
Using CLP Simplifications to Improve Java
Bytecode Termination Analysis

Fausto SPOTO, Lunjin LU, and Fred MESNARD

Dipartimento di Informatica, Università di Verona, Italy
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Introduction

JuliaWeb is a termination analyzer for Java Bytecode:
http://julia.scienze.univr.it/termination

In this paper:

we propose a set of simplifications of the CLP programs
generated by the termination analysis in JuliaWeb;

we prove those transformations correct w.r.t. termination;

we experiment with those transformations.
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From Java Bytecode to CLP

calls from other methods

block 6386
load 0 of type List

getfield private List.tail:List

block 6396
if_null List

new List

block 6387
if_nonnull List

new List

block 6399
call List(Object,List)

block 6400
return List

block 6388
catch

block 6559
makescope List,Object,List

code of public List(Object,List)

block 6398
dup List

load 0 of type List
getfield private List.head:Object

load 1 of type List

block 6389
throw Throwable

block 6391
dup List

load 0 of type List
getfield private List.head:Object

load 0 of type List
getfield private List.tail:List

load 1 of type List

block 6560
makescope List,List

block 6392
call List.append(List):List

block 6394
call List(Object,List)

block 6393
catch

block 6395
return List
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From Java Bytecode to CLP

Example

block6391(IL0,IL1,IS0) :-
{IS0=OS1, IL1=OS4, IS0=OS0, IL1=OL1, IL0=OL0,
OS3 >= 0, OS2 >= 0, IL0-OS3 >= 1, IL0-OS2 >= 1},
block6392(OL0,OL1,OS0,OS1,OS2,OS3,OS4).

block6391(IL0,IL1,IS0) :-
{IS0=OS1, IL1=OS4, IS0=OS0, IL1=OL1, IL0=OL0,
OS3 >= 0, OS2 >= 0, IL0-OS3 >= 1, IL0-OS2 >= 1},
block6560(OL0,OL1,OS0,OS1,OS2,OS3,OS4).

predicates are named blocki or entryj;

two arrows connect block 6391 with blocks 6392 and 6560;

two local variables L0 and L1 are in scope: L0 implements this and
L1 other;

at the beginning of block 6391, there is only one stack element S0,
while there are 5 at its end.
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CLP(ZLin): Operational semantics

Let ~m,~n ∈ Z∗ and C be the clause

p(~i) :- c , q(~o)

where c is a linear constraint over the variables ~i ∪ ~o.

q(~n) is derived from p(~m) using C , written p(~m)→C q(~n), if
there is a solution θ of c[~i 7→ ~m] such that q(~n) = q(~o)θ.

A derivation of p0(~n0) is p0(~n0)→ p1(~n1)→ · · · → pk(~nk)
such that pi+1(~ni+1) is derived from pi (~ni ) for all 0 ≤ i < k .

A resolution is a maximal derivation.

NB: our semantics is ground CLP.
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CLP(ZLin): Termination

An entry p terminates in a program P if, for every ~n ∈ Z∗, all
resolutions of p(~n) by using the clauses of P, with predicates
in the strongly connected component of p, are finite.
Otherwise, p diverges.

Let P1 and P2 be programs. P1 terminates more than P2,
written P1 w P2, if whenever an entry of P1 terminates in P1,
it also terminates in P2.

P1 and P2 are termination-equivalent, written P1 ≡ P2, if P1

terminates more than P2 and vice versa.

NB: our definition formalizes a loop-local notion of termination.
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PS1: Removing clauses outside loops

A clause p(~i) :- c , q(~o) occurs in a loop if p and q belong to the
same strongly connected component of predicates.

Proposition

Let P be a program and Ps be the same program deprived of those
clauses that do not occur in a loop. Then P ≡ Ps .
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PS2: Removing clauses by unfolding

If a program contains clauses p(~m) :- c1, q(~n) and q(~v) :- c2, r(~w),
we can unfold them into the clause p(~m) :- c1 ∧ c2 ∧ ~n = ~v , r(~w).

Done systematically for all occurrences of q on the right of the
clauses of P, and followed by the removal of the clauses defining q,
we say that we unfold q away from P .

