
On termination of binary CLP programs

Alexander Serebrenik1 and Fred Mesnard2

1 École Polytechnique (STIX), 91128 Palaiseau Cedex, France
E-mail: Alexander.Serebrenik@stix.polytechnique.fr

2 IREMIA, université de La Réunion, France
E-mail: fred@univ-reunion.fr

Abstract. Termination of binary CLP programs has recently become an impor-
tant question in the termination analysis community. The reason for this is due
to the fact that some of the recent approaches to termination of logic programs
abstract the input program to a binary CLP program and conclude termination
of the input program from termination of the abstracted program. In this paper
we introduce a class of binary CLP programs such that their termination can be
proved by using linear level mappings. We show that membership to this class
is decidable and present a decision procedure. Further, we extend this class to
programs such that their termination proofs require a combination of linear func-
tions. In particular we consider as level mappings tuples of linear functions and
piecewise linear functions.

1 Introduction

Termination is well-known to be one of the crucial properties of software veri-
fication. Logic programming with its strong theoretical basis lends itself easily
to termination analysis as witnessed by a very intensive research in the area.
Some of the recent approaches to termination [3, 9, 12] proceed in two steps.
First, a logic program is abstracted to a CLP(N)-program, i.e. logic program
extended with constraint solving over the domain of natural numbers N . Sec-
ond, the CLP(N)-program is approximated by a binary CLP(N) program, i.e.,
a set of clauses of the form p(x̃)← c,q(ỹ), where c is a CLP-constraint and p,q
are user-defined predicates.

In this paper we study decidability of termination for binary CLP(C) pro-
grams. In general, it depends on the constraint domain C . On the one hand, De-
vienne et al. [5] have established undecidability of termination for one-clause
binary CLP(H) programs, where H is the domain of Herbrand terms. Similar
results can be obtained for other CLP languages such as CLP(N) and CLP(Q).
On the other hand, Datalog, i.e., logic programming language with no function
symbols, provides an example of a constraint programming language such that
termination is decidable for it.

For constraint domains with the undecidable termination property, we are
interested in subclasses of binary programs such that termination is decidable

for these subclasses. A trivial example of such a subclass is the subclass of
non-recursive binary programs. After the preliminary remarks of Section 2, in
Section 3 we present our main result, namely a non-trivial subclass of terminat-
ing binary CLP(C) programs such that membership to this subclass is decidable
if C is Q , Q + or R . Intuitively, this is the class of binary CLP programs such
that there exists a linear function decreasing while traversing the clauses. Two
extensions of this class are discussed in Section 4.

2 Preliminaries

2.1 Constraint Logic Programming

We adhere to the definitions of [7]. For sake of completeness we recapitulate
them briefly. A constraint domain C is a tuple (ΣC ,LC ,DC ,TC ,solvC). The
domain signature ΣC is a pair (FC ,ΠC), where FC is the set of function sym-
bols and ΠC is the set of predicate symbols. The class of constraints LC is a
set of first order formulae closed under conjunction and existential quantifi-
cation. The domain of computation DC is the intended interpretation of con-
straints over a set DC . The constraint theory TC describes the logical semantics
of the constraints. Finally, the constraint solver solvC maps each formula in LC
to {true, false,unknown}, such that for any c ∈ LC , solvC (c) = false implies
TC |= ¬∃c, and solvC (c) = true implies TC |= ∃c. A constraint solver is called
complete if it only returns true or false. A constraint domain with a complete
solver is called ideal. A constraint logic programming language over an ideal
domain is also called ideal.

We consider the following ideal constraint domains:

– N . The predicate symbols are = and ≥, the function symbols are 0, 1, and
+. The constraint theory TN is the theory of Presburger arithmetic, known to
be decidable. It should be noted that constraints produced by the abstraction
techniques of [3, 9, 12] can be expressed in Presburger arithmetic.

