Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

A parametrized approach

 $\frac{\mathsf{Moding}}{\mathsf{CLP}(\mathcal{R})}$

Well-moding Preliminary experimental results

Conclusion

Typing Linear Constraints for Moding $CLP(\mathcal{R})$ Programs

Salvatore RUGGIERI and Fred MESNARD

Dipartimento di Informatica, Università di Pisa, Italy IREMIA, université de la Réunion, France

Salvatore RUGGIERI and Fred MESNARD

Introduction

Туре

Syntax Semantics

Checking typ assertions

A linear programming approach Interlude

A parametrized approach

$\frac{\mathsf{Moding}}{\mathsf{CLP}(\mathcal{R})}$

Well-moding Preliminary experimental results

Conclusion

1 Introduction

2 Types Syntax Semantics

3 Checking type assertions

A linear programming approach Interlude

A parametrized approach

4 Moding $CLP(\mathcal{R})$

Well-moding Preliminary experimental results

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

5 Conclusion

Salvatore RUGGIERI and Fred MESNARD

Introduction

Type

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

A parametrized approach

Moding $CLP(\mathcal{R})$

Well-moding Preliminary experimental results

Conclusion

- Modes for logic programs assign to every predicate argument an input/output behavior.
 - Input: the predicate argument is ground on calls.
 - Output: the predicate argument is ground on answers.
 - Example: :- mode append(in, in, out).
- Modes can be seen as *lightweight* specifications.
- Groundness is restrictive in the CLP(R) context. Based on types, we want to extend the notion of moding to upper and/or lower bounds as well.

<ロ> (四) (四) (三) (三) (三)

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

A parametrized approach

$\frac{\mathsf{Moding}}{\mathsf{CLP}(\mathcal{R})}$

Well-moding Preliminary experimental results

Conclusion

Definition (types)

A type is an element of $\mathcal{BT} = \{\star,\sqcup,\sqcap,\Box,!\}.$

- ! is intended to type variables that show at most one single value in every solution, a property known as *definiteness*;
- is intended to type variables that assume a range of values (hence, lower and upper bounds exist);
- □ (resp., □) is intended for variables that have a lower bound (resp., an upper bound);
- \star is to be used when no upper or lower bound can be stated.

(日) (四) (王) (日) (日) (日)

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

A parametrized approach

$\frac{\mathsf{Moding}}{\mathsf{CLP}(\mathcal{R})}$

Well-moding Preliminary experimental results

Conclusion

Definition (types assertions)

- An atomic type declaration (atd) is an expression x : τ, where x is a variable and τ ∈ BT.
- We define $vars(x : \tau) = \{x\}$, and say that x is typed as τ .
- A type declaration is a sequence of atd's d_1, \ldots, d_n , with $n \ge 0$. We define $vars(d_1, \ldots, d_n) = \bigcup_{i=1..n} vars(d_i)$.
- A type assertion is an expression d₁ ⊢ c → d₂, where d₁, d₂ are type declarations and c is a linear constraint.

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

A parametrized approach

$\frac{\mathsf{Moding}}{\mathsf{CLP}(\mathcal{R})}$

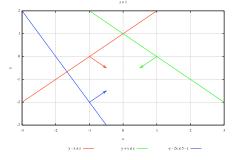
Well-moding Preliminary experimental results

Conclusion

Example

 $z :! \vdash y - x \le z, y + x \le z, -y - 2x \le 5 - z \rightarrow y : \sqcap, x : \sqcup$ states that if z has a fixed value then either the set of solutions of the involved constraint is empty or the set of solutions is such that y has an upper bound and x has a lower bound.

The set of solutions for z = 1:



6/26

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

A parametrized approach

$\frac{\mathsf{Moding}}{\mathsf{CLP}(\mathcal{R})}$

Well-moding Preliminary experimental results

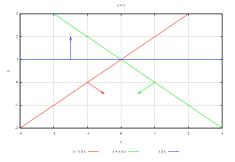
Conclusion

Example

 $z:!\vdash y-x\leq z,y+x\leq z,z\leq y\rightarrow y:!,x:!$

states that if z has a fixed value then either the set of solutions of the involved constraint is empty or both x and y assume a unique value in it.

