
Typing Linear Constraints
for Moding CLP(R) Programs

Salvatore Ruggieri1 and Fred Mesnard2

1 Dipartimento di Informatica, Università di Pisa, Italy
ruggieri@di.unipi.it

2 Iremia, Université de la Réunion, France
frederic.mesnard@univ-reunion.fr

Abstract. We present a type system for linear constraints over reals and
its use in mode analysis of CLP programs. The type system is designed
to reason about the properties of definiteness, lower and upper bounds
of variables of a linear constraint. Two proof procedures are presented
for checking validity of type assertions. The first one considers lower and
upper bound types, and it relies on solving homogeneous linear program-
ming problems. The second procedure, which deals with definiteness as
well, relies on computing the Minkowski’s form of a parameterized poly-
hedron. The two procedures are sound and complete. We extend the
approach to deal with strict inequalities and disequalities. Type asser-
tions are at the basis of moding constraint logic programs. We extend
the notion of well-moding from pure logic programming to CLP(R).

Keywords: linear constraints, polyhedra, constraint logic programming,
well-moding, definiteness.

1 Introduction

Modes in logic programming allow the user to specify the input-output be-
haviour of predicate arguments [1]. Modern constraint logic programming lan-
guages adopt moding both as program annotation and as a tool for compiler
optimizations, program transformations and termination analysis. As an exam-
ple, consider the MORTGAGE program over CLP(R).

(m1) mortgage(P,T,R,B) ←
T = 0,
B = P.

(m2) mortgage(P,T,R,B) ←
T >= 1,
NP = P + P * 0.05 - R,
NT = T - 1,
mortgage(NP,NT,R,B).

The query ← mortgage(100, 5, 20, B) is intended to calculate the balance
of a mortgage of 100 units after giving back 20 units per year for a period
of 5 years. The answer provides an exact value (i.e., a real number) for the
required balance, namely B = 17.12. Using the moding terminology, we say
that given definite values for principal, time and repayment, in every answer we

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 128–143, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Typing Linear Constraints for Moding CLP(R) Programs 129

obtain a definite value for the balance. However, this is only one mode we can
query the program above. The query ← 3 <= T, T <= 5, mortgage(100, T,
20, B) is intended to calculate the balance at the end of the third, fourth and
fifth year. Principal and repayment are now definite, whilst time is (upper and
lower) bounded. Again, for every answer we will get a definite value for balance.
Intuitively, this mode is more general than the previous one, since definiteness
of time has been replaced by boundedness. Finally, consider the query ← 0 <=
B, B <= 10, 15 <= R, R <= 20, mortgage(P, 5, R, B), which is intended
to calculate the principal one could be granted such that by repaying from 15 to
20 units per year, after 5 years the balance yield is up to 10 units. The answer
is now P=0.78*B+4.33*R, which is not definite, but, since B and R are bounded,
it is (upper and lower) bounded. This mode is not comparable to the previous
ones, since we now provide a definite value for time and a range for balance and
repayment, and we wish to compute a range for the principal of the answer.
These examples give only a few hints about the flexibility of the constraint
logic programming scheme, even if compared to pure logic programming, where
definiteness of variables corresponds to groundness, but upper and lower bounds
have no direct equivalent.

In this paper, we concentrate on constraint languages with linear constraints
over reals and rationals, as in CLP(R) [11], ECLiPSe, Sictus Prolog, SWI Pro-
log, and many others. We present a type system for linear constraints, where
types model definiteness, upper and lower bounds of variables. Type assertions
are introduced in order to derive types implied by a constraint and a set of typed
variables. Validity of type assertions is thoroughly investigated by devising two
proof procedures. The first one considers lower and upper bound types, and it
relies on solving homogeneous linear programming problems. The second proce-
dure, which deals with definiteness as well, relies on computing the Minkowski’s
form of a parameterized polyhedron. The two procedures are sound and com-
plete. Moreover, the approach is extended to deal with constraints containing
strict inequalities and disequalities. Type assertions are at the basis of moding
CLP(R) programs. We extend the notion of well-moding from pure logic pro-
gramming to CLP(R), showing useful properties in support of static analysis.

Preliminaries. We adhere to standard notation for linear algebra [16], linear
programming [15] and (constraint) logic programming [1,10].

Linear Algebra. Small capital letters (a, b, . . .) denote column vectors, while
capital letters (A, B, . . .) denote matrices. 0 and 1 are column vectors with
all elements equal to 0 and 1 respectively. ai denotes the ith element in a, and
row(A, i) the row vector consisting of the ith row of A. aT denotes the transposed
vector of a. cT x denotes the inner product of the transposed vector cT and x.
Σv is the sum of all the elements in v. Ax ≤ b denotes a system of linear
inequalities (or, a linear system) over the variables in x. We assume that the
dimensions of vectors and matrices in inner products and linear systems are
of the appropriate size. The solution set of points that satisfy a formula/linear

130 S. Ruggieri and F. Mesnard

system ψ over Rn is defined as Sol(ψ) = {x ∈ Rn | ψ(x)}. A polyhedron is the
solution set of a linear system, namely Sol(Ax ≤ b).

Linear Programming. A linear programming problem consists of determining
max{cT x | Ax ≤ b}, if it exists. The problem is infeasible when {x | Ax ≤
b} = ∅. If feasible, but {cT x | Ax ≤ b} has no upper bound, the problem is
unbounded, and we write max{cT x | Ax ≤ b} = ∞. Otherwise, it is bounded.
We write max{cT x | Ax ≤ b} ∈R when the problem is feasible and bounded.
We extend the notation to a closed set of points S by writing max{cT x | x ∈ S}.