– Q and R . The predicate symbols are as above, the function symbols are 0,
1,+,−, ∗, and /, however only linear constraints are admitted. Q + and R +

restrict Q and R to non-negative numbers.

Given a program P, we define ΠP as the set of user-defined predicate sym-
bols appearing in P. Syntactic objects are viewed modulo renaming of variables.
In this paper we restrict our attention to binary programs. We assume that bi-
nary rules are in flat form: p(x̃) ← c,q(ỹ), with x̃∩ ỹ = ∅ (where ∅ denotes
the empty set and x̃ a tuple of distinct variables). Flat facts and flat queries are
defined accordingly. An atomic query is a flat query of the form c,q(ỹ) where
q ∈ΠP.

A C -interpretation for a CLP(C) program P is an interpretation on the do-
main signature (FC ,ΠC ∪ΠP) that agrees with the domain of computation DC
on the interpretation of the symbols in ΣC . Given a CLP(C)-program P, the
C -base BC

P is defined as {p(d1, . . . ,dn) | p ∈ ΠP,(d1, . . . ,dn) ∈ (DC)n}. A C -
interpretation can be regarded as a subset of the C -base. A C -model of a pro-
gram P is a C -interpretation of P that is also a model of P.

A valuation θ is a function that maps all variables to DC . For an interpreta-
tion J and a formula ϕ we write J |=θ ϕ if θ(ϕ) is valid with respect to J. For
a query Q of the form (c,A), we define groundC (Q) = {θ(A)|DC |=θ c}. For a
rule, we define groundC ((A← c,B)) = {θ(A← B)|DC |=θ c}. Similarly, for a
program P, groundC (P) is the set of ground C -instances of the rules of P.

2.2 Termination analysis

In this subsection we present briefly a number of notions related to termina-
tion analysis. First of all, we say that a CLP(C) program P and a query Q left-
terminate if every derivation of Q with respect to P via the leftmost selection
rule is finite.

One key concept in many (theoretical) approaches lies in the use of level
mappings, i.e., mappings from ground atoms to natural numbers. We slightly
extend this traditional definition and map the elements of the C -base to a well-
founded set. We prefer to talk about a general well-founded set rather than about
the set of the naturals, in order to be able to consider functions to R + and
(R +)m. Recall that a well-founded set is a partially ordered set (S,!) such that
there is no infinitely decreasing chain s1! s2! . . . of elements of S. Formally,
a level mapping for a constraint domain C is a function | · | : C -base → S. It is
well-known that termination of a CLP program can be characterised by means
of level mappings. The following definition is taken from [13].

Definition 1. Let | · | : C -base→ S be a level mapping, and I be a C -interpreta-
tion. A CLP(C) program P is acceptable by | · | and I if I is a C -model of P, and
for every A← B1, . . . ,Bn in groundC (P), for i ∈ [1,n], I |= B1, . . . ,Bi−1 implies
|A|! |Bi|. A query Q is acceptable by | · | and I if there exists k ∈ S such that for
every A1, . . . ,An in groundC (Q), for i ∈ [1,n], I |= A1, . . . ,Ai−1 implies k! |Ai|.

For binary programs and atomic queries, model and queries can be elimi-
nated from the previous definition (see Lemma 1 and Proposition 1). By doing
so we can obtain a notion similar to recurrency. Originally the notion of recur-
rency has been introduced in [1] to characterise termination of ground queries
to logic programs for all selection rules. For constraint logic programming we
introduce the following definition:

Definition 2. Let P be a binary CLP(C) program, and | · | : C -base → S be a
level mapping. P is called recurrent with respect to | · | if for every A← B ∈
groundC (P), |A|! |B| holds.

The following lemma states that for binary programs the notions of accept-
ability and recurrency coincide.

Lemma 1. Let P be a binary CLP(C) program and | · | : C -base→ S be a level
mapping. Then, P is acceptable by | · | and the C -base if and only if P is recurrent
with respect to | · |.

