 1990] describes an early
attempt to automate termination proofs for Prolog. The fiesults in this stream of re-
search are summarised in [De Schreye and Decorte 1994]irlaian of a logic program
has also been proved through thieary unfoldingsof the program, a set of binary clauses
whose termination can be more easily assessed [Codish d&matiTd999]. Techniques
exist that infer classes of input arguments for which teation is guaranteed, rather than
just proving termination for a class of inputs [Mesnard 1,98@naim and Codish 2005;
Mesnard and Bagnara 2005]. In [Manolios and Vroon 2006Mlicsanalysis and theo-
rem proving are used to approximate in a finite way all the peteccalls among functions
in a pure functional program. The result of this approximatis a set otalling context
graphs Using these graphs, termination is proved by argumengggebn some decreas-
ing measures on the function parameters. This techniguapsoived in [Manolios and
Vroon 2006a] by issuing queries to a theorem prover. If tiedacan solve the queries
in a fixed amount of time, the precision of the analysis is iowpd. The use of theorem
proving also allows one to get counterexamples when theysisdhils to prove termina-
tion. More recently, with the aim of improving the efficienafithe analysis, termination of
term rewrite systems has been encoded into a Boolean fonvhith is satisfiable if and
only if there exists a lexicographic path order or a multizzth order [Codish 2007]. The
experiments are very promising. RBVE [Giesl et al. 2006] is one of the most advanced
system for automated termination proofs of term rewritdesys, which can also analyse
Prolog and Haskell programs [Schneider-Kamp et al. 2008hefXools, specialised for
logic programs, areT| by F. Mesnard, ASTA-LA-VISTA by A. Serebrenik and D. De
Schreye, PLYTOOL by M. T. Nguyen and D. De Schreye, TALP by E. Ohlebusch, C.
Claves and C. Mar@) TERMILOG by N. Lindenstrauss, Y. Sagiv, A. Serebrenik and T.
Reichert, ERMINWEB by M. Codish, C. Taboch, V. Lagoon and S. Genaim.

Termination Analysis for Imperative Program8utomatic termination analysis of im-
perative programs goes back to Floyd's seminal work [Flo967]. After many years of
research, it is mature enough now to apply to Java bytecoliefdet al. 2007a; 2008]
and large system code written in the C language, as HRMINATOR system shows [Cook
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et al. 2006b] (see the detailed discussion in Section 1)mifetion of the imperative
reversal algorithm of some special kind of cyclic lists,ledlpanhandlelists, is proved
in [Loginov et al. 2006]. A panhandle list is a cyclical lishase starting node is not
part of the cycle. This is normally considered a complex fmabof termination analy-
sis and our analysis does not prove its termination. It mastdied that termination has
been proved in [Loginov et al. 2006] through very specificsagangs about the kind of
data structure at hand (addition of ad-tinstrumentation relatiorjs while we aim at a
generic and automatic termination analysis. In [Bouajgtnial. 2006] counters are used
to reason about the size of every region between two shadimyspin one selector linked
data structures, that is, again, linked lists. Counterraata are used as abstract models
of the programs. This technique is used to prove terminaifamvo sorting algorithms.
The use of counters might be similar to our use of path-lendtht their counters measure
the distance between two sharing points in a list, while gt&{ength is the length of the
maximal chain of pointers for any possible kind of data strees The limits of their work
is that only linked lists are considered. Moreover, funttoalls are not supported. The
problem with function calls is that one needs informatioowtsharing angburity [Sal-
cianu and Rinard 2005; Genaim and Spoto 2008] of their argtsrie order to model the
effects of the calls on the heap [Chang and Leino 2005]. Indx&fn 44 we use such infor-
mation to approximate method calls. In [Brotherston et @08, termination is proved by
looking for cyclicity in the Hoare-like proof tree of the g@am, constructed by suitable
execution rules over separation logic [Reynolds 2000;idghéand O’Hearn 2001]. The
only considered data structures are lists. Function calisat considered. By a careful
choice of the predicates of separation logic, also thisrtiggle can prove the termination
of the panhandle list reversal. Note that we prove termimadf the program in Figure 5,
which uses trees rather than flavours of lists, and that wpatifunctions. Nevertheless,
the results in [Loginov et al. 2006; Berdine et al. 2006; B et al. 2006; Brotherston
et al. 2008] show that termination analysis, tied to a speddita structure, leads to more
precise results than a general approach as ours. For iestépcoves the termination of
the panhandle list reversal, where our analysis fails.

Termination of Concurrent ProgramgPodelski and Rybalchenko 2007] prove termi-
nation of generic concurrent programs working over integhris not clear how this work
can be generalised to deal with dynamically allocated datectsires in the heap, since
sharing allows one process to modify the data of anothergsioand this effect should be
somehow modelled. The complexity of the concurrent updataemory should also be
modelled, by using the results of [Manson and Pugh 2001; braes al. 2005]. Analysis
of concurrent Java is also tackled in [Cook et al. 2007]. Tpewe the termination of
a thread by providing an abstraction of the behaviour of tileoconcurrent threads (the
environment). This abstraction can then be refined on this basounterexamples found
during the proof. The technique might not terminate in gahefhey only consider the
case of a finite and fixed number of threads. The generalisttithe case of an unbounded
number of dynamically created threads might be more diffitian it seems. Although all
examples only use primitive types, there is a small commiethieaend of page 327 saying
that they have augmented their analysis veitimedata structures on the heap. We do not
know which data structures have been considered and hovht#weybeen modelled in the
analysis. There is no correctness proof nor example oféisisdugmented analysis.
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Termination Proofs based on non-Linear Invariants.some cases, programs terminate
because some non-linear quantity decreases over a wealldgudomain. For that pur-
pose, recent research has developed new techniques thattprmination of loops using
non-linear expressions. [Bradley et al. 2005] build finitiedlence trees for expressions.
This only works when such expressions have finite trees. §6t2005] builds polynomial
ranking functions of non-linear loops. It is limited to egpsions that can be approximated
by sums of squares and it requires heavy floating point catioms. [Babic et al. 2007]
proves termination by checking for possible divergencatfinite of every variables inside
loops. The authors say that their technique proves terioimat more cases than [Bradley
et al. 2005] and [Cousot 2005], without requiring heavy flegpoint calculations. While
non-linear expressions are important for the terminatioprogram dealing with integer
variables, it is not clear to us that they also contributehegroof of termination of pro-
grams dealing with dynamic data structures in the heap.