Constraint Logic Programming. The CLP Scheme defines a family of lan-
guages, CLP(C), that are parametric in the constraint domain C. We are in-
terested here in constraint domains over reals, such as CLP(R) [11]. All re-
sults apply to rationals as well. A primitive linear constraint is an expression
a1 · x1 + . . . an · xn & a0, where & is in {≤, =,≥}, a1, . . . , an are constants in
R and x1, . . . , xn are variables. We will use the inner product form by rewrit-
ing it as cT x & α. A linear constraint c is a sequence of primitive constraints,
whose interpretation is their conjunction. A constraint logic program is a finite
set of clauses of the form A← c, B1 , . . . , Bn , where A is an atom, c a linear
constraint, and B1 , . . . , Bn (n ≥ 0) a sequence of atoms. We assume that atoms
are in flat form, namely an atom is p(x1, . . . , xn) where p is a predicate of arity n
and x1, . . . , xn are (not necessarily distinct) variables. A query ← c, B1 , . . . , Bn

consists of a linear constraint and a sequence of atoms.

2 Bound Types for Linear Constraints

2.1 Syntax and Semantics

We introduce a static typing for variables in linear constraints. The set of types
BT is defined first.

Definition 1 (types). A type is an element of BT = {$,(,), !, !}.

The intuitive meaning of a type is to label variables occurring in a constraint
on the basis of the values that they can assume in the set of solutions of the
constraint. ! is intended to type variables that show at most one single value in
every solution, a property known as definiteness; ! is intended to type variables
that assume a range of values (hence, lower and upper bounds exist); ((resp.,
)) is intended for variables that have a lower bound (resp., an upper bound);
and finally, $ is to be used when no upper or lower bound can be stated.

Let us introduce syntactic means to assert the type of variables.

Definition 2 (types assertions). An atomic type declaration (atd, for short)
is an expression x : τ , where x is a variable and τ ∈ BT . We define vars(x :
τ) = {x}, and say that x is typed as τ . A type declaration is a sequence of atd’s
d1, . . . , dn, with n ≥ 0. We define vars(d1, . . . , dn) = ∪ i=1..nvars(di).

A type assertion is an expression d1 + c→ d2, where d1,d2 are type declara-
tions and c is a linear constraint.

Typing Linear Constraints for Moding CLP(R) Programs 131

Type declarations type variables. Such a typing is used in type assertions as an
hypothesis (at the left of +) or as a conclusion (at the right of →). Intuitively,
the type assertion d1 + c→ d2 states that given the type declaration d1, the
type declaration d2 holds under the linear constraint c.

Example 1. The type assertion z :! + y− x ≤ z, y + x ≤ z,−y− 2x ≤ 5− z→ y :
), x : (intuitively states that if z has a fixed value then the set of solutions of
the involved constraint is such that y has an upper bound and x has a lower
bound. The figure below (left) shows graphically the set of solutions for z = 1.

-3

-2

-1

 0

 1

 2

-3 -2 -1 0 1 2 3

y

x

z = 1

y - x ≤ z
y + x ≤ z

-y - 2x ≤ 5 - z

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

y

x

z = 1

y - x ≤ z
y + x ≤ z

z ≤ y

The type assertion z :! + y − x ≤ z, y + x ≤ z, z ≤ y→ y :!, x :! states that
if z has a fixed value then either the set of solutions of the involved constraint
is empty or both x and y assume a unique value in it. The figure above (right)
shows graphically the set of solutions for z = 1.

For a type declaration d, we write d|x (resp., d|τ) to denote the subsequence of
d consisting only of atd’s typing variables in x (resp., as τ). The intuition on
the meaning of type assertions is formalized by the next definition.

Definition 3 (semantics). We associate to an atd d = x : τ a formula φ(d)
over fresh variables υ(d), called parameters, as follows:

φ(x :!) = x = a υ(x :!) = {a}
φ(x : !) = a ≤ x ∧ x ≤ b υ(x : !) = {a, b}

φ(x : () = a ≤ x υ(x : () = {a}
φ(x :)) = x ≤ b υ(x :)) = {b}
φ(x : $) = true υ(x : $) = ∅.

φ and υ extend to type declarations as follows:

φ(d1, . . . , dn) = ∧ i=1..nφ(di) υ(d1, . . . , dn) = ∪ i=1..nυ(di).

A type assertion d1 + c→ d2 is valid if for v = vars(c) ∪ vars(d1) ∪ vars(d2),
the following formula is true in the domain of reals:

∀υ(d1)∃υ(d2)∀v.(φ(d1) ∧ c)→ φ(d2). (1)

132 S. Ruggieri and F. Mesnard

Example 2. For the type assertion z :! + y − x ≤ z, y + x ≤ z, z ≤ y→ y :!, x :!,
the formula to be shown is:

∀a ∃b, c ∀x, y, z. (z = a ∧ y − x ≤ z ∧ y + x ≤ z ∧ z ≤ y)→ (y = b ∧ x = c).

The set of variables is fixed to v = vars(c) ∪ vars(d1) ∪ vars(d2) in order to
take into account variables that appear in d1 or d2 but not in c, e.g. in the
(valid) type assertion x :) + true→ x :).

A natural ordering over types is induced by the semantics above. For instance,
it is readily checked that d + c→ x :! implies d + c→ x : ! for any d, c and x.
Similar implications lead to define an order ≥t over types.

Definition 4. The ≥t partial order over BT is defined as the reflexive and
transitive closure of the following relation → :

)
↗ ↘

!→ ! $
↘ ↗
(

We write τ >t µ when τ ≥t µ and τ 3= µ. We define lub(∅) = $ and for n > 0:

lub({τ1, . . . , τn}) = min{τ | τ ≥t τi, i = 1..n}.