The relationship between acceptability and termination for ideal CLP lan-
guages can be expressed by the following theorems:

Theorem 1. ([13]) Let CLP(C) be an ideal CLP language. If a program P and
a query Q are both acceptable by some level mapping | · | and a C -model I then
they left terminate.

From here on we consider only ideal constraint logic programming lan-
guages. This assumption is quite common in termination analysis for CLP. For
binary programs one can use Lemma 1 and replace acceptability with respect to
a level mapping and a model by recurrency with respect to a level mapping.

Observe that we do not need to introduce the corresponding notion of re-
currency for queries. Instead, in order to take care of the atomic query Q we
extend the corresponding binary program P by a clause q← Q, where q is a
fresh predicate symbol, i.e., q *∈ΠP,q *∈ΠC . The basic idea is that recurrency of
P∪{q←Q} implies termination ofQwith respect to P. Formally, the following
proposition holds.

Proposition 1. Let P be a binary CLP(C) program, Q be an atomic query, and
q be a fresh predicate symbol as above. If P∪{q← Q} is recurent with respect
to a level mapping | · | then Q terminates with respect to P.

2.3 Linear programming

In this subsection we recall briefly some basic notions of linear programming
(see [15] for instance) to be applied in Section 3.1. Essentially, linear program-
ming aims at finding the extremum of a linear function of positive numbers, so
called the objective function, given that a system of linear inequalities on these
variables holds. Formally, a minimising linear programming problem can be
expressed as follows: minimise c̃x̃T subject to Ax̃T ≥ b̃T and x̃ ≥ 0, where x̃ is a
vector of variables, c̃ expresses the objective function, the superscript T denotes
a transposed of a vector, and Ax̃T ≥ b̃T denotes the system of linear constraints.

For every minimising linear programming problem over the rationals or the re-
als, there exists a maximising linear programming problem, called dual, such
that an optimal solution to one problem ensures the existence of an optimal
solution to the other and that the optimal values of the objective functions are
equal. This statement is known as the duality theorem. Given a minimising lin-
ear programming problem as above, the dual linear programming problem has
the following form: maximise ỹb̃T subject to ỹAT ≤ c̃ and ỹ≥ 0.

3 Llm-recurrent programs

In this section we consider a special subclass of binary programs and atomic
queries. In particular, we are interested in programs and queries that can be
analysed by means of linear level mappings. Let C be N or Z or Q + or Q or
R . As a range for a level mapping in this section we take (R +,!), where x! y
holds if x≥ y+1.

Definition 3. A level mapping | · |: C -base → R + is called linear if for any n-
ary predicate symbol p, there exist real numbers µip, 0≤ i≤ n, such that for any
atom p(e1, . . . ,en) ∈ C -base, |p(e1, . . . ,en)| = max(0,µ0p+∑n

i=1µipei).

Using the notion of a linear level mapping we can define the class of pro-
grams we are going to study.

Definition 4. Let P be a binary flat CLP(C) program. We say that P is llm-
recurrent if there exists a linear level mapping | · | such that P is recurrent with
respect to it.

Example 1. Consider the following program: p(X) ← X≤ 72,Y = X+1,p(Y).
This program is llm-recurrent with respect to |p(x)| = max(0,73−x). "

In the next subsection we quickly review the algorithm of Sohn and Van
Gelder [17] that aims at checking the existence of a linear level mapping such
that P is llm-recurrent with respect to it. This will allow us to show that llm-
recurrency is decidable for Q and R .