The set of solutions for z = 1:



Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

A parametrized approach

Moding $CLP(\mathcal{R})$

Well-moding Preliminary experimental results

Conclusion

Definition (semantics)

We associate to an atd $d = x : \tau$ a formula $\phi(d)$ over fresh variables v(d), called parameters, as follows:

$$\phi(x:!) = x = a \qquad \qquad v(x:!) = \{a\}$$

$$\phi(x:\Box) = a \le x \land x \le b \qquad \qquad v(x:\Box) = \{a, b\}$$

$$\phi(x:\Box) = a \le x \qquad \qquad v(x:\Box) = \{a\}$$

$$\phi(x:\Box) = x \le b \qquad \qquad v(x:\Box) = \{b\}$$

$$\phi(x:\star) = \text{true} \qquad \qquad v(x:\star) = \emptyset.$$

 ϕ and υ extend to type declarations as follows:

$$\phi(d_1,\ldots,d_n) = \wedge_{i=1\ldots n} \phi(d_i) \qquad \upsilon(d_1,\ldots,d_n) = \cup_{i=1\ldots n} \upsilon(d_i).$$

A type assertion $\mathbf{d}_1 \vdash c \rightarrow \mathbf{d}_2$ is valid if for $\mathbf{v} = vars(c) \cup vars(\mathbf{d}_1) \cup vars(\mathbf{d}_2)$, the following formula is true in \mathcal{R} :

$$\forall \upsilon(\mathbf{d}_1) \exists \upsilon(\mathbf{d}_2) \forall \mathbf{v}. (\phi(\mathbf{d}_1) \land c) \rightarrow \phi(\mathbf{d}_2).$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

A parametrize approach

Moding $CLP(\mathcal{R})$

Well-moding Preliminary experimental results

Conclusion

Example

For the type assertion

$$z:!\vdash y-x\leq z,y+x\leq z,z\leq y\rightarrow y:!,x:!$$

the formula to be proved is:

$$\forall a \exists b, c \ \forall x, y, z. \ (z = a \land y - x \le z \land y + x \le z \land z \le y) \\ \rightarrow (y = b \land x = c).$$

(日)

э

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

A parametrized approach

$\frac{\mathsf{Moding}}{\mathsf{CLP}(\mathcal{R})}$

Well-moding Preliminary experimental results

Conclusion

- Such formulas can be checked by real quantifier elimination methods.
- It allows for generalizing to the *non-linear* case! For instance: Mathematica, QEPCAD, Redlog.
- But we observe that our formulas represent a quite restricted class.
- Our approach switches from

the *logical* view of constraints-as-formulas to

a geometric view of constraints-as-polyhedra.

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude A parametrize approach

Moding $CLP(\mathcal{R})$

Well-moding Preliminary experimental results

Conclusion

Consider a linear constraint c and a type declaration **d**.

- c can be equivalently represented as a linear system of inequalities A_cv ≤ b_c where v = vars(c) ∪ vars(d).
- The linear constraint φ(d) can be represented as A_dν ≤ B_da_d, where a_d is the symbolic vector of parameters in v(d).

The resulting system $\phi(\mathbf{d}) \wedge c$ is a parameterized system of linear inequalities \mathcal{P} , where variables in $v(\mathbf{d})$ play the role of parameters:

$$\left(\begin{array}{c} \mathbf{A}_{c} \\ \mathbf{A}_{d} \end{array} \right) \mathbf{v} \leq \left(\begin{array}{c} \mathbf{b}_{c} \\ \mathbf{0} \end{array} \right) + \left(\begin{array}{c} \mathbf{0} \\ \mathbf{B}_{d} \end{array} \right) \mathbf{a}_{d}$$

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

approach Moding $CLP(\mathcal{R})$

Well-moding Preliminary experimental results

Conclusion

Definition (Parameterized polyhedron)

A parameterized polyhedron is a collection of polyhedra defined by fixing the value for parameters in a parameterized system of linear inequalities: $Sol(\mathbf{Ax} \leq \mathbf{b} + \mathbf{Ba}, \mathbf{u}) = \{\mathbf{x} \mid \mathbf{Ax} \leq \mathbf{b} + \mathbf{Bu}\}.$

Example

Let **d** be z :! and c be $y - x \le z, y + x \le z, -y - 2x \le 5 - z$. We have that $\phi(\mathbf{d})$ is z = a, and $\phi(\mathbf{d}) \land c$ is:

$$\begin{pmatrix} -1 & 1 & -1 \\ 1 & 1 & -1 \\ -2 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \leq \begin{pmatrix} 0 \\ 0 \\ 5 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ -1 \end{pmatrix} a$$

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

A parametrized approach

$Moding CLP(\mathcal{R})$

Well-moding Preliminary experimental results

Conclusion

Let $x = \mathbf{v}_i$. $\mathbf{d} \vdash \mathbf{c} \rightarrow x : \tau$ is valid iff

for every $u,\,\mathcal{S}_u=\textit{Sol}(\mathcal{P},u)$ either is empty or:

- if τ = ! then max{v_i | v ∈ S_u} = min{v_i | v ∈ S_u} ∈ R, namely x assumes a single value;
- if τ = □ then max{v_i | v ∈ S_u} ∈ R and min{v_i | v ∈ S_u} ∈ R namely both an upper and a lower bound exist for x;
 - if τ = ⊔ then min{v_i | v ∈ S_u} ∈ R, namely a lower bound exists for x;
 - if τ = □ then max{v_i | v ∈ S_u} ∈ R, namely an upper bound exists for x;

• if $\tau = \star$ then we have nothing to show!

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude A parametrize approach

Moding $\mathsf{CLP}(\mathcal{R})$

Well-moding Preliminary experimental results

Conclusion

From now on, we only consider satisfiable linear constraint (else one can infer assertions of the form $\mathbf{d} \vdash c \rightarrow x$:!, for every x).

Lemma

Consider a parameterized polyhedron \mathcal{P} . Let \mathcal{H} be its homogeneous version: $\mathbf{A}_c \mathbf{v} \leq \mathbf{0}$, $\mathbf{A}_d \mathbf{v} \leq \mathbf{0}$. $max\{\mathbf{c}^T \mathbf{v} \mid \mathbf{v} \in Sol(\mathcal{H})\} = 0$ iff for every parameter instance \mathbf{u} , $Sol(\mathcal{P}, \mathbf{u}) = \emptyset$ or $max\{\mathbf{c}^T \mathbf{v} \mid \mathbf{v} \in Sol(\mathcal{P}, \mathbf{u})\} \in \mathcal{R}$.

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

A parametrize approach

$\frac{\mathsf{Moding}}{\mathsf{CLP}(\mathcal{R})}$

Well-moding Preliminary experimental results

Conclusion

- When c is always 0 except for the *ith* position where it is 1, we have c^Tv = v_i.
- The previous lemma solves the problem of deciding whether d ⊢ c → v_i : ¬, without having to take into account parameters.
- By reasoning similarly for types \sqcup and $\Box,$ we can state an effective procedure, called LPCHECK

イロト 不得 トイヨト イヨト

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach

A parametrize

Moding $CLP(\mathcal{R})$

Well-moding Preliminary experimental results

Conclusion

Input: a type assertion \mathbf{d}_1 , a constraint *c* and a seq. of vars \mathbf{x} .

Step 0 Define
$$\mathbf{v} = vars(c)$$
, $\mathbf{n} = nf(\mathbf{d}_1)$, $\mathbf{d} = \mathbf{n}|_{\mathbf{v}}$.

Step 2 If $Sol(\mathbf{A}_c \mathbf{v} \leq \mathbf{b}_c) = \emptyset$ Then for every x in **x**, output "x :!"

Else

Step 3 for every x in $\mathbf{x} \setminus \mathbf{v}$ and $x : \tau$ in \mathbf{n} , output " $x : \tau$ "; Step 4 for every x in $\mathbf{x} \cap \mathbf{v}$:

Figure: LPCHECK, sound and complete w.r.t. $\{\star, \sqcup, \sqcap, \square\}$.

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

A parametrized approach

$\begin{array}{l} \mathsf{Moding} \\ \mathsf{CLP}(\mathcal{R}) \end{array}$

Well-moding Preliminary experimental results

Conclusion

Minkowski, Motzkin, 1953:

Theorem (Minkowski's decomposition thm)

There exists an effective procedure that given $Ax \leq b$ decides whether or not the polyhedron $Sol(Ax \leq b)$ is empty and, if not, it yields a generating matrix R and a vertex matrix V such that:

$$\textit{Sol}(\mathsf{A}\mathsf{x} \le \mathsf{b}) = \{\mathsf{x} \mid \mathsf{x} = \mathsf{R}\lambda, \lambda \ge 0 \} + \{\mathsf{x} \mid \mathsf{x} = \mathsf{V}\gamma, \gamma \ge 0, \Sigma\gamma = 1 \}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

$$Sol(Ax \leq 0) = \{x \mid x = R\lambda, \lambda \geq 0 \}$$

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach

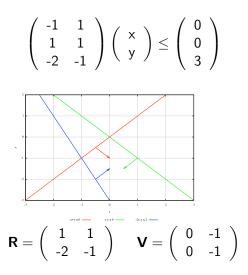
Interlude

A parametrized approach

$\frac{\mathsf{Moding}}{\mathsf{CLP}(\mathcal{R})}$

Well-moding Preliminary experimental results

Conclusion



Salvatore RUGGIERI and Fred MESNARD

Introduction

Type

Syntax Semantics

Checking type assertions

A linear programmin approach Interlude

A parametrized approach

 $\frac{\mathsf{Moding}}{\mathsf{CLP}(\mathcal{R})}$

Well-moding Preliminary experimental results

Conclusion

Loechner and Wilde, 1997:

Theorem (Minkowski's thm for parameterized polyhedra) Every parameterized polyhedron can be expressed by a generating matrix \mathbf{R} and finitely many pairs

$$(\mathbf{v}^{\mathbf{a}}(1), \mathbf{C}_1 \mathbf{a} \leq \mathbf{c}_1), \dots, (\mathbf{v}^{\mathbf{a}}(k), \mathbf{C}_k \mathbf{a} \leq \mathbf{c}_k)$$

where, for i = 1..k, $\mathbf{v}^{\mathbf{a}}(i)$ is a vector parametric in \mathbf{a} and $Sol(\mathbf{C}_i \mathbf{a} \leq \mathbf{c}_i) \neq \emptyset$, as follows:

$$Sol(\mathbf{Ax} \le \mathbf{b} + \mathbf{Ba}, \mathbf{u}) = \{\mathbf{x} \mid \mathbf{x} = \mathbf{R}\lambda, \lambda \ge 0 \}$$
$$+ConvexHull(\{\mathbf{v}^{\mathbf{u}}(i) \mid i = 1..k, \mathbf{C}_{i}\mathbf{u} \le \mathbf{c}_{i} \})$$

and

$$\mathit{Sol}(\mathsf{Ax} \leq \mathbf{0}) = \{ \mathsf{x} \mid \mathsf{x} = \mathsf{R} \boldsymbol{\lambda}, \boldsymbol{\lambda} \geq \mathsf{0} \}$$

イロト 不得 トイヨト イヨト

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

A parametriz

Moding $\mathsf{CLP}(\mathcal{R})$

Well-moding Preliminary experimental results

Conclusion

Example

 $a + b \ge y, y \ge a, y \ge b, x = a$

$$\begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \leq \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 1 & 1 \\ -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

$$\begin{array}{l} \mathbf{R} = \mathbf{0} \\ (\begin{pmatrix} \mathsf{a} \\ \mathsf{b} \end{pmatrix}, \mathsf{b} \geq \mathsf{a} \geq \mathsf{0})(\begin{pmatrix} \mathsf{a} \\ \mathsf{a} \end{pmatrix}, \mathsf{a} \geq \mathsf{b} \geq \mathsf{0})(\begin{pmatrix} \mathsf{a} \\ \mathsf{a} + \mathsf{b} \end{pmatrix}, \mathsf{a}, \mathsf{b} \geq \mathsf{0}) \end{array}$$

・ロト ・四ト ・ヨト ・ヨト

э

20/26

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

A parametrized approach

Moding $\mathsf{CLP}(\mathcal{R})$

Well-moding Preliminary experimental results

Conclusion

Lemma

Consider the Minkowski's form of a non-empty parameterized polyhedron.

Every $S_u = {c^T x | x \in Sol(Ax \le b + Ba, u)}$ is empty or a singleton iff

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- $\mathbf{c}^T \mathbf{R} = \mathbf{0}$
- for $1 \le m < n \le k$, $\mathbf{C}_m \mathbf{a} \le \mathbf{c}_m$, $\mathbf{C}_n \mathbf{a} \le \mathbf{c}_n \models \mathbf{c}^T \mathbf{v}^{\mathbf{a}}(m) = \mathbf{c}^T \mathbf{v}^{\mathbf{a}}(n)$.

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

A parametrized approach

$\frac{\mathsf{Moding}}{\mathsf{CLP}(\mathcal{R})}$

Well-moding Preliminary experimental results

Conclusion

Example

Consider $a + b \ge y, y \ge a, y \ge b, x = a$, and the corresponding parameterized polyhedron defined by $\mathbf{R} = \mathbf{0}$ and

$$\left(egin{a} b \end{array}
ight), b \geq a \geq 0$$
)($\left(egin{a} a \end{array}
ight), a \geq b \geq 0$)($\left(egin{a} a+b \end{array}
ight), a, b \geq 0$).