Termination of Floating Point Computation®Vhile termination of loops over integers
has been largely studied, there are only a few results abouirtation of loops dealing
with floating point numbers. They make the analysis compleges because of round-
ing errors, the expected behaviour might be different fromreal behaviour of the pro-
gram [Monniaux 2008]. [Serebrenik and De Schreye 2002] eitevmination of these
programs by modelling the official standardised implemigmeof floating point numbers.
They use level mappings over reals, but decreases must Inglddfrom below by some
positive constant. In this paper, we do not prove termimatibloops over floating point
numbers.

Formalisations of the Semantics of Jav@ur formalisation of the semantics of Java
bytecode is indebted to [Klein and Nipkow 2006], where Jawddava bytecode are math-
ematically formalised and the compilation of Java into bgtie and its type-safeness are
machine-proved. Our formalisation of the state of the Javiud Machine (Definition 1)
is similar to theirs, with the exception that we do not use@ypm counter nor keep the
name of the current method and class inside the state. Tfbigriation is not relevant for
our abstraction into path-length and we avoid program asrby using blocks of code
linked by arrows as concrete representation of the streatfithe bytecode. Also our
formalisation of the heap and of the objects inside the heageintical to theirs. Their
mathematical formalisation has been coded inside the lls&8©L theorem prover and
then used to prove the absence of overflows in a program [Véigeimand Nipkow 2005]
with the help of code annotations (invariants) which haverbater computed automati-
cally through interval analysis [Wildmoser et al. 2005].r@armalisation is denotational
rather than operational since we use it to define an absiracfia relational property of
the semantics of the commands (the path-length), that @bstnaction of the denotations.
The same abstraction, based on an operational semantiog] e awkward. Another
formalisation of the semantics of the Java bytecode is ptedeén [Bannwart and Miler
2005] but it is relatively different from ours in the defimiti of the heap and in the use of
weakest preconditions rather than denotational semantics

Abstract Domains for the Static Analysis of Jav@ur abstract domain fquath-length
(Section 6) abstracts a property of the heap, namely, thénmadtength of a chain of
pointers reachable from each variable in the program. Frosmpoint of view, it is re-
lated to a traditionahormused to prove termination of logic programs, which measures
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the heightof a term, seen as a tree. The main difference is that, foretimition, we
need precise information about the shape of the heap aimanat each program point.
Namely, we need information about sharing and cyclicity atadstructures. Determining
an over-approximation of the pairs of program variables share at each program point
is an extensively studied problem. There is a huge liteeattroutpointer or aliasing
analysis [Choi et al. 1993; Steensgaard 1996] and attmapeanalysis [Wilhelm et al.
2002; Distefano et al. 2006] of data structures. Many flasairsuch analyses are fully
qualified for computing possible sharing pairs of variablésore generally, separation
logic [Reynolds 2000; Ishtiag and O’Hearn 2001] is a framewwehich allows one to de-
fine analyses of properties of the heap and can express pegdée sharing and cyclicity
of data structures. It is known, however, that a static aiglfor sharing can be much
more abstract than aliasing or shape analysis, which jsstifie development of abstract
domains which track those properties explicitly, rathemtlas a side-effect [Pollet et al.
2001]. Namely, the abstract domain, defined and provedadrnr§Secci and Spoto 2005],
is just made of sets of pairs of possibly sharing variabldss Tesults in a static analysis
which can be implemented in a completely context and flowiseasvay and still requires
one or two orders of magnitude less time than, for instanéEsiag analysis [Payet and
Spoto 2007]. It must be clear, however, that sharing is t@trabt if possible aliasing is
what is needed, but this is not the case in this paper.

Tools for the Static Analysis of Javdany tools have been devoted to the analysis or
verification of Java or Java bytecode programs. Although systems have not been used
for termination analysis, we think that they could be inttgted for that purpose. They
should be enriched with analyses computing informatioruabite shape of the memory,
such as our sharing and cyclicity analyses; hence some neesimilar to our path-length
information could be computed and termination proved byshg that, along loops and
recursion, this measure is decreasing over a well-foundier.oBANDERA [Corbett et al.
2000] takes a source Java program and extracts compactdiateemodels of the program
which can then be sourced to a model checker. It also perfeome static analyses. It
includes a program slicer for better efficiency and usegattsnterpretation for the finite
representation of the states\vd PATHFINDER [Visser et al. 2003] uses model-checking
to explore the states of a Java program and its schedulingeeegs. As a consequence,
it has shown to be effective to prove properties of real-titaea [Lindstrom et al. 2005].
JMoPED[Suwimonteerabuth et al. 2007] is a test environment fotssuof Java. It uses
model-checking to explore the set of states reachable fomesnput states taken from a
testing set. It signals bugs or problems such as assertitatizins,null pointer excep-
tions and array bound violations. Testing is not in genesatlete, so it is hard to foresee
an application of this tool to termination analysis, whenrtination must be proved fail
input states. Moreover, only a subset of Java is consideri#iil strong limitations such as
a ban of negative numbersMopPED has also been used for testing Java bytecode [Suwi-
monteerabuth et al. 2005], with strong limitations such bewnd on the heap size which
prevents anew bytecode from occurring inside a loop.eEX [Ahrendt et al. 2005] is a
tool for the design, implementation, specification andfieation of object-oriented pro-
grams. It verifies properties expressed in the Object Caimsttanguage or in JML. It is
a semi-automatic tool, based on theorem proving. Prograuss finst be annotated with
the properties to prove and a theorem prover then attemgitgatoof with possible human
interaction. BDOGIE [Barnett et al. 2005] is a program verifier for Spec# programthe
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.NET framework. It has been recently applied to Java byte¢behner and Niller 2007],