3.1 The algorithm SVG

The algorithm of Sohn and Van Gelder (SVG) examines each recursive user-
defined predicate symbol p of a CLP(Q +) program in turn (the precise or-
der does not matter) and try to find a level mapping for p(x1, . . . ,xn) sym-
bolically defined as |p(x̃)| = µ0 +∑1≤i≤n µixi where µi ≥ 0 for all i. For sake
of simplicity, we assume that the program is only directly recursive. By this

we mean that if there exist sequences of predicates p = r0,r1, . . . ,rn = q and
q = rn,rn+1, . . . ,rm = p such that for all i, ri(x̃)← c(x̃, ỹ),ri+1(ỹ) is a clause in
P, then p is identical to q. Moreover, we may safely ignore the constant µ0.

For every rule r, say p(x̃0) ← c, p(x̃k), we assume that the constraint c is
satisfiable, already projected onto x̃0∪ x̃k, only contains inequalities of the form
e1≥ e2, with e1 and e2 being arithmetical expressions over x̃0∪ x̃k and constants.
For such a rule recurrency requires that c implies ∑1≤i≤n µix0i −∑1≤i≤n µixki ≥
1, where x̃0 is the vector (x01, . . . ,x

0
n) and x̃k is the vector (xk1, . . . ,xkn). In other

words, such a binary rule gives rise to the following pseudo3 linear programming
problem

minimise θ= µ̃(x̃0− x̃k) subject to c, x̃0 ≥ 0, x̃k ≥ 0 (1)

where µ̃ is the vector (µ1, . . . ,µn). A level mapping | · | ensuring recurrency exists
(at least for this clause) if θ∗ ≥ 1 where θ∗ denotes the minimum of the objective
function. Because of the symbolic constants µ̃, (1) is not a linear programming
problem. The idea of Sohn and Van Gelder is to consider its dual form:

maximise η= βỹ subject to Aỹ≤ (µ1, . . . ,µn,−µ1, . . . ,−µn), ỹ≥ 0 (2)

where β and A are automatically derived while switching to the dual form of
(1) and ỹ is the vector of dual variables. By the duality theorem of linear pro-
gramming, we have θ∗ = η∗. Now, the authors observe that µ̃ appears linearly
in the dual problem (it is not true for (1)) because no µi appears in A. Hence the
constraints of (2) can be rewritten, by adding η≥ 1, ỹ≥ 0, as a set of linear in-
equations, denoted Sr. If the conjunction Sp = ∧kSr (for each clause defining p)
is satisfiable, then there exists a linear level mapping for p ensuring recurrency.

Example 2. We consider the CLP(Q +) program P:

p(X1,X2)← X1 +2∗X2 ≥ 3∗X3 +4∗X4 +1,p(X3,X4).

The first step is the pseudo-linear program: minimise θ = a(x1− x3) + b(x2−
x4) subject to x1,x2,x3,x4 ≥ 0,x1+ 2x2 ≥ 3x3+ 4x4+ 1. We get: minimise θ =
[a b −a −b] [x1 x2 x3 x4]T subject to A [x1 x2 x3 x4]T ≥ [0 0 0 1]T , where A is



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 2 −3 −4




. The dual form is: maximise η= [0 0 0 0 1] [y1 y2 y3 y4 y5]T sub-

ject to AT [y1 y2 y3 y4 y5]T ≤ [a b −a −b]T and y1,y2,y3,y4,y5 ≥ 0. The pa-
rameters a and b now appear linearly, they will be considered as new vari-
ables and we have: maximise η = [0 0 0 0 1 0 0] [y1 y2 y3 y4 y5 a b]T subject to
3 because symbolic parameters appear in the objective function.





