Using CLP Simplifications to Improve Java Bytecode Termination Analysis

Fausto SPOTO, Lunjin LU, and Fred MESNARD

Dipartimento di Informatica, Università di Verona, Italy Oakland University, U.S.A. IREMIA, université de la Réunion, France

March 2009

伺 ト イ ヨ ト イ ヨ ト

JuliaWeb is a termination analyzer for Java Bytecode: http://julia.scienze.univr.it/termination

In this paper:

- we propose a set of simplifications of the *CLP* programs generated by the termination analysis in JuliaWeb;
- we prove those transformations correct w.r.t. termination;
- we experiment with those transformations.

From Java Bytecode to CLP

Fausto SPOTO, Lunjin LU, and Fred MESNARD

CLP Simplifications for Java Bytecode Termination Analysis

э

From Java Bytecode to CLP

Example

```
block6391(IL0,IL1,IS0) :-
    {IS0=0S1, IL1=0S4, IS0=0S0, IL1=0L1, IL0=0L0,
        0S3 >= 0, 0S2 >= 0, IL0-0S3 >= 1, IL0-0S2 >= 1},
        block6392(0L0,0L1,0S0,0S1,0S2,0S3,0S4).
block6391(IL0,IL1,IS0) :-
        {IS0=0S1, IL1=0S4, IS0=0S0, IL1=0L1, IL0=0L0,
        0S3 >= 0, 0S2 >= 0, IL0-0S3 >= 1, IL0-0S2 >= 1},
        block6560(0L0,0L1,0S0,0S1,0S2,0S3,0S4).
```

- predicates are named blocki or entryj;
- two arrows connect block 6391 with blocks 6392 and 6560;
- two local variables L0 and L1 are in scope: L0 implements this and L1 other;
- at the beginning of block 6391, there is only one stack element S0, while there are 5 at its end.

Let $\vec{m}, \vec{n} \in \mathbb{Z}^*$ and C be the clause

$$p(\vec{i}) := c, q(\vec{o})$$

where c is a linear constraint over the variables $\vec{i} \cup \vec{o}$.

- $q(\vec{n})$ is derived from $p(\vec{m})$ using C, written $p(\vec{m}) \rightarrow^{C} q(\vec{n})$, if there is a solution θ of $c[\vec{i} \mapsto \vec{m}]$ such that $q(\vec{n}) = q(\vec{o})\theta$.
- A derivation of $p_0(\vec{n}_0)$ is $p_0(\vec{n}_0) \rightarrow p_1(\vec{n}_1) \rightarrow \cdots \rightarrow p_k(\vec{n}_k)$ such that $p_{i+1}(\vec{n}_{i+1})$ is derived from $p_i(\vec{n}_i)$ for all $0 \le i < k$.
- A resolution is a maximal derivation.

NB: our semantics is ground CLP.

- An entry p terminates in a program P if, for every n ∈ Z*, all resolutions of p(n) by using the clauses of P, with predicates in the strongly connected component of p, are finite. Otherwise, p diverges.
- Let P₁ and P₂ be programs. P₁ terminates more than P₂, written P₁ ⊒ P₂, if whenever an entry of P₁ terminates in P₁, it also terminates in P₂.
- P_1 and P_2 are *termination-equivalent*, written $P_1 \equiv P_2$, if P_1 terminates more than P_2 and vice versa.
- NB: our definition formalizes a *loop-local* notion of termination.

伺い イラト イラト

A clause $p(\vec{i}) := c, q(\vec{o})$ occurs in a loop if p and q belong to the same strongly connected component of predicates.

Proposition

Let P be a program and P_s be the same program deprived of those clauses that do not occur in a loop. Then $P \equiv P_s$.

If a program contains clauses $p(\vec{m}) := c_1, q(\vec{n})$ and $q(\vec{v}) := c_2, r(\vec{w})$, we can *unfold* them into the clause $p(\vec{m}) := c_1 \land c_2 \land \vec{n} = \vec{v}, r(\vec{w})$.

Done systematically for all occurrences of q on the right of the clauses of P, and followed by the removal of the clauses defining q, we say that we *unfold* q *away from* P.

Proposition

Let P be a program and q a non-entry predicate in P with no clause of the form $q(\vec{n}) := c, q(\vec{m})$. Let P_s be P where q has been unfolded away. Then $P \equiv P_s$.

伺 ト イ ヨ ト イ ヨ ト

 $p(\vec{i}) := c, q(\vec{o})$ is unsupported if q is undefined.