by translating it into BOGIEPL, the input language of 80GIE. It includes a framework
for abstract interpretation to build loop invariants thatses to instrument the code. Invari-
ants about the heap can be constructed through the abstraefrddefined in [Chang and
Leino 2005]. Namely, this allows one to track which partstaf heap are preserved across
updates and get information abquurity of function arguments. Proofs are built through
theorem-proving. The goal of this tool is the proofaljject invariantgLeino and Wal-
lenburg 2008], that is, data consistency properties atb@ibbjects of a program. Those
invariants might be violated within a small scope but mudd ladter that each call from the
external environment has completed. Obiject invariantspeeified by the user and ver-
ified by the system. The use ofvnership[Leino and Miller 2004; Miller 2007] allows
one to model invariants which must hold of data structureswalsole rather than for single
component objects. It is also possible to prolass invariantswhich are related to static
fields [Leino and Miller 2005]. A distinguishing feature of these works is thedularity

of the verification, which we currently lack. These worksdzhen theorem proving cannot
be considered fully automatic since the user has to proviteeaification of the property
to prove and the theorem prover will likely require humareiaention to reach the proof.
Moreover, although it is possible, in principle, to provem@ation with such techniques,
we are not aware of any general technique for that purposebjbett-oriented programs
the set of classes to analyse mustktractedfrom the starting class, containing thai n
method, by using some form application extraction This extraction is important in or-
der to avoid the analysis all classes, even those that are not relevant for the analysis. O
JuLIA tool uses a sophisticated algorithm based on [Palsberg eie®tzbach 1991],
rephrased for the Java bytecode. We are not aware of othleritoplementing similar,
very precise application extraction techniques.

Previous Publications of this MaterialThe material presented in this paper is partially
based on our previous work. [Secci and Spoto 2005] and [Boskiand Spoto 2006]
present the sharing and cyclicity analyses that we use itiddet The path-length abstract
domain has been defined in [Spoto et al. 2006]. The last thmperp are presented for
Java, while we rephrase their analyses here for Java bydemod embed them into the
semantic framework of [Payet and Spoto 2007], where theatipeial and denotational
semantics of Section 5 are presented and their equivalsrstewn.

10. DISCUSSION

We have shown that our analyser proves, automatically,itation of programs using
non-trivial forms of loops and recursion (Section 2 and Fégl6). However, as the larger
analyses in Section 8 show, it cannot of course decide tatiomin all cases. Many
terminating methods are not proved to terminate. We consigime of them here.

A first example are methods that work over graphs. Since graphtypically cyclical,
it is not possible for us to prove termination of such methddsthods over graphs often
terminate because visited nodes getoured The set of coloured nodes is typically held
in aSet , as in the following method defined on the node of a graph:

voi d visit(Set<Node> col oured) {
if (coloured.contains(this)) return;
el se col oured. add(this);
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visit this node and its successors, recursively ...

Here,col our ed avoids repeated visits since a node cannot be coloured.t@&eina-
tion of this (very frequent) programming pattern would éo¥i from a proof that a node
cannot be put twice in the set, that the set our ed does not shrink and that the set of
nodes does not grow. Note that this proof cannot be obtaigesintply using the size of
the set as the path-lengthobl our ed.

Another notable example are those methods whose termindépends on computa-
tions over real numbers, such as some approximation ghgasit In our implementation,
the path-length of | oat anddoubl e variables is not computed, so that all such methods
cannot be proved to terminate. The problem here is that noateounding must be taken
into account for a faithful approximation of the values ddlreariables [Monniaux 2008].
Moreover, the set of real numbers is not well-founded everldfver bound is considered.
It might be possible here to use techniques which provet stécrease by some positive
constant [Serebrenik and De Schreye 2002].

The precision of our termination analysis is also limitedlg fact that arithmetic byte-
codes such amul oridiv have no linear approximation that we can use for their patigith
analysis. For the moment, we provide no path-length appration for their result. This
situation might be improved with some preliminary constampagation, since in many
cases those operations involve a variable and a constatitastheir path-length can be
approximated by a linear constraint. A more general sallisdo use non-linear approx-
imations of the path-length, such as in [Bradley et al. 2QD&ysot 2005; Babic et al.
2007]. This will increase the cost of the analysis, though.

The precision of the preliminary analyses is important Far precision of the termina-
tion analysis. For instance, our analyser does not proveeth@nation of the method

public void expand(Sharing other) {
Sharing cursor = this;
while (cursor !'= null) {
try {
ot her. next = new Sharing(null);
ot her = other. next;
cursor = cursor.next;

catch (Nul |l Poi nterException e) {
}
}
}

when it is called with a nomull argumenbt her . This is because our preliminany11
pointer analysis is not able to prove tlwther remains nomull inside theahi | e loop.
In order to prove that result, we would need a more preeci§d pointer analysis and we
should include th¢ ava. | ang. hierarchy in the analysis, so that the analyser can prove
that theQut Of Menor yEr r or which might be thrown byhew Shari ng(nul 1) is
not a subclass dful | Poi nt er Excepti on.

In general, better information about the fields of the olgjéstneeded in our analyses.
Sharing, cyclicity and path-length are by definition prdjgsrthat involve some informa-
tion about the fields. But this is not always true. For ins&rinteger fields of objects
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do not contribute to the definition of the path-length (Deiomi 24). As a consequence,
we cannot prove termination of a loop decreasing an integlt ¥hich is bounded from

below. We plan to study the applicability of the domain in fdly and Leino 2005] to our
framework. It provides a way of approximating fields whicliifer than ours.

It must be stressed also that our analysis is mearstefquentialava bytecode, not using
multithreading. However, we share this limitation with mogher works on termination
analysis. If one allows any kind of data structures, pogssbbred between threads, and
an unbounded number of dynamically created threads, weydan be said about the ter-
mination of the programs. Recent research can prove ontjamases, when for instance
the number of threads is fixed in advance [Cook et al. 2007].

A final limitation of our analysis is a consequence of the ukeative methods and
reflection (the ability of Java programs to access, createnandify objects, classes and
the program itself through some methods of the standardibemaes, mostly native). We
have manually provided approximations for a few hundredsuch methods, for all the
static analyses that we perform. For other native methidi signals a warning to the
user, meaning that the result of the analyses might not imblel Most native methods
implementing reflection have not been manually specifiegceSieflection can modify the
same program under analysis, we cannot see a simple way lganggprograms dealing
with reflection.