1 0 0 0 1 −1 0
0 1 0 0 2 0 −1
0 0 1 0 −3 1 0
0 0 0 1 −4 0 1









y1
y2
y3
y4
y5
a
b





≤





0
0
0
0



 and y1,y2,y3,y4,y5,a,b ≥ 0. As the sys-

tem Sp (where η= y5):





y5 ≥ 1
y1+ y5−a ≤ 0
y2+2y5−b ≤ 0
y3−3y5+a ≤ 0
y4−4y5+b ≤ 0
y1,y2,y3,y4,y5,a,b ≥ 0

is satisfiable, we conclude that there exists a linear level mapping ensuring re-
currency of P. "

So SVG is basically an efficient procedure for deciding in R (or any other
domain such that the duality theorem holds for it) the formula ∃µ̃∀x̃∪ ỹ[c(x̃, ỹ)→
µ̃x̃≥ 1+ µ̃ỹ] corresponding to the rule p(x̃)← c(x̃, ỹ), p(ỹ). It produces a linear
constraint (the system Sp in our example) such that satisfiability of this con-
straint is equivalent to a positive answer for the decision problem.

3.2 Verifying llm-recurrency with SVG

To prove llm-recurrency, we need to find a function satisfying Definition 3, i.e.,
for every predicate p we are looking for a vector µ̃p, such that max(0,µ0p +
∑n
i=1µipei) decreases while traversing the rules. Hence, we extend SVG to decide
the existence of µ̃ such that for each renamed apart rule p(x̃)← c(x̃, ỹ),q(ỹ)∈ P,
we have: ∀x̃∪ ỹ {c(x̃, ỹ)→ [µ̃px̃≥ 1+ µ̃qỹ∧ µ̃qỹ≥ 0]}. We compute the equiva-
lent constraint corresponding to each rule, and satisfiability of their conjunction
is equivalent to llm-recurrency.

Note that for a ground atom p(ẽ) we may have µ̃pẽ < 0. But as |p(ẽ)| is
defined by max(0, µ̃pẽ), we have |p(ẽ)| = 0. Observe also that µ̃pẽ< 0 may hold
only for atoms p(ẽ) such that c(ẽ, ỹ) is unsatisfiable for all ỹ, i.e., atoms with
computation of depth 1. The explanation above justifies the following decid-
ability result.

Theorem 2. SVG is a decision procedure for llm-recurrency of binary con-
straint logic programs over Q +,Q and R .

Example 3. Example 2, continued. We need to find µp(x,y) = ax+by such that

ax1+bx2 ≥ ax3+bx4+1 and ax3+bx4 ≥ 0
subject to x1,x2,x3,x4 ≥ 0,x1+2x2 ≥ 3x3+4x4+1

One of such solutions is a= 1,b= 2 leading to the following linear level map-
ping |p(x,y)| = max(0,x+ 2y). Since constraints solving is done over Q + we
can further simplify this definition to |p(x,y)| = x+2y. "

Observe that although SVG is not necessarily complete for binary constraint
logic programs over N or Z, it is still a sound way to prove termination of
programs over these domains. Indeed, by considering a CLP(N) program as a
CLP(Q) program we enlarge the domain. Hence, if the program terminates over
Q it also terminates overN . The following example illustrates that the converse
is not necessarily true.

Example 4. Consider the program:

div2(X)← X > 0,2∗Y = X,div2(Y).

The query X = 1,div2(X) terminates with respect to this program if constraint
solving is done over N or Z. This is clearly not the case for Q . "

To estimate the relative importance of this class of binary CLP(N) programs
we have considered a number of logic programming examples, abstracted them
and binarised as proposed in [3]. The class of llm-recurrent programs turned
out to be broad enough to include binary CLP(N) programs corresponding to
fluctuates, mergesort, queens, and rotate [2].

4 Extending llm-recurrency

In this section we present two extensions of the class of llm-recurrent programs.
Our first extension has been motivated by a local approach for termination [3,
10], while the second one by the previous study of numerical computations [16].

4.1 Tuples of linear functions

The basic idea of our first extension is to consider tuples of linear level map-
pings. In other words, a level mapping should map any ground atom to an m-
tuple of non-negative real numbers, wherem is a fixed natural number. As above,
we need to guarantee that this set is well-founded. Hence, we combine linear
level mappings lexicographically. As a range for tuple-linear level mappings we
choose ((R +)m,!), where x! y holds if x = (x1, . . . ,xm),y = (y1, . . . ,ym) and
there exists 1≤ i≤ m such that for all j ∈ [1, i−1], x j = y j and xi ≥ yi+1.