Next, the ≥t relation is extended to type declarations.

Definition 5. We write d1 ≥t d2 if for every x : τ in d2 there exists x : µ in
d1 such that µ ≥t τ .

Using the notation ≥t, the intuition behind the ordering can be formalized by a
monotonicity lemma. Also, transitivity is readily checked.

Lemma 1 (monotonicity). Assume that d1 + c→ d2 is valid. If d′
1 ≥t d1,

d2 ≥t d′
2 and R |= c′→ c for a linear constraint c′, then d′

1 + c′→ d′
2 is valid.

Normal forms for type declarations are introduced by assigning to each variable
the least upper bound of its types. When the least upper bound is $, the type
assignment provides no actual information and then it can be discarded. Normal
forms are unique modulo reordering of atd’s.

Definition 6. We define nf (d) as any type declaration d′ such that x : τ is in
d′ iff τ = lub({µ | x : µ is in d }) and τ 3= $.

Example 3. Notice that x : ! ≥t x :), x : (holds, while x :), x : (≥t x : !
does not hold. Actually, ≥t does not capture semantic implication. We have to
move to normal forms to conclude that nf (x :), x : () = x : ! ≥t x : !.

Normal forms precisely characterize validity when it only depends on type dec-
larations, i.e. for the constraint true.

Typing Linear Constraints for Moding CLP(R) Programs 133

Lemma 2. d1 + true→ d2 is valid iff nf (d1) ≥t nf (d2).

2.2 Checking Type Assertions: First Intuitions

In principle, formulas as in (1) can be checked by real quantifier elimination
methods [6], which trace back to Tarski’s decision procedure for first order for-
mula over real polynomials. However, while quantifier elimination represents a
direct solution to the checking problem and it allows for generalizing to the
non-linear case, we observe that formulas in (1) represent a quite restricted
class. We will be looking for a specialized and efficient approach to check them.
In addition, we are interested in the problem of inferring the largest (w.r.t.
the ≥t order) d′ such that d + c→ d′ is valid, given d and c. Our approach
switches from the logical view of constraints-as-formulas to a geometric view of
constraints-as-polyhedra. Consider a linear constraint c and a type declaration d.
We observe that c can be equivalently represented as a linear system of inequal-
ities Acv ≤ bc where v = vars(c) ∪ vars(d). The set of solutions of c coincides
then with the polyhedron represented by Acv ≤ bc, which we call the geometric
representation of c. Analogously, the linear constraint φ(d) can be represented
as Adv ≤ Bdad, where ad is the symbolic vector of parameters in υ(d). The
resulting system φ(d) ∧ c is a parameterized system of linear inequalities P ,
where variables in υ(d) play the role of parameters:

(
Ac

Ad

)
v ≤

(
bc

0

)
+

(
0

Bd

)
ad (2)

The notion of parameterized polyhedra models the solutions of parameterized
linear systems.

Definition 7 (Parameterized polyhedron). A parameterized polyhedron is
a collection of polyhedra defined by fixing the value for parameters in a parame-
terized system of linear inequalities: Sol(Ax ≤ b+Ba,u) = {x | Ax ≤ b+Bu}.

Sol() is now a binary function. In addition to a system of parameterized linear
inequalities, an assignment to parameters is required.

Example 4. Let d be z :! and c be y − x ≤ z, y + x ≤ z,−y − 2x ≤ 5 − z. We
have that φ(d) is z = a, and then the parameterized system for φ(d) ∧ c is:

-1 1 -1
1 1 -1
-2 -1 1
0 0 1
0 0 -1

x
y
z

 ≤

0
0
5
0
0

+

0
0
0
1
-1

a

Under this interpretation, validity of d + c→ x : τ has an intuitive geometric
interpretation. Assume that x = vi. d + c→ x : τ is valid iff for every u ∈
R|υ(d)|, the set of solution points Su = Sol(P ,u) either is empty or:

134 S. Ruggieri and F. Mesnard

– if τ = ! then max{vi | v ∈ Su} = min{vi | v ∈ Su} ∈ R, namely x assumes
a single value;

– if τ = ! then max{vi | v ∈ Su} ∈ R and min{vi | v ∈ Su} ∈ R namely
both an upper and a lower bound exist for x;

– if τ = (then min{vi | v ∈ Su} ∈ R, namely a lower bound exists for x;
– if τ =) then max{vi | v ∈ Su} ∈ R, namely an upper bound exists for x;
– if τ = $ then we have nothing to show.

Unfortunately, this procedure is not effective, since there are infinitely many
Su to be checked. In the next two subsections, we will develop approaches for
turning the intuitions above into effective and efficient procedures.

2.3 Checking Type Assertions: An LP Aproach

In this section we develop an inference algorithm which does not explicitly take
into account parameters. We will be able to reason on type assertions over BT \
{!}. First of all, let us consider the case of unsatisfiable constraints.

Lemma 3. Consider the parameterized polyhedron P in (2). There exists a pa-
rameter instance u such that Sol(P ,u) 3= ∅ iff Sol(Acv ≤ bc) 3= ∅.

