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Abstract

Termination of binary constraint logic programs has recently become an important question in the ter-
mination analysis community. In this paper we introduce a class of binary constraint logic programs
such that their termination can be proved by using affine level mappings. We show that membership
to this class is decidable in polynomial time.
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1 Introduction

Termination is well-known to be one of the crucial properties of software verification. Logic pro-
gramming, and more generally constraint logic programming (CLP), with their strong theoretical
basis lend themselves easily to termination analysis as witnessed by a very intensive research in the
area. Some of the recent approaches to termination (see, e.g., (Codish and Taboch 1999; Lagoon
et al. 2003)) proceed in three steps. First, a logic program is abstracted to a CLP(N)-program, i.e.,
a logic program extended with constraint solving over the domain of natural numbersN. Second,
the CLP(N)-program is approximated by abinaryCLP(N) program, i.e., a set of clauses of the form
p(x̃)← c,q(ỹ), wherec is a CLP-constraint andp,q are user-defined predicates. Finally, they con-
clude termination of the input program from termination of the abstracted binary program.

In this paper, which is a revised version of (Serebrenik and Mesnard 2004), we study decidability
of termination for binary CLP(C) programs for a given constraint domainC. In general, decidabil-
ity depends on the constraint domainC. On the one hand, Devienne et al. (1993) have established
undecidability of termination for one-clause binary CLP(H) programs, whereH is the domain of
Herbrand terms. On the other hand, Datalog, i.e., logic programming with no function symbols, pro-
vides an example of a constraint programming language such that termination is decidable for it1.
For constraint domains with the undecidable termination property, we are interested in subclasses
of binary programs such that termination is decidable for these subclasses. A trivial example is the
subclass of non-recursive binary programs.

1 Decidability of a related problem ofboundednessfor Datalog queries has been studied, for instance, in (Afrati
et al. 2005; Marcinkowski 1996).
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We organise the paper as follows. After the preliminary remarks of Section 2, in Section 3 we
present our main result. Section 4 reviews related results before our conclusion.

2 Preliminaries

For CLP-related definitions, we follow (Jaffar and Maher 1994; Jaffar et al. 1998). An extensive
introduction to CLP can be found in (Marriott and Stuckey 1998). The key notions of CLP are those
of an algebra and an associated constraint solver over a class of constraints, namely a set of first
order formulae closed under conjunction and existential quantification. Ifc is a constraint, we write
∃c for its existential closure. We consideridealCLP(C), i.e., we require the existence of a constraint
solversolvC mapping in finite time each constraint to{true, false} such that ifsolvC(c) = false then
the constraint∃c is false with respect toC and if solvC(c) = true then the constraint∃c is true with
respect toC. The associated domain is denotedDC. The set of predicate symbols associated withC
is denotedΠC. We are interested in the following domains and languages:

• N. The predicate symbols are= and≥, the function symbols are 0, 1, and+.
• Q andR. The predicate and function symbols are as above.Q+ andR+ restrictQ andR to

non-negative numbers.

Given a programP, we defineΠP as the set of user-defined predicate symbols appearing inP. We
restrict our attention tobinary programs. A binary program is a finite set of binary clauses in aflat
form. So each clause is of form:

• p(x̃)← c wherex̃ denotes a tuple of variables andc is a constraint, or
• p(x̃)← c,q(ỹ) wherex̃ and ỹ denote tuples ofdistinct variables, ˜x∩ ỹ = ∅, and the set of

variables of the constraintc is included in ˜x∪ ỹ.

Flat queries are defined accordingly. Anatomic queryis a flat query of the formc,q(ỹ) whereq∈ΠP.
In this paper we restrict our attention to atomic queries.

Given a CLP(C)-programP, theC-baseBC
P is defined as{p(d1, . . . ,dn) | p∈ ΠP,(d1, . . . ,dn) ∈

(DC)n}. For a queryQ of the form(c,A), the set of ground instances ofQ, denotedgroundC(Q),
is the set of terms obtained fromA by replacing all variables by elements ofDC such thatc holds.
The notion of groundedness is extended for flat clauses and binary programs:groundC(p(x̃)← c)
is the set of atoms obtained by replacing all variables inp(x̃) by elements ofDC such thatc holds.
Similarly, groundC(p(x̃)← c,q(ỹ) is the set of binary clausesp(d̃)← q(ẽ) obtained by replacing all
variables inp(x̃) andq(ỹ) by the corresponding elements ofDC such thatc holds.