 $p(\vec{i}) := c_1, q(\vec{o})$ subsumes $p(\vec{i}) := c_2, q(\vec{o})$ if c_1 entails c_2 .

Proposition

Let P be a program and P_s be P deprived from unsupported or subsumed clauses. Then $P \equiv P_s$.

Removing variables?

Let c be a constraint:

•
$$c^v$$
 = the *v*-dedicated part of c = $\exists_{-\{iv,ov\}}.c$

•
$$c^{-v} =$$
 the *v*-independent part of $c = \exists_{\{iv, ov\}}.c$

An operation that removes a variable from a predicate:

$$p(iv_1,\ldots,iv_n) \ominus v = \begin{cases} p(iv_1,\ldots,iv_{i-1},iv_{i+1},\ldots,iv_n) & \text{if } v \equiv v_i \\ p(iv_1,\ldots,iv_n) & \text{otherwise.} \end{cases}$$

The transformation:

$$Comp^{-v} = \{p(\vec{i}) \ominus v := c^{-v}, q(\vec{o}) \ominus v \mid p(\vec{i}) := c, q(\vec{o}) \in Comp\}$$

removes v from a strongly connected component *Comp*.

Proposition

Let p_0 be an entry diverging in *Comp*. Then p_0 also diverges in $Comp^{-\nu}$.

In general, *Comp* is *not* termination-equivalent to $Comp^{-\nu}$, as shown by the counter-example 4.8 of the paper.

In what follows, we identify two cases where removal of a variable *maintains* termination equivalence. Common condition:

 a variable v is *isolated* in a strongly connected component Comp if, for every p(i) :- c, q(o) ∈ Comp, c = c^v ∧ c^{-v}. An isolated variable v in a strongly connected component Comp is right-open if, for every p(i) :- c, q(o) ∈ Comp, we have that c^v is either true or iv = ov, or ov ≥ const, ov = const or ov ≤ const (or equivalent), where const is an integer constant. Left-openness is defined analogously.

Proposition

Let v be right- or left-open in a strongly connected component *Comp*. If an entry diverges in $Comp^{-v}$ then it diverges in *Comp*.

Example

```
L1 is isolated and right-open in the component:
entry3880(IL0,IL1) :-
{IL1 = 0L1, 0L0 >= 0, IL0 >= 2, IL0 - 0L0 >= 1},
entry3880(0L0,0L1).
Hence L1 can be removed:
```

```
entry3880(IL0) :-
   {OL0 >= 0, IL0 >= 2, IL0 - OL0 >= 1},
   entry3880(OL0).
```

An isolated variable v is uniform in a strongly connected component Comp if there is x ∈ Z such that, for every p(i) :- c, q(o) ∈ Comp, the valuation {iv ↦ x, ov ↦ x} is a solution of c^v.

Property

Let a variable v be uniform in a strongly connected component *Comp*. If an entry diverges in *Comp*^{-v} then it diverges *Comp*.

Example

```
block3853(IL0,IL1,IL2) :-
    {IL2 - 0L2 = -1, IL1 = 0L1, IL0 = 0L0, IL1 - IL2 >= 1},
    block3853(0L0,0L1,0L2).
block3853(IL0,IL1,IL2) :-
    {IL2 - 0L2 = -1, IL1 = 0L1, 0L0 = 1, IL1 - IL2 >= 2},
    entry3849(0L0,0L1,0L2).
entry3849(IL0,IL1,IL2) :-
    {IL2 = 0L2, IL1 = 0L1, IL0 = 0L0, IL0 >= 1},
    block3853(0L0,0L1,0L2).
```

L0 is isolated. Taking x = 1 shows that L0 is uniform. Hence L0 can be removed.

program	meth.	orig	loops	fold	subsum	open	unif
Ack	5	7.11	0.21	0.21	0.21	0.21	0.21
precision		5	5	5	5	5	5
BubbleS	5	19.07	1.55	0.71	0.71	0.49	0.49
precision		3	4	5	5	5	5
NQueens	222	-	210.31	156.32	92.29	47.77	34.34
precision		-	171	171	171	171	171
JLex	137	-	228.51	335.85	374.82	121.95	81.21
precision		-	84	87	102	102	102
Kitten	947	-	200.39	226.79	152.47	93.70	79.35
precision		-	811	827	827	827	827

< 注 > < 注 >

We have presented:

- some termination-equivalent simplifications of the CLP programs that are automatically generated during termination analysis of Java bytecode programs;
- some real case of analysis showing that these simplifications decrease the time for building a proof by some order of magnitude.