Let us make a final consideration about the cost of our arglifjure 17 reports analy-
sis of programs of up to 1201 methods, since the cost of tHgsisés still relatively high.
This problem is not related to preprocessing and to thermpnediry analyses, which are able
to scale to programs of up to 10000 methods, but it is relatele cost of the path-length
analysis and of the subsequent termination proof. A passblution to this problem is
to use less precise but more efficient abstractions or @lhgosi. Octagons [Mi@ 2006]
or size-change termination in polynomial time [Ben-Amrantd d.ee 2007] are possible
candidates. Moreover, the standard Java library clasagd be analysed once and for
all, so that a path-length approximation for them can begagnto all programs that use
those libraries, instead of reanalysing the libraries ¢imoh. Besides, library methods that
are known to terminate, for instance by using semi-autantatihniques such as theorem
proving, need not be proved to terminate by our analysers Waoiuld increase both its
efficiency and its precision.

In conclusion, our analyser shows that a completely autiortextmination proof for Java
bytecode is possible. Future research will improve itsigiea and reduce the cost of the
analysis.
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11. PROOFS (TO BE KEPT IN AN ELECTRONIC APPENDIX ONLY)
11.1 Proof of Proposition 21
LEMMA 57. Letins be a bytecode instruction afd, } e, C Iwith J C N. Then
[[ins]]uje‘”j = Ujes[ins],,.

PROOFE If ins is not acall then

lins]u;c 0, = {ins} = Ujes[ins],;.

We also know (Definition 19) thdtall m.y, ..., my]u; ., IS
U extend,,, ({selecty, }; {makescope,,,, }; (UWjcrt;)(bm,)) (12)
1<i<n
whereb,,, is the block where methath; = x;(t1, ... ,t,) : ¢ starts. Sinceis the extension

of ; over sets of denotations, it is by definition additive; theednolds forextend. Hence
Equation (12) is

U extend,,, ({selecty, }; {makescope,,,, };Ujc (1 (bm,)))

1<i<n

= U extend,,, (Ujes({select,,, }; {makescope,,. };1j(bm,)))
1<i<n

= U Ujeextend.,,, ({selecty, }; {makescope,,,. }; tj(bm,))
1<i<n

=UjeJ U extend ,, ({select,,, }; {makescope,, };tj(bm,))

1<i<n
= UjEJ[[caII mi,... ,mn]]L]..

U
We can now prove Proposition 21:
PrROOF Let{i;};c; C Iwith J C N. We prove that
Tp(Ujese;)(b) = (UjesTp(1;))(b)
for all blocksb.

Letb=| ™ | = :1 with w > 0 andm > 0 (the casen = 0 is considered later). We

NSy, m

have
Tp(Ujerty)(0) = [blu;e,e;
= [ins1]u;cre;s s Iinswl;eseys ((Ujeses)(br) U- - U (Ujests)(bm))
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which by Lemma 57 is equal to
Ujeslinsi],s - sUjeslinsw], s (Ujes(tj(b1)) U UUjes(ti(bm))) - (13)

Since; is the extension of over sets of denotations, it is by definition additive; thmea
holds forU. Since the composition of additive functions is additivqugtion (13) can be
rewritten into

Ujes (linsaleyi -+ slinsw]iys (4(01) U=+~ Uy (b))
=Ujes[bl,, = Ujes (Tp(z;)(b))
= (UjesTp(z5)) (b) .
The casen = 0 follows similarly: we just have to remove the denotationghaf blocks
bi,...,bm. O

11.2 Proof of Proposition 46
First, we need a lemma:

LEmMmMA 58. LetI C N be finite,{pl,};cr C PL;, 5,—1,,s, @andp be an assignment of
integer values to a superset of the variablegfffor everyi € I. Thenp = pl, for all
ieIifandonlyifp = U pl;.

i€l

PROOF We first note that, since the uniane¢;pl; is finite, the resulting set is still a
convex polyhedron. Ip (= pl; for all i € I then for everye € U;crpl; we havec € pl;
for a suitablej € I so thatp |= c. It follows thatp |= U;crpl,. Conversely, ifo = U;crpl;
then for everyi € I andc € pl;, we havec € U;crpl; so thatp = c. It follows that
pEpL. O

We need another lemma:

LEMMA 59. Let#l, #s be the number of local variables and stack elements at a pro-
gram pointg. Let instructionins,, different fromcall, occur atq. Leto = (1| s| u)
iNn X #s. LetL C{0,...,#]l —1}andS C {0,...,#s — 1}. Assume thatns, (o) is
defined and it does not modify = {I° | i € L} ands® = {s’ | i € S} w.r.t. 0. Moreover,
assume that the following property holds:

(U) every location/ reachable fromi* or s in ¢ is also reachable froni” or s° in
insq(0) and is bound to the same objects, up to the values of intedds fiand vice
versa (for instance, it is enough thats, (o) does not modify)

thenlen (o) U len(ins,(0)) = Unchanged (L, S).

PROOF Let#!’ be the number of local variableg,s’ be the number of stack elements
andy’ be the memory irins, (o). Notice that
len(o) U len(insy (o))
= [l len(l', 1) | 0 < i < #I U5 len(s',u) | 0 <i < #s]U
I len(l', 1) |0 <i < #1TU [ — len(s', 1) | 0 < i < #']

V)

" len(l', ) | i € LU [8" + len(s',p) | i € S]U
" len(I', 1) | i € LU [§" v len(s', 1) | i € 9] .

[
[
[
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We have assumed thats,(c) is defined, that it does not modify ands® w.rt. o and
that propertyU holds. Hence, for eache L, we havelen(l*, /) = len(I*, 1) and, for
eachi € S, we havelen (s, ') = len(s’, ). Consequently,

len(o) Ulen(insy (o)) = {l' =1"|ie L}U{s =5 |ie S}. (14)
Moreover,

—for eachi,j € {0,...,s, — 1} such thats?, according to our definite alias analysis, is
an alias ofs? at ¢, we have, by the correctness of the alias analysis, /thdt’, 1) =
len(s?, u),

—for eachi € {0,...,s, — 1} andj € {0,...,l, — 1} such thats’, according to our
definite alias analysis, is an alias Bfat ¢, we have, by the correctness of the alias
analysis, thaten(s?, u) = len(l7, ),

—for eachi,j € {0,...,1, — 1} such that, according to our definite alias analy&iss
an alias ofl’ at g, we have, by the correctness of the alias analysis, ithdt’, 1) =
len(l7, ),

—for eachi € {0,...,s, — 1} such thats’ does not have integer type @t we have
len(s®, 1) > 0 by Definition 24 and

—for eachi € {0,...,l, — 1} such thatl’ does not have integer type gt we have
len(I*, i) > 0 by Definition 24.

