
Using CLP Simplifications to Improve Java
Bytecode Termination Analysis

Fausto SPOTO, Lunjin LU, and Fred MESNARD

Dipartimento di Informatica, Università di Verona, Italy
Oakland University, U.S.A.

IREMIA, université de la Réunion, France

March 2009

Fausto SPOTO, Lunjin LU, and Fred MESNARD CLP Simplifications for Java Bytecode Termination Analysis



Introduction

JuliaWeb is a termination analyzer for Java Bytecode:
http://julia.scienze.univr.it/termination

In this paper:

we propose a set of simplifications of the CLP programs
generated by the termination analysis in JuliaWeb;

we prove those transformations correct w.r.t. termination;

we experiment with those transformations.

Fausto SPOTO, Lunjin LU, and Fred MESNARD CLP Simplifications for Java Bytecode Termination Analysis



From Java Bytecode to CLP

calls from other methods

block 6386
load 0 of type List

getfield private List.tail:List

block 6396
if_null List

new List

block 6387
if_nonnull List

new List

block 6399
call List(Object,List)

block 6400
return List

block 6388
catch

block 6559
makescope List,Object,List

code of public List(Object,List)

block 6398
dup List

load 0 of type List
getfield private List.head:Object

load 1 of type List

block 6389
throw Throwable

block 6391
dup List

load 0 of type List
getfield private List.head:Object

load 0 of type List
getfield private List.tail:List

load 1 of type List

block 6560
makescope List,List

block 6392
call List.append(List):List

block 6394
call List(Object,List)

block 6393
catch

block 6395
return List

Fausto SPOTO, Lunjin LU, and Fred MESNARD CLP Simplifications for Java Bytecode Termination Analysis



From Java Bytecode to CLP

Example

block6391(IL0,IL1,IS0) :-
{IS0=OS1, IL1=OS4, IS0=OS0, IL1=OL1, IL0=OL0,
OS3 >= 0, OS2 >= 0, IL0-OS3 >= 1, IL0-OS2 >= 1},
block6392(OL0,OL1,OS0,OS1,OS2,OS3,OS4).

block6391(IL0,IL1,IS0) :-
{IS0=OS1, IL1=OS4, IS0=OS0, IL1=OL1, IL0=OL0,
OS3 >= 0, OS2 >= 0, IL0-OS3 >= 1, IL0-OS2 >= 1},
block6560(OL0,OL1,OS0,OS1,OS2,OS3,OS4).

predicates are named blocki or entryj;

two arrows connect block 6391 with blocks 6392 and 6560;

two local variables L0 and L1 are in scope: L0 implements this and
L1 other;

at the beginning of block 6391, there is only one stack element S0,
while there are 5 at its end.

Fausto SPOTO, Lunjin LU, and Fred MESNARD CLP Simplifications for Java Bytecode Termination Analysis



CLP(ZLin): Operational semantics

Let ~m,~n ∈ Z∗ and C be the clause

p(~i) :- c , q(~o)

where c is a linear constraint over the variables ~i ∪ ~o.

q(~n) is derived from p(~m) using C , written p(~m)→C q(~n), if
there is a solution θ of c[~i 7→ ~m] such that q(~n) = q(~o)θ.

A derivation of p0(~n0) is p0(~n0)→ p1(~n1)→ · · · → pk(~nk)
such that pi+1(~ni+1) is derived from pi (~ni ) for all 0 ≤ i < k .

A resolution is a maximal derivation.

NB: our semantics is ground CLP.

Fausto SPOTO, Lunjin LU, and Fred MESNARD CLP Simplifications for Java Bytecode Termination Analysis



CLP(ZLin): Termination

An entry p terminates in a program P if, for every ~n ∈ Z∗, all
resolutions of p(~n) by using the clauses of P, with predicates
in the strongly connected component of p, are finite.
Otherwise, p diverges.

Let P1 and P2 be programs. P1 terminates more than P2,
written P1 w P2, if whenever an entry of P1 terminates in P1,
it also terminates in P2.

P1 and P2 are termination-equivalent, written P1 ≡ P2, if P1

terminates more than P2 and vice versa.

NB: our definition formalizes a loop-local notion of termination.

Fausto SPOTO, Lunjin LU, and Fred MESNARD CLP Simplifications for Java Bytecode Termination Analysis



PS1: Removing clauses outside loops

A clause p(~i) :- c , q(~o) occurs in a loop if p and q belong to the
same strongly connected component of predicates.

Proposition

Let P be a program and Ps be the same program deprived of those
clauses that do not occur in a loop. Then P ≡ Ps .

Fausto SPOTO, Lunjin LU, and Fred MESNARD CLP Simplifications for Java Bytecode Termination Analysis



PS2: Removing clauses by unfolding

If a program contains clauses p(~m) :- c1, q(~n) and q(~v) :- c2, r(~w),
we can unfold them into the clause p(~m) :- c1 ∧ c2 ∧ ~n = ~v , r(~w).

Done systematically for all occurrences of q on the right of the
clauses of P, and followed by the removal of the clauses defining q,
we say that we unfold q away from P .

Proposition

Let P be a program and q a non-entry predicate in P with no
clause of the form q(~n) :- c , q(~m). Let Ps be P where q has been
unfolded away. Then P ≡ Ps .