Proposition

Let P be a program and q a non-entry predicate in P with no
clause of the form q(~n) :- c , q(~m). Let Ps be P where q has been
unfolded away. Then P ≡ Ps .
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PS3: Removing unsupported or subsumed clauses

p(~i) :- c, q(~o) is unsupported if q is undefined.

p(~i) :- c1, q(~o) subsumes p(~i) :- c2, q(~o) if c1 entails c2.

Proposition

Let P be a program and Ps be P deprived from unsupported or
subsumed clauses. Then P ≡ Ps .
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Removing variables?

Let c be a constraint:

cv = the v-dedicated part of c = ∃−{iv ,ov}.c

c−v = the v-independent part of c = ∃{iv ,ov}.c

An operation that removes a variable from a predicate:

p(iv1, . . . , ivn)	 v =

{
p(iv1, . . . , ivi−1, ivi+1, . . . , ivn) if v ≡ vi

p(iv1, . . . , ivn) otherwise.

The transformation:

Comp−v = {p(~i)	 v :- c−v , q(~o)	 v | p(~i) :- c , q(~o) ∈ Comp}

removes v from a strongly connected component Comp.
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Removing variables?

Proposition

Let p0 be an entry diverging in Comp. Then p0 also diverges in
Comp−v .

In general, Comp is not termination-equivalent to Comp−v , as
shown by the counter-example 4.8 of the paper.

In what follows, we identify two cases where removal of a variable
maintains termination equivalence. Common condition:

a variable v is isolated in a strongly connected component
Comp if, for every p(~i) :- c , q(~o) ∈ Comp, c = cv ∧ c−v .
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PS4: Removing open variables

An isolated variable v in a strongly connected component
Comp is right-open if, for every p(~i) :- c , q(~o) ∈ Comp, we
have that cv is either true or iv = ov , or ov ≥ const,
ov = const or ov ≤ const (or equivalent), where const is an
integer constant. Left-openness is defined analogously.

Proposition

Let v be right- or left-open in a strongly connected component
Comp. If an entry diverges in Comp−v then it diverges in Comp.
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PS4: Removing open variables

Example

L1 is isolated and right-open in the component:

entry3880(IL0,IL1) :-
{IL1 = OL1, OL0 >= 0, IL0 >= 2, IL0 - OL0 >= 1},
entry3880(OL0,OL1).

Hence L1 can be removed:

entry3880(IL0) :-
{OL0 >= 0, IL0 >= 2, IL0 - OL0 >= 1},
entry3880(OL0).
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PS5: Removing uniform variables

An isolated variable v is uniform in a strongly connected
component Comp if there is x ∈ Z such that, for every
p(~i) :- c , q(~o) ∈ Comp, the valuation {iv 7→ x , ov 7→ x} is a
solution of cv .

Property

Let a variable v be uniform in a strongly connected component
Comp. If an entry diverges in Comp−v then it diverges Comp.
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PS5: Removing uniform variables

Example

block3853(IL0,IL1,IL2) :-
{IL2 - OL2 = -1, IL1 = OL1, IL0 = OL0, IL1 - IL2 >= 1},
block3853(OL0,OL1,OL2).

block3853(IL0,IL1,IL2) :-
{IL2 - OL2 = -1, IL1 = OL1, OL0 = 1, IL1 - IL2 >= 2},
entry3849(OL0,OL1,OL2).

entry3849(IL0,IL1,IL2) :-
{IL2 = OL2, IL1 = OL1, IL0 = OL0, IL0 >= 1},
block3853(OL0,OL1,OL2).

L0 is isolated. Taking x = 1 shows that L0 is uniform. Hence L0 can be
removed.
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Experiments

program meth. orig loops fold subsum open unif

Ack 5 7.11 0.21 0.21 0.21 0.21 0.21
precision 5 5 5 5 5 5

BubbleS 5 19.07 1.55 0.71 0.71 0.49 0.49
precision 3 4 5 5 5 5

NQueens 222 - 210.31 156.32 92.29 47.77 34.34
precision - 171 171 171 171 171

JLex 137 - 228.51 335.85 374.82 121.95 81.21
precision - 84 87 102 102 102

Kitten 947 - 200.39 226.79 152.47 93.70 79.35
precision - 811 827 827 827 827
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Conclusion

We have presented:

some termination-equivalent simplifications of the CLP
programs that are automatically generated during termination
analysis of Java bytecode programs;

some real case of analysis showing that these simplifications
decrease the time for building a proof by some order of
magnitude.
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