Definition 5. A level mapping | · |m: C -base → ((R +)m,!) is called tuple-
linear if for any atom p(e1, . . . ,en) ∈ C -base,

|p(e1, . . . ,en)| = (max(0,µ(0,1)
p +

n

∑
j=1

µ(j,1)
p e j), . . . ,max(0,µ

(0,m)
p +

n

∑
j=1

µ(j,m)
p e j))

where the coefficients µ(j,i)
p are real numbers.

The order relation on tuples is given as the lexicographic order relationship
on R +. Similarly to the definition above we say that a program P is tuple llm-
recurrent if there exists a tuple-linear level mapping such that P is recurrent
with respect to it. Clearly, tuple llm-recurrency implies termination in the same
fashion as in Proposition 1.

Example 5. Consider the following binary CLP(Q +) program:

mul(,Z)← Z = 0.

mul(N,M)← N≥ 0,M > 0,M1 = M−1,mul aux(N,M1,M1).
mul aux(X,Y,Z)← X > 0,Y > 0,X1 = X,Y1 = Y−1,Z1 = Z,

mul aux(X1,Y1,Z1).
mul aux(X,Y,Z)← X > 0,Y = 0,X1 = X−1,Y1 = Z,Z1 = Z,

mul aux(X1,Y1,Z1).
mul aux(X, ,)← X = 0.

This program is not llm-recurrent. Indeed, if it has been llm recurrent, the max-
imal depth of any derivation of mul(n,m) would be linear in n and m. However,
one can see that the maximal depth of such a computation depends on m∗n.

To show that the multiplication example is tuple llm-recurrent we use the
following level mapping: |mul(n,m)| = (n,m), |mul aux(x,y,z)| = (x,y). This
level mapping is clearly tuple-linear. To prove the recurrency observe that the
following inequalities hold:

mul(n,m)	= (n,m) > (n,m−1) =	mul aux(n,m1,m1)
mul aux(x,y,z)	= (x,y) > (x,y−1) =	mul aux(x1,y1,z1)
mul aux(x,y,z)	= (x,y) > (x−1,z) =	mul aux(x1,y1,z1)

An additional example of a program that is tuple llm-recurrent but not llm-
recurrent can be obtained by abstracting and binarising ackermann. "

Decidability of llm-recurrency implies:

Theorem 3. Tuple llm-recurrency is decidable for Q +, Q and R .

Proof. Observe that each function of the tuple should decrease at least for one
binary clause. Hence, let np be the number of binary clauses defining the pred-
icate symbol p, excluding facts. Then m is limited by max({np|p ∈ ΠP}). Let
µ1, . . . ,µm be linear functions of the tuple. Then, for each rule p(x̃) ← c, p(ỹ)
with vars(c)⊆ x̃∪ ỹ, the following should hold:

∀x̃∪ ỹ {c→ [µ1(x̃− ỹ)≥ 1∧µ1(ỹ)≥ 0]}
∨

∀x̃∪ ỹ {c→ [µ1(x̃− ỹ) = 0∧µ2(x̃− ỹ)≥ 1∧µ2(ỹ)≥ 0]}
∨
. . .

∨
∀x̃∪ ỹ {c→ [µ1(x̃− ỹ) = . . . = µm−1(x̃− ỹ) = 0∧µm(x̃− ỹ)≥ 1∧µm(ỹ)≥ 0]}

Each one of the disjuncts is similar to (1), i.e., can be decided by SVG. "
Similarly to the previous case while the method outlined above is not nec-

essarily complete for binary constraint logic programs over N or Z, it is still a
sound way to prove termination of programs over these domains.

