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• Modes for logic programs assign to every predicate
argument an input/output behavior.

• Input: the predicate argument is ground on calls.
• Output: the predicate argument is ground on answers.
• Example: :- mode append(in, in, out).

• Modes can be seen as lightweight specifications.

• Groundness is restrictive in the CLP(R) context. Based on
types, we want to extend the notion of moding to upper
and/or lower bounds as well.
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Definition (types)

A type is an element of BT = {?,t,u,�, !}.

• ! is intended to type variables that show at most one single
value in every solution, a property known as definiteness;

• � is intended to type variables that assume a range of
values (hence, lower and upper bounds exist);

• t (resp., u) is intended for variables that have a lower
bound (resp., an upper bound);

• ? is to be used when no upper or lower bound can be
stated.
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Definition (types assertions)

• An atomic type declaration (atd) is an expression x : τ ,
where x is a variable and τ ∈ BT .

• We define vars(x : τ) = {x}, and say that x is typed as τ .

• A type declaration is a sequence of atd’s d1, . . . , dn, with
n ≥ 0. We define vars(d1, . . . , dn) = ∪ i=1..nvars(di ).

• A type assertion is an expression d1 ` c → d2, where
d1,d2 are type declarations and c is a linear constraint.
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Example

z :! ` y − x ≤ z , y + x ≤ z ,−y − 2x ≤ 5− z → y : u, x : t
states that if z has a fixed value then either the set of solutions
of the involved constraint is empty or the set of solutions is
such that y has an upper bound and x has a lower bound.

The set of solutions for z = 1:
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Example

z :! ` y − x ≤ z , y + x ≤ z , z ≤ y → y :!, x :!
states that if z has a fixed value then either the set of solutions
of the involved constraint is empty or both x and y assume a
unique value in it.

The set of solutions for z = 1:
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Definition (semantics)

We associate to an atd d = x : τ a formula φ(d) over fresh
variables υ(d), called parameters, as follows:

φ(x :!) = x = a υ(x :!) = {a}
φ(x : �) = a ≤ x ∧ x ≤ b υ(x : �) = {a, b}

φ(x : t) = a ≤ x υ(x : t) = {a}
φ(x : u) = x ≤ b υ(x : u) = {b}
φ(x : ?) = true υ(x : ?) = ∅.

φ and υ extend to type declarations as follows:

φ(d1, . . . , dn) = ∧ i=1..nφ(di ) υ(d1, . . . , dn) = ∪ i=1..nυ(di ).

A type assertion d1 ` c → d2 is valid if for v = vars(c) ∪
vars(d1) ∪ vars(d2), the following formula is true in R:

∀υ(d1)∃υ(d2)∀v.(φ(d1) ∧ c)→ φ(d2).
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Example

For the type assertion

z :! ` y − x ≤ z , y + x ≤ z , z ≤ y → y :!, x :!

the formula to be proved is:

∀a ∃b, c ∀x , y , z . (z = a ∧ y − x ≤ z ∧ y + x ≤ z ∧ z ≤ y)

→ (y = b ∧ x = c).
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• Such formulas can be checked by real quantifier
elimination methods.

• It allows for generalizing to the non-linear case!
For instance: Mathematica, QEPCAD, Redlog.

• But we observe that our formulas represent a quite
restricted class.

• Our approach switches from

the logical view of constraints-as-formulas
to

a geometric view of constraints-as-polyhedra.

10/26



Typing Linear
Constraints

Salvatore
RUGGIERI
and Fred

MESNARD

Introduction

Types

Syntax

Semantics

Checking type
assertions

A linear
programming
approach

Interlude

A parametrized
approach

Moding
CLP(R)

Well-moding

Preliminary
experimental
results

Conclusion

Consider a linear constraint c and a type declaration d.

• c can be equivalently represented as a linear system of
inequalities Acv ≤ bc where v = vars(c) ∪ vars(d).

• The linear constraint φ(d) can be represented as
Adv ≤ Bdad, where ad is the symbolic vector of
parameters in υ(d).

The resulting system φ(d) ∧ c is a parameterized system of
linear inequalities P, where variables in υ(d) play the role of
parameters: (

Ac

Ad

)
v ≤

(
bc

0

)
+

(
0
Bd

)
ad
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Definition (Parameterized polyhedron)

A parameterized polyhedron is a collection of polyhedra defined
by fixing the value for parameters in a parameterized system of
linear inequalities: Sol(Ax ≤ b + Ba,u) = {x | Ax ≤ b + Bu}.