As a consequence, if Sol(Acv ≤ bc) = ∅ (i.e., c is an unsatisfiable constraint)
then there is no chance to obtain a non-empty polyhedron by some instantiation
of the parameters in φ(d). In this case, we can infer assertions of the form
d + c→ x :!, for every variable x. From now on, we will concentrate then on
satisfiable constraints. As it will be recalled later on, a non-empty polyhedron
Sol(Ax ≤ b) can be decomposed into the vectorial sum of its characteristic
cone Sol(Ax ≤ 0) with a polytope, a polyhedra bounded along every dimension.
Therefore, the existence of an upper/lower bound for a linear function over a
polyhedron depends only on its characteristic cone. It is immediate to observe
that for every parameter instance u, the polyhedra Sol(P ,u) share the same
characteristic cone. As a consequence, proving the existence of an upper bound is
independent from the parameter instance, and it relies only on the homogeneous
version of P , which is not anymore parameterized.

Lemma 4. Consider the parameterized polyhedron P in (2). Let H be its ho-
mogeneous version: Acv ≤ 0, Adv ≤ 0, and assume that Sol(Acv ≤ bc) 3= ∅.

We have that max{cT v | v ∈ Sol(H)} = 0 iff for every parameter instance
u, Sol(P ,u) = ∅ or max{cT v | v ∈ Sol(P ,u)} ∈R .

When c is always 0 except for the ith position where it is 1, we have cT v = vi.
Lemma 4 solves then the problem of deciding whether d + c→ vi :), without
having to take into account parameters. By reasoning similarly for types (and
!, we can state an effective procedure, called LPCheck and summarized in
Fig. 1, which outputs type declarations in normal form without any trivial atd.

Example 5. The homogeneous version of the parameterized linear system in Ex-
ample 4 and its graphical representation are the following:

Typing Linear Constraints for Moding CLP(R) Programs 135

Input: a type assertion d1, a linear constraint c and a sequence of variables x.

Step 0 Define v = vars(c), n = nf (d1), d = n|v.
Step 1 Let Acv ≤ bc be the geometric representation of c, and Adv ≤ Bdad the

geometric representation of φ(d).
Step 2 If Sol(Acv ≤ bc) = ∅ Then for every x in x, output “x :!”

Else
Step 3 for every x in x \ v and x : τ in n, output “x : τ”;
Step 4 for every x in x ∩ v:

(a) Let M = max{x | Acv ≤ 0,Adv ≤ 0} and m = max{−x | Acv ≤ 0, Adv ≤
0}.

(b) Output “x : !” if M = 0 and m = 0;
(c) Output “x : &” if M = ∞ and m = 0;
(d) Output “x : (” if M = 0 and m = ∞.

Fig. 1. LPCheck procedure

-1 1 -1
1 1 -1
-2 -1 1
0 0 1
0 0 -1

x
y
z

 ≤

0
0
0
0
0

-3

-2

-1

 0

 1

 2

-3 -2 -1 0 1 2 3

y

x

z = 0

y - x ≤ 0
y + x ≤ 0

-y - 2x ≤ 0

It is readily checked that x has a lower bound and y has an upper bound.

Soundness and a relative form of completeness of procedure LPCheck follow.

Theorem 1 (LPCheck - soundness and completeness). Let d1 be a type
declaration and c a linear constraint. If the sequence d2 is provided as output
by LPCheck, the type assertion d1 + c→ d2 is valid. Conversely, assume that
d1 + c→ d2 is valid, and that c is unsatisfiable or no variable in vars(c) is typed
as ! in d2. Then there exists a sequence d provided as output by LPCheck such
that d ≥t nf (d2).

The LPCheck procedure is not tied to any underlying linear programming
solver. By adopting a polynomial time algorithm [15,16], we can conclude that
LPCheck has a polynomial time complexity. Due to the approach that we will
follow later on for dealing with parameters, we present here an instantiation of
LPCheck which consists of directly computing the generating matrix and the
vertex matrix of polyhedra. This is an alternative representation of polyhedra,
known as the explicit representation or the Minkowski’s form [16, Section 8.9].

Theorem 2 (Minkowski’s decomposition theorem for polyhedra). There
exists an effective procedure that given Ax ≤ b decides whether or not the

136 S. Ruggieri and F. Mesnard

polyhedron Sol(Ax ≤ b) is empty and, if not, it yields a generating matrix
R and a vertex matrix V such that:

Sol(Ax ≤ b) = {x | x = Rλ, λ ≥ 0 } + {x | x = Vγ, γ ≥ 0,Σγ = 1 },

and Sol(Ax ≤ 0) = {x | x = Rλ, λ ≥ 0 }.

A column of R is called a ray: for any x0 ∈ Sol(Ax ≤ b) and ray r, it turns
out that rλ + x0 ∈ Sol(Ax ≤ b) for every λ ≥ 0. A column of V is called a
vertex. The set ConvexHull(V) = {x | x = Vγ, γ ≥ 0,Σγ = 1 }, where V is
a matrix or a finite set of vectors, is the convex hull of the vertices, namely the
smallest convex set which contains all vertices. An efficient procedure to extract
minimal R and V is the double description method, also known as the Motzkin-
Chernikova-Le Verge algorithm [3,17]. Turning on the LPCheck procedure, the
satisfiability test at Step 2 is performed as part of the construction of the
explicit representation of the polyhedron. The maximization problems at Step
4 (a) can easily be solved directly on the explicit representation.

Lemma 5. Consider a characteristic cone Sol(Ax ≤ 0), and let R be its gen-
erating matrix. We have that max{cT x | Ax ≤ 0} = 0 iff cT R ≤ 0.

Since in our context c is always zero except for the ith element, which is 1 or −1,
we can conclude that a variable vi (the ith variable in v) is bounded from above
by 0 (resp., bounded from below by 0) iff all values in row(R, i) are non-positive
(resp., non-negative).