Example 1
Consider the following CLP(Q) programP:

r1 p(x) ← x = 2.
r2 p(x) ← 0 = 1.
r3 p(x) ← 72≥ x,y = x+1, p(y).

Then,groundQ(r1) is {p(2)}, groundQ(r2) is ∅, andgroundQ(r3) is an infinite set that contains,
among others,p(72)← p(73) andp(1/2)← p(3/2). Ground instances do not contain any constraint.

We say that a binary CLP(C) programP and a queryQ terminateif every derivation ofQ with
respect toP is finite, under the usual operational semantics (Jaffar and Maher 1994).P is called
terminatingif for any ground queryQ, P andQ terminate. To characterize termination, we use the
notion of level mapping. A level mappingfor a constraint domainC is a function| · | : BC

P → R. We
adapt the idea of recurrence, originally introduced in (Bezem 1993), to CLP:

Definition 1
Let P be a binary CLP(C) program, and| · | : C-base→ R be a level mapping.P is calledrecurrent
with respect to| · | if there exists a real numberε > 0 such that, for everyA← B ∈ groundC(P),
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|A| ∈R+, |B| ∈R+, and|A| ≥ |B|+ε. We say thatP is recurrentif there exists a level-mapping such
thatP is recurrent with respect to it.

Observe that clauses of the formp(x̃)← c are not taken into account by the definition above.
Indeed, these clauses cannot lead to infinite computation. Moreover, without loss of generality, we
may fixε to 1: if P is recurrent in this narrow sense,P is trivially recurrent with respect to Definition
1. Conversely, sinceε > 0, we can safely multiply the values of the level mapping by 1/ε.

Theorem 1
(Bezem 1993)P is recurrent iffP is terminating.

3 Alm-recurrent programs

Let us consider binary programs that can be analyzed by means of affine level mappings.

Definition 2
A level mapping| · | is calledaffineif for any n-ary predicate symbolp∈ΠP, there exist real numbers
µp,i , 0≤ i ≤ n, such that for any atomp(e1, . . . ,en) ∈ BC

P :

|p(e1, . . . ,en)|= µp,0 +
n

∑
i=1

µp,iei

So for a given atomp(ẽ), its affine level mapping is a linear combination of ˜eshifted by a constant.
We can define the class of programs we are interested in:

Definition 3
Let P be a binary flat CLP(C) program. We say thatP is alm-recurrentif there exists an affine level
mapping| · | such thatP is recurrent with respect to it.

Example 2
The CLP(Q) programP from Example 1 is alm-recurrent with respect to|p(x)|= 73−x.

Clearly, if P is alm-recurrent, thenP is recurrent thus terminating. The following result states that
alm-recurrence can be efficiently decided.

Theorem 2
Alm-recurrence of a binary constraint logic programP overQ,Q+,R andR+ is decidable in poly-
nomial time with respect to the size ofP.

Proof
The proof is constructive: we provide a decision procedure for alm-recurrence of binary constraint
logic programs overQ,Q+,R and R+. The decision procedure extends the algorithm proposed
in (Sohn and Van Gelder 1991) for termination of Prolog programs (abstracted as CLP(N) programs)
to binary CLP(C) whereC is Q,Q+,R or R+. The algorithm examines each user-defined predicate
symbolp of a binary CLP programP in turn (the precise order does not matter) and tries to find an
affine level mapping showing thatP is alm-recurrent.

For every clauser, sayp(x̃p)← c,q(x̃q), we test the satisfiability ofc. For the domains we con-
sider, it can be done in polynomial time (Khachiyan 1979). Ifc is not satisfiable, we disregard this
clause. Otherwise, letnp andnq be the arities ofp andq. Recurrence requires:

C |= c→
[
|p(x̃p)| ≥ 1+ |q(x̃q)|∧ |q(x̃q)| ≥ 0

]
(1)

Strictly speaking, recurrence also requiresc→ |p(x̃p)| ≥ 0 but this condition can be omitted as it is
implied by (1). Formula (1) is logically equivalent toC |= c→ |p(x̃p)| ≥ 1+ |q(x̃q)| andC |= c→
|q(x̃q)| ≥ 0. Let ˜xp be(xp,1, . . . ,xp,np), x̃q be(xq,1, . . . ,xq,nq) and letµp,0, . . . ,µp,np,µq,0, . . . ,µq,nq ∈R
be such that for any atomp(e1, . . . ,enp) ∈ BC