Let us reason about definiteness of variables x and y by using the previous lemma

- x is definite, since a = a over any polyhedron.
- y is not definite:
 - fine for the first and second vertex:

$$b \ge a \ge 0, a \ge b \ge 0 \models a = b$$

• but for the first and third vertex:

$$b \ge a \ge 0, a, b \ge 0 \not\models b = a + b$$

Salvatore RUGGIERI and Fred MESNARD

Introduction

Type

Syntax Semantics

Checking type assertions

A linear programmin approach Interlude

A parametrized approach

Moding $CLP(\mathcal{R})$

Well-moding Preliminary experimental results

Conclusion

Input: a type assertion \mathbf{d}_1 , a constraint c and a seq. of vars \mathbf{x} . Step 0 Define $\mathbf{v} = vars(c)$, $\mathbf{n} = nf(\mathbf{d}_1)$, $\mathbf{d} = \mathbf{n}|_{!}$.

- Step 1 Let $\mathbf{A}_c \mathbf{v} \leq \mathbf{b}$ be the geometric rep. of c, and $\mathbf{A}_d \mathbf{v} \leq \mathbf{B}_d \mathbf{a}_d$ the geometric rep. of $\phi(\mathbf{d})$.

Step 2 For every $x : \tau$ as output from LPCHECK

Step 3 If $\tau \neq \Box$ or $x \notin \mathbf{v}$ then output " $x : \tau$ ";

Step 4 Else let *i* such that $x = \mathbf{v}_i$:

(a) Output "x :!" if row(R, i) = 0 and for 1 ≤ m < n ≤ k, C_ma ≤ c_m, C_na ≤ c_n ⊨ v^a(m)_i = v^a(n)_i;
(b) Output "x : □" otherwise.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Figure: POLYCHECK, sound and complete w.r.t. $\{\star, \sqcup, \sqcap, \Box, !\}$.

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

A parametrized approach

Moding $CLP(\mathcal{R})$

Well-moding

Preliminary experimental results

Conclusion

Definition (well-moding)

Let *P* be a $CLP(\mathcal{R})$ program. A clause of *P*: $p_0(\mathbf{x}_0 : \boldsymbol{\mu}_0 \times \boldsymbol{\tau}_{n+1}) \leftarrow c, p_1(\mathbf{x}_1 : \boldsymbol{\tau}_1 \times \boldsymbol{\mu}_1), \dots, p_n(\mathbf{x}_n : \boldsymbol{\tau}_n \times \boldsymbol{\mu}_n)$ is well-moded if for i = 1..n + 1, the type assertion

$$\mathbf{x}_0: \boldsymbol{\mu}_0, \dots, \mathbf{x}_{i-1}: \boldsymbol{\mu}_{i-1} \vdash c \rightarrow \mathbf{x}_i: \boldsymbol{\tau}_i$$

is valid. P is well-moded if all its clauses are well-moded.

A well-moded program well behaves at run-time.

Salvatore RUGGIERI and Fred MESNARD

÷			÷		

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

A parametrized approach

Moding $\mathsf{CLP}(\mathcal{R})$

Well-moding

Preliminary experimental results

Conclusion

program	С	Α	modes	time
ack	3	6	$ack(\star \times \Box, ! \times !, \star \times !)$	0.0011
ack	3	6	$ack(\star \times \Box, \ \Box \times \Box, \ \star \times \Box)$	0.0007
fib	2	4	$fib(!\times !, \star \times !)$	0.0011
fib	2	4	$fib(\star \times \star, \star \times !)$	0.0007
mc91	2	4	$mc(\sqcap \times \square, \star \times \square)$	0.0005
mc91	2	4	$mc(! \times !, \star \times !)$	0.0006
mortgage	2	3	$mortgage(! \times !, \sqcap \times !, ! \times !, \star \times !)$	0.0010
schedule	10	21	$\texttt{schedule(!\times!, \star\times\sqcap, \star\times\sqcup)}$	0.0021
tak	3	8	$tak(\star \times !)$	0.0015

Table: Time in seconds, Xeon 2.8Ghz, C: # clauses, A: # atoms.

(日)

э

Salvatore RUGGIERI and Fred MESNARD

Introduction

Types

Syntax Semantics

Checking type assertions

A linear programming approach Interlude

A parametrized approach

Moding $CLP(\mathcal{R})$

Well-moding Preliminary experimental results

Conclusion

 sources and extended technical report at: http://www.di.unipi.it/~ruggieri/software/

<ロ> (四) (四) (三) (三) (三)

- extensions:
 - $\Box_r, r \in \mathcal{R}^+$
 - type inference and terminating modes
 - CLP(*Term* + *R*)