Example 6. The Minkowski’s form of the homogeneous system in Example 5 is:

1 1
-2 -1
0 0

(
λ1
λ2

)
,λ1 ≥ 0,λ2 ≥ 0

Intuitively, the two columns in the generating matrix R correspond to vectors
lying on the two borders of the cone in the graph of Example 5. Using Lemma 5,
it is readily checked that when c is one of (−1, 0, 0), (0, 1, 0), (0, 0, 1) or (0, 0,−1)
then cT R ≤ 0, i.e. x is bounded from below, y from above, and z from both.

2.4 Checking Type Assertions: A Parameterized Approach

In this section, we reason on the parameterized system in (2) by adopting an
approach that explicitly considers parameters [14], and which is an extension
of the Minkowski’s decomposition theorem. However, the complexity of the ap-
proach in presence of k parameters is polynomially proportional (by a k3 factor)
to its complexity in absence of parameters. For this reason, we first ask our-
selves whether we can build on the results of the last subsection. The LPCheck
procedure is sound, and it is also complete except for the ! type. Thus, we are
restricted with checking assertions of the form d + c→ x :!. Under this context,
are all typings in d necessary?

Typing Linear Constraints for Moding CLP(R) Programs 137

Example 7. Consider x : ! + z = x, z− y = 2, z + y = 0→ x :!, y :!, z :!. Starting
from the involved constraint, by Gaussian elimination, we derive: x = z, y = z−2,
2z = 2 and then z = 1, y = −1, x = 1. Hence the type assertion is valid.

Notice that we made no use of x : ! in proving validity of the type assertion.
This fact can be generalized, in order to get rid of unnecessary parameters.

Theorem 3 (Definiteness). d + c→ x :! is valid iff d|! + c→ x :! is valid.

Let us consider now an example which illustrates the Fourier-Motzkin elimina-
tion method for linear inequalities applied in presence of parameters.

Example 8. Consider the constraint c defined as y + x ≤ z, y − x ≤ z, z ≤
y, 0 ≤ z, w ≤ z, and the type declaration z :!. We start by isolating variable y in
φ(z :!) ∧ c, as shown at (a) in the figure below.

y ≤ z − x

y ≤ z + x

z ≤ y

0 ≤ z

w ≤ z

z = a

(a)

z ≤ y ≤ min{z − x, z + x}
x = 0

0 ≤ z

w ≤ z

z = a

(b)

y = a

x = 0
w ≤ a

z = a

0 ≤ a

(c)

Bounds for variable y can then be summarized as: (∗) z ≤ y ≤ min{z−x, z+x}.
Moreover, the bounds e1 ≤ e2 are implied for e1 expression bounding y from
below in (∗), and e2 bounding y from above in (∗). Actually, the original set
of linear inequalities over y is equivalent to z ≤ y ≤ min{z − x, z + x} plus
such bounds. The new inequality set is reported at (b) in the figure above. By
replacing backward x = 0 and z = a, we end up with the final system at (c) in the
figure above, where no further elimination is possible. The final system is feasible
when the condition 0 ≤ a holds. In this system, we have x = 0, y = a, z = a.
Moreover, w ≤ a can be rewritten as: w = −λ1 + a for some λ1 ≥ 0. Put in a
geometrical form, the solution set of φ(z :!) ∧ c is:

(x, y, z, w) |

x
y
z
w

 =

0
0
0
−1

(
λ1

)
+

0
a
a
a

for every λ1 ≥ 0, when a ≥ 0

Summarizing, the values of x, y and z are univocally determined once the pa-
rameter a has been fixed and the system is feasible. Under the same hypotheses,
the value of w is bounded from above (by a), but it is not definite. With our
notation, z :! + c→ x :!, y :!, z :!, w :) is valid.

The final form reached at the end of the example resembles the Minkowski’s form
for polyhedra, but with a parameterized vector appearing in the vertex matrix.

138 S. Ruggieri and F. Mesnard

Input: a type assertion d1, a linear constraint c and a sequence of variables x.

Step 0 Define v = vars(c), n = nf (d1), d = n|!.
Step 1 Let Acv ≤ b be the geometric representation of c, and Adv ≤ Bdad the

geometric representation of φ(d).

Step 1 For the parametric polyhedron
(

Ac

Ad

)
v ≤

(
bc

0

)
+

(
0

Bd

)
a, build the gen-

erating matrix R and the sequence (va(1),C1a ≤ c1), . . . , (va(k),Cka ≤ ck)
Step 2 For every x : τ as output from LPCheck
Step 3 If τ)= ! or x)∈ v Then output “x : τ”;
Step 4 Else let i such that x = vi:

(a) Output “x :!” if row(R, i) = 0 and for 1 ≤ m < n ≤ k, va(m)i = va(n)i

over Cma ≤ cm, Cna ≤ cn;
(b) Output “x : !” otherwise.

Fig. 2. POLYCheck procedure

The generalization of the Minkowski’s theorem to parameterized polyhedra is
provided in [14] and implemented in the polylib library [13].

Theorem 4 (Minkowski’s theorem for parameterized polyhedra). Ev-
ery parameterized polyhedron can be expressed by a generating matrix R and
finitely many pairs (va(1),C1a ≤ c1), . . . , (va(k),Cka ≤ ck) where, for i = 1..k,
va(i) is a vector parametric in a and Sol(Cia ≤ ci) 3= ∅, as follows:

Sol(Ax ≤ b + Ba,u) = {x |x = Rλ, λ ≥ 0 } +
ConvexHull({vu(i) | i = 1..k,Ciu ≤ ci }),

and Sol(Ax ≤ 0) = {x | x = Rλ, λ ≥ 0 }.