Fausto SPOTO, Lunjin LU, and Fred MESNARD CLP Simplifications for Java Bytecode Termination Analysis



PS3: Removing unsupported or subsumed clauses

p(~i) :- c, q(~o) is unsupported if q is undefined.

p(~i) :- c1, q(~o) subsumes p(~i) :- c2, q(~o) if c1 entails c2.

Proposition

Let P be a program and Ps be P deprived from unsupported or
subsumed clauses. Then P ≡ Ps .

Fausto SPOTO, Lunjin LU, and Fred MESNARD CLP Simplifications for Java Bytecode Termination Analysis



Removing variables?

Let c be a constraint:

cv = the v-dedicated part of c = ∃−{iv ,ov}.c

c−v = the v-independent part of c = ∃{iv ,ov}.c

An operation that removes a variable from a predicate:

p(iv1, . . . , ivn)	 v =

{
p(iv1, . . . , ivi−1, ivi+1, . . . , ivn) if v ≡ vi

p(iv1, . . . , ivn) otherwise.

The transformation:

Comp−v = {p(~i)	 v :- c−v , q(~o)	 v | p(~i) :- c , q(~o) ∈ Comp}

removes v from a strongly connected component Comp.

Fausto SPOTO, Lunjin LU, and Fred MESNARD CLP Simplifications for Java Bytecode Termination Analysis



Removing variables?

Proposition

Let p0 be an entry diverging in Comp. Then p0 also diverges in
Comp−v .

In general, Comp is not termination-equivalent to Comp−v , as
shown by the counter-example 4.8 of the paper.

In what follows, we identify two cases where removal of a variable
maintains termination equivalence. Common condition:

a variable v is isolated in a strongly connected component
Comp if, for every p(~i) :- c , q(~o) ∈ Comp, c = cv ∧ c−v .

Fausto SPOTO, Lunjin LU, and Fred MESNARD CLP Simplifications for Java Bytecode Termination Analysis



PS4: Removing open variables

An isolated variable v in a strongly connected component
Comp is right-open if, for every p(~i) :- c , q(~o) ∈ Comp, we
have that cv is either true or iv = ov , or ov ≥ const,
ov = const or ov ≤ const (or equivalent), where const is an
integer constant. Left-openness is defined analogously.

Proposition

Let v be right- or left-open in a strongly connected component
Comp. If an entry diverges in Comp−v then it diverges in Comp.

Fausto SPOTO, Lunjin LU, and Fred MESNARD CLP Simplifications for Java Bytecode Termination Analysis



PS4: Removing open variables

Example

L1 is isolated and right-open in the component:

entry3880(IL0,IL1) :-
{IL1 = OL1, OL0 >= 0, IL0 >= 2, IL0 - OL0 >= 1},
entry3880(OL0,OL1).

Hence L1 can be removed:

entry3880(IL0) :-
{OL0 >= 0, IL0 >= 2, IL0 - OL0 >= 1},
entry3880(OL0).

Fausto SPOTO, Lunjin LU, and Fred MESNARD CLP Simplifications for Java Bytecode Termination Analysis



PS5: Removing uniform variables

An isolated variable v is uniform in a strongly connected
component Comp if there is x ∈ Z such that, for every
p(~i) :- c , q(~o) ∈ Comp, the valuation {iv 7→ x , ov 7→ x} is a
solution of cv .

Property

Let a variable v be uniform in a strongly connected component
Comp. If an entry diverges in Comp−v then it diverges Comp.

Fausto SPOTO, Lunjin LU, and Fred MESNARD CLP Simplifications for Java Bytecode Termination Analysis



PS5: Removing uniform variables

Example

block3853(IL0,IL1,IL2) :-
{IL2 - OL2 = -1, IL1 = OL1, IL0 = OL0, IL1 - IL2 >= 1},
block3853(OL0,OL1,OL2).

block3853(IL0,IL1,IL2) :-
{IL2 - OL2 = -1, IL1 = OL1, OL0 = 1, IL1 - IL2 >= 2},
entry3849(OL0,OL1,OL2).

entry3849(IL0,IL1,IL2) :-
{IL2 = OL2, IL1 = OL1, IL0 = OL0, IL0 >= 1},
block3853(OL0,OL1,OL2).

L0 is isolated. Taking x = 1 shows that L0 is uniform. Hence L0 can be
removed.

Fausto SPOTO, Lunjin LU, and Fred MESNARD CLP Simplifications for Java Bytecode Termination Analysis



Experiments

program meth. orig loops fold subsum open unif

Ack 5 7.11 0.21 0.21 0.21 0.21 0.21
precision 5 5 5 5 5 5

BubbleS 5 19.07 1.55 0.71 0.71 0.49 0.49
precision 3 4 5 5 5 5

NQueens 222 - 210.31 156.32 92.29 47.77 34.34
precision - 171 171 171 171 171

JLex 137 - 228.51 335.85 374.82 121.95 81.21
precision - 84 87 102 102 102

Kitten 947 - 200.39 226.79 152.47 93.70 79.35
precision - 811 827 827 827 827

Fausto SPOTO, Lunjin LU, and Fred MESNARD CLP Simplifications for Java Bytecode Termination Analysis



Conclusion

We have presented:

some termination-equivalent simplifications of the CLP
programs that are automatically generated during termination
analysis of Java bytecode programs;

some real case of analysis showing that these simplifications
decrease the time for building a proof by some order of
magnitude.

Fausto SPOTO, Lunjin LU, and Fred MESNARD CLP Simplifications for Java Bytecode Termination Analysis