Therefore,

- A i ..10<i,5 <s,ands’is an alias o’ atq
len(c) Ulen(ins, (o)) = {82 =& according t(qn our definite alias analysis}
0<i<sg, 0<j<l,and

U { s =107|s"isanalias of’ atq
according to our definite alias analys)s
0 <1i,j <l,andl’is an alias of’ atq
{ according to our definite alias analysi

i ]]

>0]0<1i< s, ands’ does not have integer type gt
I'>0]0<1i<l,andl’ does not have integer typegt .
) (15)
Hence, by (14), (15) and Lemma 58, we h&we(c)Ulen (ins, (o)) = Unchanged, (L, S). O

We can now prove Proposition 46:

PROOF Let #1, #s be the number of local variables and stack elements defingd at
Leto = (I| s | ) in £y 4. Suppose thains, (o) is defined. Below, we consider each
possible form forins,.

’ Msq = consty c‘

By Definition 7, ins,(0) = (I|c :: s| u). So,ins,(c) does not modify{i* | 0 < k <
#1} U {s¥ | 0 < k < #s} nor u. Hence, by Lemma 59, we have

len(o) U len(insy(0)) = Unchanged ,(#1, #s) . (16)
Moreover, notice thas#* — len(c, 11)] € len(ins, (o)), SO
(67— len(c, u)] € len(o) U lén(msq(a)) . 17)
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—If ¢ € Z thenlen(c, 1) = ¢ by Definition 24. Hence by (17),
len(o) U len(ms (o)) | {c = 5"} .
Consequently, by (16) and Lemma 58, we have
len(o) U lén(insq(a)) = Unchanged ,(#1, #s) U {c = g7} .
—If ¢ = null thenlen(c, u) = 0 by Definition 24. Hence by (17),
len(o) U len(insy (o)) = {0 = 875} .
Consequently, by (16) and Lemma 58, we have
len(o) U len(ms (0)) | Unchanged ,(#1, #s) U{0 = iad

Therefore, by Definition 3ﬂ3n(0)ulen(insq(o)) = const, " ci.e., ins, € y(const" c).

insg = dup,,

By Definition 7,#s > 0 andins, (o) = (1| s#*~1 :: 5| u). So,ins, (o) does not modify
{I¥10 <k < #1}U{s* | 0 <k < #s} noru. Hence, by Lemma 59, we have

len(o) U len(insq(0)) = Unchanged, (#1,#s) . (18)
Moreover, notice thas#* — len(s#*~1, 11)] € len(ins, (o)), SO
[57% — len(s7°1, p)] € len(o) U len(insy (o)) .
We also havés#*—1 — len(s#5~1 u)] € len(o), which implies that
(57571 len(s7°71, )] € len(o) U len(ins, (o)) .

So, len(o) U len(insy (o)) = {5#5~1 = 4#5}. Therefore, by (18) and Lemma 58, we
have
len(o) U len(insy(0)) = Unchanged ,(#1, #s) U {s#s71 = g#s)

Consequently, by Definition 37¢n (o) U len(insq(0)) |= dupy” i.e, ins, € y(duph™).

NSy = Newg Kk

By Definition 7, ins,(c) = (I| £ :: s| p[¢ — o]) wherel is a fresh location and is an
object of class: whose fields hold or null. So,ins, (o) does not modify{i* | 0 < k <
#1} U {s* | 0 < k < #s}. Moreover, property/ of Lemma 59 holds sincéis a fresh
location. Hence, by Lemma 59, we have

len(o) U len(ms (0)) | Unchanged (#1, #s) . (19)

Moreover, notice thas#* — len (¢, u[¢ — o])] € len(insq(a)) with len (¢, u[f — o]) =
1 because is an object whose fields holdor null. Hence,

(57 = 1] € len(o) U len(ins,(0)) .
So,len(o) U len(ms (0)) E {1 = 8#¢}. Therefore, by (19) and Lemma 58, we have
len(o) U len(zns (0)) = Unchanged ,(#1, #s) U{1 = g7} .

Consequently, by Definition 37en(0)ulen(m5q(a)) = newi" ke, ins, € y(newg" k).
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insqg = loadg ©

By Definition 7, ins,(0) = (1] (i) :: s | u). S0,ins,(c) does not modify{i* | 0 < k <
#1} U {s* | 0 < k < #s} nor u. Hence, by Lemma 59, we have

len(o) U lén(insq(cr)) = Unchanged ,(#1, #s) . (20)

Moreover, notice thats#* — len(i(i), u)] € len(ins, (o)) with len(1(i), ) = len(l%, ).
Hence,[§%#% — len(I', )] € len(ins, (o)) which implies that

(575 — len(I*, )] € len(o) U len(ins, (o)) .
We also havél’ — len(I*, )] € len(o) which implies that
[IF — len(I’, w)] € len(o) U len(ins, (o)) .

So,len (o) U len(insy(0)) = {I" = §#¢}. Therefore, by (20) and Lemma 58, we have
len(o) U len(insq(0)) |= Unchanged, (#1,4¢s) U {I* = s#°} .
Consequently, by Definition 3%¢n (o) Ulen(insy(0)) |= load, - ii.e, ins, € v(load, " ).
msy = storeg

By Definition 7,#s > 0 andins, (o) = (I[i — s#*71]|s#572 = -.. i 0| p) (with
s#572 oo 80 = ¢if #s = 1). So,ins,(c) does not modify{i* | 0 < k < #I, k #
i} U{s* | 0 <k < #s— 1} noru. Hence, by Lemma 59, we have

len(o) U len(insq(0)) = Unchanged, ({0, ..., 4 — 1} \3,{0,...,#s —2}) . (21)
Moreover, notice thai’ — len(s#5~1, 4)] € len(ins,(c)), SO
[IF — len(s?*71, u)] € len(o) U len(insy (o)) .
We also havés#*—! s len(s#5~1, u)] € len(o), which implies that
(57571 = len(s7°71 p)] € len(o) U len(ins, (o)) .
So,len(o) U len(ins, (o)) = {5#5~1 = ['}. Therefore, by (21) and Lemma 58, we have
len(o)Ulen(insy(0)) = Unchanged ({0, ..., #1—1}\i, {0, ..., #s—2)U{s#* 1 ="} .