The vertex matrix is now replaced by a set of pairs where the first element is a
parameterized vertex and the second one is its validity domain. For a parameter
instance u, the vertex matrix is built from the (instantiated) vertices whose
validity domain includes u. The special case k = 0 models empty parameterized
polyhedra, which are empty for any instance of the parameters. Now that we
have an explicit form for parameterized polyhedra, we need a procedure to test
whether a variable is definite for every parameter instance. First, we introduce
a notion to test whether two expressions are equal over a polyhedron.

Definition 8. We say that cT
1 x + α1 = cT

2 x + α2 over Ax ≤ b if for every
x0 ∈ Sol(Ax ≤ b), cT

1 x0 + α1 = cT
2 x0 + α2.

Given the Minkowski’s form, equality can be checked as follows.

Lemma 6. cT
1 x + α1 = cT

2 x + α2 over Ax ≤ b iff (c1 α1) = (c2 α2) or
Sol(Ax ≤ b) = ∅ or, called R and V the generating and vertex matrices of
Ax ≤ b, (c1 − c2)T R = 0 and (c1 − c2)T V = (α2 − α1)1T .

Notice that checking (c1 α1) = (c2 α2) is not strictly necessary, but if we
interpret the three conditions in the lemma from a computational point of view,

Typing Linear Constraints for Moding CLP(R) Programs 139

the first one provides a very fast test. The next result states that definiteness of
a variable x over a parameterized polyhedron amounts to showing that no pair
of vertices is such that their projections over x differ for any parameter instance
in the non-empty intersection of their domains.

Lemma 7. Consider the Minkowski’s form of a non-empty parameterized poly-
hedron as in Theorem 4. Every Su = {cT x | x ∈ Sol(Ax ≤ b+Ba,u)} is empty
or a singleton iff cT R = 0 and for 1 ≤ m < n ≤ k, cT va(m) = cT va(n) over
Cma ≤ cm,Cna ≤ cn.

Example 9. Consider a parameterized polyhedron over parameters (a b) and
variables (x y) with generating matrix 0, and with pairs of vertices and domains:

(
(

a
b

)
, b ≥ a ≥ 0) (

(
a
a

)
, a ≥ b ≥ 0) (

(
a

a + b

)
, a ≥ 0 ∧ b ≥ 0).

Let us reason about definiteness of variables x and y by using Lemma 7. x
is definite, since a = a over any polyhedron. Consider now y. For the first two

vertices, we have b 3= a, or, in vectorial notation, (0 1)
(

a
b

)
+α1 3= (1 0)

(
a
b

)
+

α2 where α1 = α2 = 0. Since the intersection of the two domains, namely
a = b ≥ 0, is not empty, by Lemma 6 we proceed by computing its generating
and vertex matrices. The vertex matrix is 0, so we simply have:

Sol(a = b ≥ 0) = {(a, b) |
(

a
b

)
=

(
1
1

) (
λ1

)
,λ1 ≥ 0},

and we have to test: (
(
0 1

)
−

(
1 0

)
)
(

1
1

)
=

(
0
)
, where (0) is (α2 − α1)1T .

Therefore, a and b are equal over a = b ≥ 0. Consider now the first and the
third vertex. Since b 3= a + b , we compute, as before, the Minkowski’s form of
the intersection of their domains:

Sol(b ≥ a ≥ 0) = {(a, b) |
(

a
b

)
=

(
1 0
1 1

)(
λ1
λ2

)
,λ1 ≥ 0,λ2 ≥ 0}.

Then we test: (
(
0 1

)
−

(
1 1

)
)
(

1 0
1 1

)
=

(
−1 0

)
, which differs from the expected

(
0 0

)
= (α2 − α1)1T for α2 = α1 = 0. Summarizing, by Lemma 6, b and a + b

are not equal over b ≥ a ≥ 0, and then, by Lemma 7, y is not definite.

Lemmas 6 and 7 provide us with a checking procedure for definiteness. The over-
all procedure, called POLYCheck, is shown in Fig. 2. POLYCheck terminates
and is sound and complete for inferring validity of type assertions.

Theorem 5 (POLYCheck - soundness and completeness). Let d1 be a
type declaration and c a linear constraint. If the sequence d2 is provided as output
by POLYCheck, the type assertion d1 + c→ d2 is valid. Conversely, assume
that d1 + c→ d2 is valid. Then there exists a sequence d provided as output by
POLYCheck such that d ≥t nf (d2).

140 S. Ruggieri and F. Mesnard

2.5 Extensions to Strict Inequalities and to Disequalities

So far, we considered equality and non-strict inequality primitive constraints. A
generalized linear constraint admits primitive constraint over the operators <,
> (strict inequalities) and 3= (disequalities). Without any loss of generality, we
write a generalized constraint as c ∧

∧m
i=1 ei 3= αi, where c is a linear constraint

and for i = 1..m, ei 3= αi is a disequality. We now extend type assertions to admit
generalized constraints. The next result shows that validity of type assertions
for a satisfiable generalized constraint can be reduced to validity of the type
assertions over the linear constraint obtained by removing the disequalities in it.

Theorem 6. Let g = c ∧
∧m

i=1 ei 3= αi be a satisfiable generalized linear con-
straint. d1 + g→ d2 is valid iff d1 + c→ d2 is valid.

Checking satisfiability of g is easily accomplished when computing the explicit
form of polyhedra. By independence of negative constraints [12], it reduces to
show that Sol(Acv ≤ bc) 3= ∅ and that every hyperplane ei = αi does not
include the polyhedron Sol(Acv ≤ bc), i.e., by Definition 8 that ei = αi over
Acv ≤ bc is false. Lemma 6 provides us with a procedure to check it.