4.2 Piecewise linear level mappings
The second extension of the class of the llm recurrent programs has been mo-
tivated by our previous study of termination of numerical computations [16].
We have suggested to split the domain of an argument into pairwise disjoint
cases, called “adornments” and to specialise the program with respect to the
adornments. Termination of the specialised program implies termination of the
original one. Moreover, this transformation technique allows us to infer a piece-
wise linear level mapping proving termination of the original program.

Definition 6. A level mapping | · |: C -base→ (R +,!) is called piecewise linear
if there exist linear level mappings | · |1, . . . , | · |n: C -base → (R +,!) such that
for all A ∈ C -base there exists i such that | A |=| A |i and if | A |*= 0 this i is
unique.

We can also write a piecewise level mapping | · | as follows:

|A| =






|A|1, |A|1 *= 0,
.
|A|n, |A|n *= 0,
0, otherwise

To see that a piecewise linear level mapping generalises Definition 3 observe
that any linear level mapping is a piecewise linear level mapping for n = 1.
A binary CLP(C) program P is called piecewise llm recurrent if there exists a
piecewise linear level mapping such that P is recurrent with respect to it.

Unlike the results presented in Sections 3 and 4.1 at the moment it is not
known to us whether piecewise recurrency is decidable. However, we suggest a
technique that upon success allows us to prove piecewise recurrency (and hence,
termination). Moreover, this technique finds a piecewise level mapping such that
the program is recurrent with respect to it. We present the technique by means
of example. Consider the following CLP(N) program P:

q(X)← X+X+Y = 50,q(Y).

We are interested in showing termination of S= {q(X)}.

1. First, we identify the reference points with respect to this clause. Refer-
ence points with respect to a clause p(x̃) ← c(x̃, ỹ), p(ỹ) are solutions of
c(x̃, ỹ), x̃ = ỹ. If there is no solution over N (Z) but there exists a solution
x̃0 over Q take 0x̃01. For our example, we need to solve x+x+y= 50,x= y
which does not have solutions overN but it has one solution overQ , namely
50
3 . Hence, we take 16 as the reference point.

2. The following step considers collecting the constraints and constructing the
adornments. The set of constraintsC is defined as the union of the following
three sets of inequalities:
– set of x̃≤ x̃0 for every reference point of the form x̃0;
– projection of c(x̃, ỹ) on x̃, i.e., c′(x̃) such that c(x̃, ỹ) |= c′(x̃) and for every
c′′(x̃), if c(x̃, ỹ) |= c′′(x̃) then c′(x̃) |= c′′(x̃);

– if the domain is N , Q + or R +, inequalities of the form x̃≥ 0.
In our case these sets are {X ≤ 16}, {X ≤ 25}, {X ≥ 0}, respectively. In
order to compute the set of adornments Aq we take all possible conjunc-
tions of the elements of C and their negations. For the running example
after simplifying the conjunctions, removing inconsistencies with respect
to N and replacing strict inequalities with the non-strict ones, we obtain
{0 ≤ X ≤ 16,17 ≤ X ≤ 25,X ≥ 26}. For the sake of simplicity we denote
elements of this set {a,b,c}. In general, if a number of elements in C is k,
the maximal number of adornments is 2k. Note that k is expected to be small,
so the size of the set of adornments should not be problematic in practise.

3. Steps 3-8 have been inspired by the technique we used for numerical compu-
tations. Hence, here we present the steps briefly and refer to [16] for further
details and proofs. For each binary clause r in P add

W
c∈Ap c(x̃) before a call

p(x̃) in the body of r. By the construction above the disjunction is true, thus,

the transformed program is equivalent to the original one. In our case, the
following program is obtained:

q(X)← X+X+Y = 50,(0≤ Y ≤ 16∨17≤ Y ≤ 25∨Y ≥ 26),q(Y).