P and any atomq(e1, . . . ,enq) ∈ BC
P : |p(e1, . . . ,enp)| =
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µp,0 + ∑
np

i=1µp,iei and |q(e1, . . . ,enq)| = µq,0 + ∑
nq

i=1µq,iei . Hence,c should imply (µp,0− µq,0) +
∑

np

i=1µp,ixp,i +∑
nq

i=1(−µq,i)xq,i ≥ 1 andµq,0+∑
nq

i=1µq,ixq,i ≥ 0. For the sake of uniformity, we rewrite
the second inequality asµq,0+∑

np

i=10xp,i +∑
nq

i=1µq,ixq,i ≥ 0. Both inequalities can be presented using
the scalar product notation as ˜µx̃≥ 1 andµ̃′x̃≥ 0, where:

x̃ = (x0,xp,1, . . . ,xp,np,xq,1, . . . ,xq,nq)
x0 is a new variable fixed to 1 and used to obtain the free coefficient in the product
µ̃ = (µp,0−µq,0,µp,1, . . . ,µp,np,−µq,1, . . . ,−µq,nq)
µ̃′ = (µq,0,0, . . . ,0,µq,1, . . . ,µq,nq).

Hence, the binary clauser gives rise to the following twopseudolinear programming problems.
The problems arepseudolinear rather than linear becausesymbolicparameters appear in the objective
functions.

minimise θ = µ̃x̃ subject to c∧x0 = 1 (2)

minimise δ = µ̃′x̃ subject to c∧x0 = 1 (3)

We note thatc∧ x0 = 1 is satisfiable asc is satisfiable andx0 is a new variable, and we rewrite
c∧ x0 = 1 asAx̃≥ b in the standard way (Schrijver 1986). An affine level mapping| · | ensuring
recurrence exists at least for this clause if and only ifθ∗ ≥ 1 andδ∗ ≥ 0, whereθ∗ andδ∗ denote the
minima of the corresponding objective functions. Because of the symbolic constantsµp,i andµq,i ,
neither (2) nor (3) is a linear programming problem. Now, the idea is to consider the dual form:

maximiseη = bT ỹ subject to AT ỹ = µ̃T ∧ ỹ≥ 0 (4)

maximiseγ = bT z̃ subject to AT z̃= µ̃′T ∧ z̃≥ 0 (5)

whereỹ andz̃ are tuples of adequate length of new variables. By the duality theorem of linear pro-
gramming which holds inC (see (Schrijver 1986) for instance), we haveθ∗ = η∗ and δ∗ = γ∗.
Furthermore, we observe that ˜µ appears linearly in the dual problem (4). Hence the constraints of
(4) can be rewritten, by addingη ≥ 1 as a set of linear inequations denotedSp≥1+q

r . Similarly,
the constraints of (5) can be rewritten, by addingγ ≥ 0 as a set of linear inequations, denoted
Sq≥0

r . Let us define defnP(p) as the set of binary clauses definingp in P, Sp as the conjunctionV
r∈defnP(p)[S

p≥1+q
r ∧Sq≥0

r ], andSP as the conjunction
V

p∈ΠP
Sp. We have by constructionSP is

satisfiable if and only if there exists a affine level mapping ensuring recurrence ofP.
Moreover, asP is a finite set of binary clauses, computingSP can be done in polynomial time with

respect to the size ofP and results in a constraint the size of which is also polynomial with respect
to the size ofP. Finally, testing satisfiability ofSP in Q, Q+, R, andR+ can be done in polynomial
time (Khachiyan 1979).

Note: As an immediate consequence of the result above, recurrency with affine level mappings is
also P-time decidable for non-binary CLP(R) program with clauses which contain more than one
atom in their bodies.

Example 3

Applying the algorithm to the example 1, we obtain the following two pseudo linear programming
problems corresponding to (2) and (3), respectively:

minimise θ = µp,1x1−µp,1x2 subject to72≥ x1∧x2 = x1 +1∧x0 = 1

minimise δ = µp,0 +µp,1x2 subject to72≥ x1∧x2 = x1 +1∧x0 = 1
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Rewriting the system of constraints asAx̃≥ b and switching to the dual form, we get the systemSP:

η = y1−y2−72∗y3 +y4−y5,
η≥ 1,
y1−y2 = 0,−y3−y4 +y5 = µp,1,
y4−y5 =−µp,1,
y1 ≥ 0,
y2 ≥ 0,
y3 ≥ 0,
y4 ≥ 0,
y5 ≥ 0


∪



γ = z1−z2−72∗z3 +z4−z5,
γ≥ 0,
z1−z2 = µp,0,
−z3−z4 +z5 = 0,
z4−z5 = µp,1,
z1 ≥ 0,
z2 ≥ 0,
z3 ≥ 0,
z4 ≥ 0,
z5 ≥ 0


SinceSP is satisfiable,P is alm-recurrent. Note that projectingSP onto theµp,i ’s gives{µp,0 +73∗
µp,1≥ 0,µp,1≤−1}. Any solution to this last constraint is a level mapping ensuring alm-recurrence
of P.