Consequently, by Definition 3Tén(0)ulén(insq(a)) = storeg"ii.e. ins, € y(storeg" i).

nsg = addg

By Definition 7,#s > 1 andins,(c) = (I |(s#*7! + s#572) it 67573 o0 0 80| ).
So,ins, (o) does not modify{i* | 0 < k < #1} U {s* | 0 < k < #s — 2} nor 1. Hence,
by Lemma 59, we have

len(o) U len(ins (o)) b= Unchanged ,(#1, #s — 2) . (22)

Moreover, notice that#s—2 — len(s#5~ 1 4+s#572 )] € len(ins, (o)) with len(s#5~ 1 4
s7572 1) = len(s7°~1 u) + len(s7572 1), so

(67572 — len(s?*71, p) + len(s7° 72, p)] € len(o) U lé”(msq(g)) .
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We also havds#s—1 s len(s#571 u), 5#572 s len(s#52, )] € len(o), which im-
plies that
[57571 s len(s7°7, ), 57572 — len(s7572, )] € len(o) U len(insy(0)) .

So, len(o) U len(ins,(0)) = {5#57' + §#5-2 = 5#5-2}  Therefore, by (22) and
Lemma 58, we have

len(o) U len(insy(0)) = Unchanged ,(#1, #s — 2) U {s#s—1 g gts—2 — gH#s—2Y

Consequently, by Definition 37¢n (o) U len(insq(0)) |= add, " i.e. insq € v(add,").

’ ins, = getfield, f‘

By Definition 7, #s > 0, s#*~1 is a location withs#*~! = null and ins,(c) =
() p(s#=)(f) = 87572 oo 2 8% p). So, ins,(o) does not modify{l* | 0 <
k< #1}U{s* | 0 <k < #s — 1} nor u. Hence, by Lemma 59, we have

len(o) U len(insy(0)) b= Unchanged ,(#1,#s — 1) . (23)
Moreover, notice thas#* 1 i len(u(s#*~1)(f), u)] € len(insy(c)), SO

(
)(f), )] € en(o) U ten(ins, (o)) -

We also havés#s—1 — len(s#°~1, )] € len(o), which implies that

(6751 — len(p(s?*!

(57571 s len(s7°71, u)] € len(o) U len(ins, (o)) .
Suppose thaf does not have integer type.
—If s#s~1 might be cyclical a then whether itis actually cyclical, so tHah(s#5~1, 1) =
oo > len(u(s#*71)(f),n), or it is not actually cyclical, so thaen(s#*~1 u) =
1+ max{len(¢, ) | ¢ € rng(u(s?**~1)) NL} > 1+ len(u(s#*~1)(f), ). In both

caseden(o) U len(ins (o)) = {3#5~1 > 5#s~11 Therefore, by (23) and Lemma 58,
we have

len(o) U len(insy(0)) |= Unchanged ,(#1,#s — 1) U {ste=l > g1y

—If f cannot be cyclical af only the second possibility above holds, len(s#*~1, 1) >
1+ len(u(s#571)(f), ). So,len(0) Ulen(insy(0)) = {5#°71 > 14 %51}, There-
fore, by (23) and Lemma 58, we have

len(o) U len(insy (o)) b= Unchanged ,(#1, #s — 1) U {a#s=l > 4 g1

Consequently, by Definition 37en(c) U len(insy(c)) = getfields” f ie, ins; €
'y(getﬁeldgﬂ‘ ).

’ insq = putfield, f‘

By Definition 7, #s > 1, s#°~2 is a location withs#*~2 = null and ins,(oc) =
(#0700 572 o (s#072)[f o 5% 1)),
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—Suppose thaf has integer type. Theins, (o) does not modify{i* | 0 < k < #I} U
{s* | 0 < k < #s — 2} and only modifies an integer field of an object. Hence property
U of Lemma 59 holds and by that lemma we have

len(o) U len(insy(0)) = Unchanged ,(#1, #s — 2) .

—Suppose thaf has not integer type. Ldt be the indexes of the local variables which
cannot share wits#*—2 at g and .S be the indexes of the stack elements, with <
r < #s — 2, which cannot share witk#*=2 atq. Then, ins (o) does not modify
{I¥ | k € Ly u{s* | k € S} nor any object bound to the locations reachable from those
variables. Hence, by Lemma 59, we have

len(o) U len(insq(0)) |= Unchanged,(L, S) . (24)

Let ) = pls#72 i p(s#572)[f — s#<71]]. The variablesinL = {I* | 0 < k <
#l, k¢ LyandS = {s* | 0 < k < #s—2, k ¢ S} are affected by theutfield.
Suppose that#*~2 cannot share with#*~! at¢. Then, theputfield cannot build a
cycle and the variables ih U S can only grow by the path-length of the value which is
stored inside the field, bound ¢**~*. Hence, for each < L,

len(I%, 1) + len(s771, ) > len(1%, 1)
and for eactk € S,
len(s®, ) + len(s?°71, ) > len(s®, i) .

Notice that

len(o) U len(insy (o))

= [[F s len(*, pu) |0 <k < #JU[S" — len(s®, 1) | 0 < k < #s]U

[1F — len(I®, 1)) | 0 < k < # U [8* — len(s®, /) |0 < k < #s—2] .
Therefore,
len(o) Ulen(insg(o)) = {IF + 5 > % |[ke TYu{s" + 51 > 3" |keS}.
So, by (24) and Lemma 58, we have

len(o) U len(insy (o)) = Unchanged (L, S) U
{I*+5# 1>k kel} U
{8k + 5571 >3k | ke S}

Consequently, by Definition 37en (o) U len(ins,(0)) = putfieldy” f i, ins, €
(putfield," f).

’ ins, = ifeq of type, t‘

By Definition 7, #s > 0, ins,(o) = (I|s#*72 = -~ = s9|pu) ands#s=1 = 0 or
s#3=1 = null. So,ins, (o) does not modify{l* | 0 < k < #I}U{s* |0 <k < #s—1}
nor 1. Hence, by Lemma 59, we have

len(o) U len(insq(0)) = Unchanged, (#1, #s — 1) . (25)
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Moreover, notice thais#s—! — len(s#~1 )] € len(o) with len(s#5~* 1) = 0 be-
causes™*~1 =0 or s#*~1 = null. So

(57571 0] € len(o) U len(insy (o))
i.e, len(o) U len(ins,(0)) = {5#5~1 = 0}. Therefore, by (25) and Lemma 58, we have
len(o) U len(insy(0)) = Unchanged ,(#1, #s — 1) U {37571 =0} .