3 Moding CLP Programs

Modes for pure logic programs assign to every predicate argument an input-
output behavior. Input means that the predicate argument is ground on calls.
Output means that it is ground on answers. As discussed in the introduction,
groundness (i.e., definiteness) is restrictive in the CLP context. Based on types,
we can extend the notion of moding to upper and/or lower bounds as well.

Definition 9 (moding). A mode for a n-ary predicate p is a function dp from
{1, . . . , n} to BT × BT . We write dp as p(τ1 × µ1, . . . , τn × µn), where dp(i) =
(τi, µi) for i = 1..n.

A mode for a CLP(R) program P is a set of modes, one for each predicate in
P . For an atom p(x), we write p(x : τ ×µ) to denote that x is the collection of
variables occurring in the atom, and p(τ × µ) is the mode of p.

By fixing a predicate argument mode to !×! or to $×! we get back to the logic
programming input-output behavior, respectively denoted by + and −. Several
notions of moding have been proposed [1]. We consider here well-moding by
extending it to CLP(R) programs.

Definition 10 (well-moding). Let P be a CLP(R) program. A clause p0(x0 :
µ0 × τn+1)← c, p1(x1 : τ1 ×µ1), . . . , pn(xn : τn ×µn) in P is well-moded if for
i = 1..n + 1, the type assertion x0 : µ0, . . . ,xi−1 : µi−1 + c→ xi : τi is valid. P
is well-moded if every clause in it is well-moded.

Example 10. The MORTGAGE program is well-moded with moding mortgage(!×!,
)×!, !×!, $×!), which models the first two queries in the introduction. For

Typing Linear Constraints for Moding CLP(R) Programs 141

clause (m1) we have to show: P :!, T :), R :! + T = 0, B = P → P :!, T :!, R :!,
B :! which is immediate. For clause (m2), called c the constraint T >= 1, NP =
P + P * 0.05 - R, NT = T - 1, we have to show: P :!, T :), R :! + c→ NP :!,
NT :), R :! and P :!, T :), R :!, NP :!, NT :!, B :! + c→ P :!, T :!, R :!, B :! which
are both readily checked. Analogously, MORTGAGE is well-moded with the moding
mortgage($ × !,)×!, !×!, !×!), which models the third query in the
introduction.

We recall that the operational semantics of CLP consists of a transition system
from states to states. A state is a pair 〈Q‖c〉 where Q is a query and c is a
constraint, called the constraint store. Initial states are of the form 〈Q‖true〉.
Final states (if any) are of the form 〈ε‖c〉, where ε is the empty query. Well-
moding extends to states 〈Q‖c′〉 by considering the program clause p← c′, Q,
where p is a fresh 0-ary predicate.

Definition 11. A state 〈 ← c, p1(x1 : τ1 × µ1), . . . , pn(xn : τn × µn)‖ c′〉, with
n ≥ 0, is well-moded if for i = 1..n the type assertion x1 : µ1, . . . ,xi−1 : µi−1 +
(c ∧ c′)→ xi : τi is valid. A query Q is well-moded if the state 〈Q‖ true〉 is
well-moded.

Widely studied properties of well-moding in logic programming include per-
sistency along derivations, call pattern characterization and computed answer
characterization. They are at the basis of several program analysis, transfor-
mation and optimization techniques. The next result shows that the mentioned
properties hold for the proposed extension of well-moding to CLP(R). By a
left-derivation we mean a derivation via the leftmost selection rule.

Theorem 7. Let P be a well-moded CLP(R) program and Q = ← c, p1(x1 :
τ1 × µ1), . . . , pn(xn : τn × µn) a well-moded query.

[persistency] Every state selected in a left-derivation of P and Q is well-moded.
[call patterns] For every state of the form 〈 ← q(x : τ × µ), R‖ c′〉 selected in

a left-derivation of P and Q, + c′→ x : τ is valid.
[answers] For every final state 〈 ← ε‖ c′〉, + c′→ x1 : µ1, . . . ,xn : µn is valid.

Based on these properties, we provide next two examples of the kind of analyses
that well-moding allows for.

Example 11. The two queries from the introduction ← mortgage(100, 5, 20,
B) and ← 3 <= T, T <= 5, mortgage(100, T, 20, B) are well-moded with
the moding mortgage(!×!,)×!, !×!, $×!). By Theorem 7, we conclude def-
initeness of balance in the answer constraint store. The third query from the
introduction ← 0 <= B, B <= 10, 15 <= R, R <= 20, mortgage(P, 5, R,
B) is well-moded with the moding mortgage($×!,)×!, !×!, !×!). By
Theorem 7, we conclude boundedness of principal in the answer constraint store.

Example 12. The full version of the MORTGAGE program takes the interest rate
as a further predicate argument.

142 S. Ruggieri and F. Mesnard

(n1) mortgage(P,T,I,R,B) ←
T = 0,
B = P.

(n2) mortgage(P,T,I,R,B) ←
T >= 1,
NP = P + P * I - R,
NT = T - 1,
mortgage(NP,NT,I,R,B).

However, this leads to a non-linear constraint appearing in clause (n2). How
can we reason on it? We exploit the call pattern characterization property of
well-moding by factoring out the P * I term.

(n2′) mortgage(P,T,I,R,B) ←
T >= 1,
NP = P + M - R,
NT = T - 1,
mult(P, I, M),
mortgage(NP,NT,I,R,B).

(mu) mult(P,I,M) ←
P * I = M.

Consider now as if the predicate mult is a built-in of the system, and the
input-output properties of Theorem 7 are guaranteed for the mode mult(!×!,
!×!, $×!). The rest of the program, namely clauses (n1) and (n2′), is readily
checked to be well-moded with moding mortgage(!×!,)×!, !×!, !×!, $×!).
Therefore, for every call to mult the first and the second arguments are definite,
and then the non-linear constraint P * I = M becomes linear at run-time.