Example

Let d be z :! and c be y − x ≤ z , y + x ≤ z ,−y − 2x ≤ 5− z .
We have that φ(d) is z = a, and φ(d) ∧ c is:

-1 1 -1
1 1 -1
-2 -1 1
0 0 1
0 0 -1


 x

y
z

 ≤


0
0
5
0
0

+


0
0
0
1
-1

 a
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Let x = vi .
d ` c → x : τ is valid iff
for every u, Su = Sol(P,u) either is empty or:

• if τ = ! then max{vi | v ∈ Su} = min{vi | v ∈ Su} ∈ R,
namely x assumes a single value;

• if τ = � then max{vi | v ∈ Su} ∈ R and
min{vi | v ∈ Su} ∈ R namely both an upper and a lower
bound exist for x ;

• if τ = t then min{vi | v ∈ Su} ∈ R, namely a lower
bound exists for x ;

• if τ = u then max{vi | v ∈ Su} ∈ R, namely an upper
bound exists for x ;

• if τ = ? then we have nothing to show!
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From now on, we only consider satisfiable linear constraint (else
one can infer assertions of the form d ` c → x :!, for every x).

Lemma
Consider a parameterized polyhedron P. Let H be its
homogeneous version: Acv ≤ 0, Adv ≤ 0.
max{cTv | v ∈ Sol(H)} = 0 iff for every parameter instance u,
Sol(P,u) = ∅ or max{cTv | v ∈ Sol(P,u)} ∈ R.
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• When c is always 0 except for the i th position where it is
1, we have cTv = vi .

• The previous lemma solves the problem of deciding
whether d ` c → vi : u, without having to take into
account parameters.

• By reasoning similarly for types t and �, we can state an
effective procedure, called LPCheck
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Input: a type assertion d1, a constraint c and a seq. of vars x.

Step 0 Define v = vars(c), n = nf (d1), d = n|v.

Step 1 Let Acv ≤ bc be the geometric rep. of c .
Let Adv ≤ Bdad the geometric rep. of φ(d).

Step 2 If Sol(Acv ≤ bc) = ∅ Then for every x in x, output
“x :!”

Else

Step 3 for every x in x \ v and x : τ in n, output “x : τ”;

Step 4 for every x in x ∩ v:

(a) Let M = max{x | Acv ≤ 0,Adv ≤ 0},
m = max{−x | Acv ≤ 0,Adv ≤ 0}.

(b) Output “x : �” if M = 0 and m = 0;
(c) Output “x : t” if M =∞ and m = 0;
(d) Output “x : u” if M = 0 and m =∞;
(e) Else output “x : ?”.

Figure: LPCheck, sound and complete w.r.t. {?,t,u,�}.
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Minkowski, Motzkin, 1953:

Theorem (Minkowski’s decomposition thm)
There exists an effective procedure that given Ax ≤ b decides
whether or not the polyhedron Sol(Ax ≤ b) is empty and, if
not, it yields a generating matrix R and a vertex matrix V such
that:

Sol(Ax ≤ b) = {x | x = Rλ,λ ≥ 0 }+ {x | x = Vγ,γ ≥ 0,Σγ = 1 }

Sol(Ax ≤ 0) = {x | x = Rλ,λ ≥ 0 }
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Example  -1 1
1 1
-2 -1

( x
y

)
≤

 0
0
3



R =

(
1 1
-2 -1

)
V =

(
0 -1
0 -1

)

18/26



Typing Linear
Constraints

Salvatore
RUGGIERI
and Fred

MESNARD

Introduction

Types

Syntax

Semantics

Checking type
assertions

A linear
programming
approach

Interlude

A parametrized
approach

Moding
CLP(R)

Well-moding

Preliminary
experimental
results

Conclusion

Loechner and Wilde, 1997:

Theorem (Minkowski’s thm for parameterized polyhedra)

Every parameterized polyhedron can be expressed by a
generating matrix R and finitely many pairs

(va(1),C1a ≤ c1), . . . , (va(k),Cka ≤ ck)

where, for i = 1..k, va(i) is a vector parametric in a and
Sol(Cia ≤ ci ) 6= ∅, as follows:

Sol(Ax ≤ b + Ba,u) = {x |x = Rλ,λ ≥ 0 }
+ConvexHull({vu(i) | i = 1..k,Ciu ≤ ci })

and

Sol(Ax ≤ 0) = {x | x = Rλ,λ ≥ 0 }

.
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Example

a + b ≥ y , y ≥ a, y ≥ b, x = a
1 0
-1 0
0 1
0 -1
0 -1


(

x
y

)
≤


0
0
0
0
0

+


1 0
-1 0
1 1
-1 0
0 -1


(

a
b

)

R = 0

(

(
a
b

)
, b ≥ a ≥ 0)(

(
a
a

)
, a ≥ b ≥ 0)(

(
a

a+b

)
, a, b ≥ 0)
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Lemma
Consider the Minkowski’s form of a non-empty parameterized
polyhedron.
Every Su = {cTx | x ∈ Sol(Ax ≤ b + Ba,u)} is empty or a
singleton iff

• cTR = 0

• for 1 ≤ m < n ≤ k, Cma ≤ cm,Cna ≤ cn |=
cTva(m) = cTva(n).
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Example

Consider a + b ≥ y , y ≥ a, y ≥ b, x = a, and the corresponding
parameterized polyhedron defined by R = 0 and

(

(
a
b

)
, b ≥ a ≥ 0)(

(
a
a

)
, a ≥ b ≥ 0)(

(
a

a+b

)
, a, b ≥ 0).

Let us reason about definiteness of variables x and y by using
the previous lemma

• x is definite, since a = a over any polyhedron.

• y is not definite:
• fine for the first and second vertex:

b ≥ a ≥ 0, a ≥ b ≥ 0 |= a = b
• but for the first and third vertex:

b ≥ a ≥ 0, a, b ≥ 0 6|= b = a + b
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Input: a type assertion d1, a constraint c and a seq. of vars x.

Step 0 Define v = vars(c), n = nf (d1), d = n|!.
Step 1 Let Acv ≤ b be the geometric rep. of c , and

Adv ≤ Bdad the geometric rep. of φ(d).

Step 1 For the parametric polyh. Acv ≤ b,Adv ≤ Bdad

build the generating matrix R and the sequence
(va(1),C1a ≤ c1), . . . , (va(k),Cka ≤ ck)

Step 2 For every x : τ as output from LPCheck

Step 3 If τ 6= � or x 6∈ v then output “x : τ”;

Step 4 Else let i such that x = vi :

(a) Output “x :!” if row(R, i) = 0 and
for 1 ≤ m < n ≤ k , Cma ≤ cm,
Cna ≤ cn |= va(m)i = va(n)i ;

(b) Output “x : �” otherwise.

Figure: POLYCheck, sound and complete w.r.t. {?,t,u,�, !}.
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Definition (well-moding)

Let P be a CLP(R) program. A clause of P:
p0(x0 : µ0 × τn+1)← c, p1(x1 : τ1 × µ1), . . . , pn(xn : τn × µn)
is well-moded if for i = 1..n + 1, the type assertion

x0 : µ0, . . . , xi−1 : µi−1 ` c → xi : τi

is valid. P is well-moded if all its clauses are well-moded.

A well-moded program well behaves at run-time.
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program C A modes time
ack 3 6 ack(?×�, !×!, ?×!) 0.0011

ack 3 6 ack(?×�, �×�, ?×�) 0.0007

fib 2 4 fib(!×!, ?×!) 0.0011

fib 2 4 fib(?× ?, ?×!) 0.0007

mc91 2 4 mc(u ×�, ?×�) 0.0005

mc91 2 4 mc(!×!, ?×!) 0.0006

mortgage 2 3 mortgage(!×!,u×!, !×!, ?×!) 0.0010

schedule 10 21 schedule(!×!, ?× u, ?× t) 0.0021

tak 3 8 tak(?×!) 0.0015

Table: Time in seconds, Xeon 2.8Ghz, C: # clauses, A: # atoms.
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• sources and extended technical report at:
http://www.di.unipi.it/∼ruggieri/software/

• extensions:
• �r , r ∈ R+

• type inference and terminating modes
• CLP(Term +R)
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