Consequently, by Definition 37¢n () U len(insq(0)) |= ifeq of typey” t i.e., ins, €
~(ifeq of type," t).

’ insq = ifne of type, t‘

By Definition 7,#s > 0, ins,(0) = (1| s7572 - 2 80| p), s7571 £ 0 ands?s—! #
null. So,ins,(c) does not modify{i* | 0 < k < #1} U {s* | 0 < k < #s — 1} norp.
Hence, by Lemma 59, we have

len(o) U lén(insq(a)) = Unchanged ,(#1,4s — 1) . (26)
Suppose that # int. Notice thats#5~1 — len(s#°~, )] € len(o), SO

(57571 s len(s7° 71, w)] € len(o) U len(ins, (o)) .

Moreover, len(s#5~1, 1) > 1 becauses#*~! # null. So,len(o) U len(ins,(0)) =
{5#5=1 > 1}. Therefore, by (26) and Lemma 58, we have

len(o) U lén(insq(a)) = Unchanged ,(#1,#s — 1) U {57571 > 1} .

Consequently, by Definition 37¢n (o) U len(insy(c)) | ifne of type” ti.e, insq €
~v(ifne of type]gﬂ‘ t). O

11.3 Proof of Proposition 47

PROOF | § = args

q,k.m(ty,...,tp):t

Leto € %, ,, be such thab(o) is defined. Theng has the form(i | a, :: --- :: ag =
s|pyandd(o) = (e|ap::---:ao| ). Notice that

len(o) Ulen(8(0)) = [I° — len(I®, 1) | 0 <i < 1] U
(8" len(s', ) | 0 < i < s,]U
(8" = len(a;,p) |0 <i<p+1]
with
§ = len(s',u) |0<i<s,—(p+1)]U
i len(s', ) | sq—(p+1) <i<sg]
§ s len(s',u) |0<i<s,— (p+ 1)U
(55~ (PFDH  Jep (s8I 10 < i < p+1]
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and for eachi € {0,...,p}, s%~PtD+i = ¢, Therefore,

sa=(PHDF s en(ag, 1) |0 <i<p+1]U

- len(ai, p) |0<i<p+1].

Consequentlyjen (o) U len(6(0)) = {35 @+D+i — g | 0 < i < p+1}ie, by
Definition 10,lén(0)ulen(§(ol) = args?h‘m(tlw’tp). Henceyg € v(argsghm(thwt?)).

Letnowo = (g | sP i -+ st 89 | ) in Sg pir.

’ 6= selectﬂlm(th,,,,tp);t ‘

Suppose thad (o) is defined. Theng(o) = o, sod(o) does not modify anything in
o. Hence, we havéen(o) U len(8(o)) = Unchanged(0,p + 1) i.e., by Definition 43,
len(o) U len(5(0)) = selectt™ .t,):- Thereforeg € ’y(selectg‘m(tl)m’tp):t).

Kk.m(ty,..

0= nlakescopen.m(tl ..... tp):t

Suppose thaf(o) is defined. Thenj(o) = ([i — s | 0 < i < p] | ¢ | 1). Notice that
lén(0) U len(8(a)) = [5' = len(s', 1) | 0 < i < p U [+ len(l', ) | 0 < i < p)
with, for each0 < i < p, len(l%, u) = len(l(i), u) = len(s®, ). So,
len(o) Ulen(8(0)) = {5 =1 | 0 <i < p}
i.e., by Definition 43,len (o) U len(d()) |= makescopey p,, ;). Therefore,s €

'y(makescopeg“m(tl7,,_,t,,);t)- U

11.4 Proof of Proposition 48

PROOF Let us consider each of the operations and extend.
Let pl; € PLy, s,—1,,5, andply, € PLy, 5,—1,.5,- LS € v(ply);v(ply). Then, there
existsd, € y(pl;) anddy € y(ply) such thatd = é1;d2. Notice thatd, € Ay, 5,1, 5,

S € A s,—1,5, NS € Ay, ¢, 1,.s,- We prove that € ~(ply;*- ply) i.e, for all
o € ¥, 5, such that(o) is defined, we have

len(o) U len(8(o)) = plyi™" pl, .

Leto € ¥, 5, be such thad (o) is defined. Theng; (o) andds(d1(c)) are defined. As
51 € v(ply), we have

len(o) U len(8,(0)) = ply .
Moreover, ash, € v(pl,), we havelen(8, (o)) U len(82(61(0))) = pls i€,

len(01(0)) U len(8(0)) = ply .
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LetT = {1°,....7""",5°, ..., 5"} andy be the memory i (o). Let

p:[ZiHlen(li,,u)|0§i<lt}u[§ir—>len(5i,u)|O§i<st].

Then, aden (6, (0)) = [I* — len(l’, 1) | 0 < i < L] U [ — len(s’, 1) | 0 < i < s,] and
len(61(0)) = [I* = len(l®, 1) | 0 < i < L] U8 len(s®, u) | 0 <i < s;], we have

len(o)Up k= ply[0+— T |7 € T]
and
pUlen(5(c)) = plyfo — 7 |T € T].
Notice the following facts:

—The domains ofen(c), p andien(d(c)) are disjoint.
—pl, [0+ T | ¥ € T]is a constraint over the variables in the domaingafo) andp.
—pl,[ — T | T € T) is a constraint over the variables in the domaing ahdlen(6(c)).

So, we havéen (o) U pU len(d(0)) = ply[6 — 7 | © € T] andlen(o) U p U len(8(0)) =
ply[0 — T | T € T, which implies by Lemma 58 that

len(o) UpUlen(8(0)) = ply[o — T | T e T|Uply[o — v | T €T] .
Then, as the domain @fis T, we have
len(o) U len(5(c)) | 30 (ply[6 — T | 5 € T) U ply[o — v | T € T))
i.e., by Definition 44,
len(o) U len(5(0)) = ply;F pl, .
S0,6 € v(ply; ply).