4 Related Work and Conclusions

A class of formulas, called parametric queries, is investigated in [9]. It includes
formulas ∃a∀v c→ x & a, where & ∈ {≤, =,≥}, or, with our notation, type
assertions of the form + c→ x : τ . The approach switches from the problem of
checking max{cT v | Acv ≤ bc} ≤ a to its dual form max{0 | yT Ac = c, a =
yT bc + q,y ≥ 0, q ≥ 0} = 0, namely on checking feasibility of yT Ac = c, a =
yT bc + q,y ≥ 0, q ≥ 0. However, as soon as general type assertions d1 + c→ d2
are considered, switching to the dual form yields a non-linear problem.

The maximization of a linear function over a parameterized polyhedra is the
subject of (multi)parametric linear programming. The solution of the problem
can be expressed as a piecewise linear function [7] of the parameters. Therefore,
an approach alternative to the extraction of the Minkowski’s form is to compute
(for each variable to be typed) the max and min functions of a parameteric linear
problem and then to compare them on each pair of breaks they are defined on.

Definiteness analysis for CLP(R) has been investigated in [2,4,5,8] using ab-
stract interpretation. Compared to well-moding, those approaches infer boolean
expressions relating definiteness of predicate arguments. E.g., an inferred x→ y
for p(x, y) states that if x is definite when p(x, y) is called then y is definite when
it is resolved. However, the mentioned approaches restrict to consider equality
constraints only, hence cannot be complete as the type assertion framework.

Summarizing the contribution of the paper, we have introduced a type system
for (generalized) linear constraints over the reals that is able to reason about

Typing Linear Constraints for Moding CLP(R) Programs 143

upper bounds, lower bounds and definiteness properties of variables. The prob-
lem of checking validity of type assertions has been investigated and solved by
proposing two specialized decision procedures. Type assertions are the basic tool
for extending well-moding from logic programming to CLP(R). We implemented
the checking procedure for well-moding, including LPCheck and POLYCheck,
in standard C++, relying on the polylib library [13] for the calculation of the
Minkowski’s form of (parameterized) polyhedra (sources and extended technical
report at http://www.di.unipi.it/∼ruggieri/software). Although a com-
prehensive assessment over larger programs has to be pursued, our preliminary
tests provide us with confidence on the efficiency of the approach in practice.

References
1. Apt, K.R.: From Logic Programming to Prolog. Prentice-Hall, Englewood Cliffs

(1997)
2. Baker, N., Søndegaard, H.: Definiteness analysis for CLP(R). In: Gupta, G., et al.

(eds.) Australian Computer Science Conference, pp. 321–332 (1993)
3. Chernikova, N.V.: An algorithm for finding the general formula for non-negative

solutions of systems of linear inequalities. U.S.S.R. Computational Mathematics
and Mathematical Physics 5, 228–233 (1965)

4. Codish, M., Genaim, S., Søndegaard, H., Stuckey, P.: Higher-precision groundness
analysis. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 135–149. Springer,
Heidelberg (2001)

5. de la Banda, M.G., Hermenegildo, M., Bruynooghe, M., Dumortier, V., Janssens,
G., Simoens, W.: Global analysis of constraint logic programs. ACM Transactions
on Programming Languages and Systems 18(5), 564–614 (1996)

6. Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice.
In: Matzat, B.H., Greuel, G.-M., Hiss, G. (eds.) Algorithmic Algebra and Number
Theory, pp. 221–248. Springer, Berlin (1998)

7. Gal, T.: Postoptimal Analyses, Parametric Programming, and Related Topics, 2nd
edn., de Gruyter, Berlin, Germany (1995)

8. Howe, J.M., King, A.: Abstracting numeric constraints with boolean functions.
Information Processing Letters 75(1-2), 17–23 (2000)

9. Huynh, T., Joskowicz, L., Lassez, C., Lassez, J.-L.: Practical tools for reasoning
about linear constraints. Fundamenta Informaticae 15(3-4), 357–380 (1991)

10. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. Journal of Logic
Programming 19, 20, 503–581 (1994)

11. Jaffar, J., Michaylov, S., Stuckey, P., Yap, R.: The CLP(R) language and system.
ACM Transactions on Programming Languages and Systems 14(3), 339–395 (1992)

12. Lassez, J.-L., McAllon, K.: A canonical form for generalized linear constraints.
Journal of Symbolic Computation 13(1), 1–24 (1992)

13. Loechner, V.: Polylib: a library for manipulating parameterized polyhedra, Version
5.22.3 (2007), http://icps.u-strasbg.fr/polylib/

14. Loechner, V., Wilde, D.K.: Parameterized polyhedra and their vertices. Interna-
tional Journal of Parallel Programming 25, 525–549 (1997)

15. Murty, K.G.: Linear Programming. John Wiley & Sons, Chichester (1983)
16. Schrijver, A.: Theory of Linear and Integer Programming. J. Wiley & Sons, Chich-

ester (1986)
17. Le Verge, H.: A note on Chernikova’s algorithm. Technical Report 635, IRISA,

Campus Universitaire de Beaulieu, Rennes, France (1992)

http://icps.u-strasbg.fr/polylib/

	Introduction
	Bound Types for Linear Constraints
	Syntax and Semantics
	Checking Type Assertions: First Intuitions
	Checking Type Assertions: An LP Aproach
	Checking Type Assertions: A Parameterized Approach
	Extensions to Strict Inequalities and to Disequalities

	Moding CLP Programs
	Related Work and Conclusions