Although the technique above is not complete for binary programs overN, it is a sound way to
prove termination of programs over this domain: if the program terminates overQ it also terminates
overN. As we allow negative coefficients in the level mapping, we get a more powerful criterion than
the one proposed in (Sohn and Van Gelder 1991). For instance, termination of Example 1 (considered
as a CLP(N) program) cannot be proved by (Sohn and Van Gelder 1991). Furthermore, the restriction
to binary programs and dense domains asQ andR expands the sufficient condition proposed by Sohn
and Van Gelder to a correct, complete, and decidable proof technique.

For CLP(Q), the decision procedure described above has beenprototypedin SICStus Prolog (SICS
2005) using the Simplex algorithm (Dantzig 1951) and a Fourier-based projection operator (Holzbaur
1995) to ease manual verification. Therefore, the complexity of the prototype is not polynomial. The
implementation is available athttp://www.univ-reunion.fr/˜gcc/soft/binterm4q.tgz

4 Related Works

The basic idea of identifying decidable and undecidable subsets of logic programs goes back to (De-
vienne et al. 1993).

Recently, decidability of classes of imperative programs has been studied in (Cousot 2005; Podel-
ski and Rybalchenko 2004; Tiwari 2004). Tiwari considers real-valued programs with no nested
loops and no branching inside a loop (Tiwari 2004). Such programs correspond to one-binary-clause
CLP(R). The author provides decidability results for subclasses of these programs. Our approach
does not restrict nesting of loops and it allows internalbranching. While in general termination of
such programs is undecidable (Tiwari 2004), we identified a subclass of programs with decidable
termination property. Termination of the following CLP(R) program and its imperative equivalent
can be shown by our method but not by the one proposed in (Tiwari 2004).

Example 4

q(x) ← −20≤ x,x≤ 20,y+5 = x,q(y).
q(x) ← 0≤ x,x≤ 100,y+1 = x,q(y).

while ((−20≤ x≤ 20) or (0≤ x≤ 100)) do
if (−20≤ x≤ 20) x = x−5 fi
if (0≤ x≤ 100) x = x−1 fi

od

Similarly to (Tiwari 2004), Podelski and Rybalchenko (2004) have considered programs with
no nested loops and no branching inside a loop. However, they focused on integer programs and
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provide a polynomial time decidability technique for a subclass of such programs. In case of general
programs their technique can be applied to provide a sufficient condition for liveness.

In a recent paper, Cousot (2005) applied abstraction techniques and langrangian relaxation to
prove termination. Extension of the basic technique should be able to analyse loops with disjunctions
in their condition such as Example 4. However, complexity of the approach is not discussed and it is
not clear whether the technique is complete for some class of programs.

One might like to investigate a more expressive language of constraints including polynomials.
Recall that we require the constraints domain to beideal, i.e., one needs a decision procedure for ex-
istentially closed conjunctions. Such a decision procedure exists, for instance, for real-closed fields
such asR (Tarski 1931; Renegar 1992). For some domains such asQ, existence of a decision proce-
dure is still an open problem, although it seems to be unlikely (Pheidas 2000). If one restricts attention
to real-closed fields, one might even consider polynomial level-mappings of a certain power rather
than the affine ones. One can show that in this case proving recurrency is equivalent to determining
satisfiability of the equivalent quantifier-free formula (Tarski 1931; Tarski 1951). Hence, recurrency
is still decidable in this case. Although the known complexity bound of determining the equivalent
quantifier-free formula given an existential formula is a double exponential (Basu et al. 1996; Collins
1975), to the best of our knowledge the complexity of the subclass of formulae which we obtain is
an open question.

5 Conclusion

In this paper we have considered constraints solving over the rationals and the reals. For these do-
mains we have identified a class of CLP programs such that an affine level mapping is sufficient to
prove their termination. We have seen that membership to this class is decidable and presented a
polynomial-time decision procedure. The decision procedure can also be used as a sound termina-
tion proof technique for binary constraint logic programs over the naturals and has been prototyped
in SICStus Prolog.
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