Let ply, ply € PLy, 5,—1,,5,- Letd € y(ply) U~(ply). Then,d € v(ply) oréd € ~(ply).
We prove thab € v(pl, U pl,) i.e, forall o € %, 5, such that(o) is defined, we have

len(o) U len(8(0)) = ply UP" pl,, .

Leto € ¥, ,, be such thai (o) is defined. Lep denote the assignmeki (o) Ulen (6()).

iySi

—Suppose that € v(pl;). Then,p = pl; i.e, p defines a point inside the polyhedron
defined bypl,. As pl; UL pl, is the polyhedral hull opl; andpl,, p defines a point
inside the polyhedron defined ly, U™ pl,. Hence,p = pl; U pl, i.e,,

len(o) U len(8(0)) |= ply U™ pl,, .
—Suppose thai € y(pl,). Then, reasoning as above, we get
len(o) U len(5(c)) = ply UP- pl,, .

Consequently, we havec ~(pl, UL pl,).

extendﬁ,.m(tl yeestp )it
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Letpl € PLopt1-1,.5,- LELS € extend,mt,,....t,)(7(pl)). Then, there exists’ €
v(pl) suchthab = extend, (i, ,...1,):¢(6'). BY Definition 33 we have’ € Ay pt1-1
and by Definition 16 we havé € Ay, s, .1,z +s,- We prove that

0,50

d€ V(BItendT}m(t],.4.,tp):t (pl))
i.e, forallo € ¥, ,, such that(o) is defined, we have

len(0) Ulen(8(0)) [ eatend, s, .o,y (PL) -

Leto € ¥, s, be such thab (o) is defined. Theng has the formi |a, =2 --- :: ay =
ap :: s | p) andd(o) has the form{ | v :: s| p') whered’ ({e | ap = -+ = a1 : ap | ) =
(I"| v | ¢y, wherev stands for the return value of the callee, if any, or otheswis= «;
moreover, we know thafom(u) C dom(u') and that every € dom(u) which is not

reachable frona,, :: - -- :: a1 :: ag is such thap(¢) = ' (¢). We also know that if théth
argument is not modified insidem(t,...,t,) : t thenay = (I')*. We prove the case
v # €; the other case is similar. Namely, we prove that
pl[o — T |7 eT]
(1) len(o) Ulen(6(o)) =3r | [8F — T2 |0 <k < p+ 1][38° — §7]
UMSAU MLA

(2) len(o) U len(8(c)) = US U UL.

When (1) and (2) are proved, then by Lemma 58 and Definition 44ilt@ave the thesis,
since the variables i’ do not occur inUS U UL.

(1) Sinced’ € v(pl) andd’({e | ap :: - -+ :: a1 = ap | w)) is defined, we have
len((e]ap - ay = ag | ) Ulen(8'((e]ap = - ay = ag | ) = pl
that is
len((e]ap - ay = ag | ) Ulen({l" v | ) = pl

which in turn means that

[5% — len(ag, 1) | 0 < k< p+1]U[5° — len(v, 1)

UlIF — Ten((U)F, 1) | 0 < k < 1,)
(wherep would be missing whes, = 0). Hence

[85F% s len(ap, u) |0 < k < p+1]

U e len(v, 1)) = pl[5" — 3" | 0 < k < p+1][8° > 57
UIE — len((I)*, 1) | 0 < k < 1,]
and
[85F s len(ag, p) |0 < k < p+1] pllo—v|veT]
U[8" — len(v, 1)) E [F—str0<k<p+1].
U len((I)*, 1) | 0 < k < 1) [89 + 87]

Let!" — & € MSA; hence0 <i<z,0<k<p+1,stisan alias ino of the
kth parameter, according to our definite aliasing analysis, the k&th parameter is
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not modified inside<.m(t1,...,t,) : t. By the correctness of our aliasing analysis
we havea, = s’. Since thekth argument is not modified, we hawg = (I')*.
Hences’ = (I')¥ andlen(s’,y’) = len((l )k, u’). In a similar way we prove that

len(1%, ") = len((I")*, i) for everyl" = [ € MLA. Then

5T len(ay, 0<k<p+1
[ (ar,p) |0 <k <p+1] pllo o 7| T ET]

U[8" — len(v, 1)) .
O e ten(@ ) [0 k<) | A0SR
U[sk|—>len( )|0<k<x]

UMSAU MLA
UllF — len(iF, 1) | 0 < k < 1,
that is
[85F% — len(ag, p) |0 < k < p+1] pllo— v |0 €T
U[8% = len(v, 1)) 5 (88— e |0 <k <p+1]
U[s* > len(st, @) [0< k<a] |7 8 — 47]
U[E — len(i%, 1) |0 < k < 1] UMSAU MLA
In conclusion

pl[o — v |7 €T
[§F = T [0 <k <p+1]
(89— §7]

UMSAU MLA

The local variables are bound to the same locations amd (o), as well as the
lowest stack elements in We know thatu(¢) = p'(¢) for every ¢ which is not
reachable fromu, :: --- :: aq :: ap. This entails that’ can only modify the objects
bound to some location reachable fram:: --- :: ao, the other objects are the same
in © and iny’. As a consequencé, does not change the set of objects which can
be reached from any local variable or any stack elementvrhich does not share
with any updated parameter amoag :: - -- :: ag. Thatis,len(l*, ) = len(l*, i)

for every0 < i < [, such that’ does not share with any updated parameter, and
len(s', ) = len(s’, /) for every0 < i < x such thats’ does not share with any
updated parameter. Since our pair-sharing analysis icpmwe conclude that for
everys’ = &' € US we have that’ does not share with any updated parameter and
hence

len(o) U len(8(0)) |= I

(zén(a)uzén(a(a)))( i) = len(o)(5)
= len(s’, p)

= len(s', i)

= len(5(0))(3")

len(o) U zen(a(a))) (57 .

We conclude thaten (o) U len(6(0)) | &' = &'. Similarly len(o) U len(5(0)) =
[t = [ for everyl = I' € UL. By Lemma 58 this entails thétn (o) U len(5(c)) |=
US U UL.
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11.5 Proof of Theorem 52

PROOEF ltis a consequence, by induction, of Propositions 46, 4i74ghand of the fact
that we use a widening operator proved correct in [Bagnaia.et005]. [
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