4. For each clause, such that the head of the clause, say p(x̃), has a recursive
predicate p, add

W
c∈Ap c(x̃) as the first subgoal in its body. As for the previ-

ous step, the introduced call is equivalent to true, so that the transformation
is obviously correct:

q(X)← (0≤ X ≤ 16∨17≤ X ≤ 25∨X ≥ 26),
X+X+Y = 50,(0≤ Y ≤ 16∨17≤ Y ≤ 25∨Y ≥ 26),q(Y).

5. Next, moving to an alternative procedural interpretation of disjunction, for
each clause in which we introduced a disjunction in one of the previous two
steps, and for each such introduced disjunction we split these disjunctions,
introducing a separate clause for each disjunct. For our running example we
obtain 9 clauses. In general, every binary clause of the original program can
produce (2k)2 adorned clauses. Observe that this transformation is correct
for pure CLP programs but it is not correct for Prolog programs with non-
logical features. For instance, in the presence of “cut”, it may produce a
different computed answer set.
To prepare the next step in the transformation, note that, in the program
resulting from step 5, for each rule r and for each recursive predicate p:
– if a call p(x̃) occurs in r, it is immediately preceded by some adornment,
– if an atom p(x̃) occurs as the head of r, it is immediately followed by
some adornment.

Moreover, since the elements Ap partition the domain, conjuncts like ci(x̃),
p(x̃) and c j(x̃), p(x̃) for i *= j, are mutually exclusive, as well as the analo-
gous initial parts of the rules. This means that we can now safely rename the
different cases apart.

6. Replace each occurrence of c(x̃), p(x̃) in the body of the clause with c(x̃),
pc(x̃) and each occurrence of a rule p(x̃) ← c(x̃),Q with the correspond-
ing rule pc(x̃) ← c(x̃),Q. Because of the arguments presented above the
LD-trees that exist for the given program and for the renamed program are
identical, except for the names of the predicates and for a number of fail-
ing 1-step derivations (due to entering clauses that fail in their guard in the
given program). As a result, both the semantics (up to renaming) and the
termination behaviour of the program are preserved.

7. Remove all rules p(x̃)← c, . . . with an inconsistent constraint c. We get:

qa(X)← 0≤ X ≤ 16,X+X+Y = 50,17≤ Y ≤ 25,qb(Y).
qa(X)← 0≤ X ≤ 16,X+X+Y = 50,26≤ Y,qc(Y).
qb(X)← 17≤ X ≤ 25,X+X+Y = 50,0≤ Y ≤ 16,qa(Y).

which is the adorned program, Pa.
8. Next we need to prove termination of the adorned program with respect to
the set of adorned queries Sa = {0≤X ≤ 16,qa(X)}∪{17≤X ≤ 25,qb(X)}
∪{X ≥ 26,qc(X)}. Observe that for every adornment c, pc(e1, . . . ,en) is
called in a computation of a query in Sa with respect to Pa if and only if
p(e1, . . . ,en) is called in a computation of the corresponding query in S with
respect to P, and c holds for e1, . . . ,en. In our particular case termination
can be proved by applying SVG. The following is one of the level mappings
obtained.

|qa(x)|a =
{
3x+50 0≤ x≤ 16,
0 otherwise

|qb(x)|b =
{
150−3x, 17≤ x≤ 25,
0 otherwise

|qc(x)|c = 0

9. Finally, we combine the linear level mappings found to obtain a piecewise
linear level mapping. In our running example we can write the resulting
level mapping as

|q(x)| =






3x+50 0≤ x≤ 16
150−3x 17≤ x≤ 25
0 x≥ 26

Since this level-mapping exists we conclude termination of our CLP(N)
program for all queries c,q(X). This would not be the case if a different
constraint domain such as Q have been considered.

Correctness of this transformation follows from [16]:

Theorem 4. Let P be a binary CLP program, S be a set of atomic CLP-queries,
Pa and Sa the adorned program and the set of adorned queries, respectively.
Then, all queries in S terminate with respect to P if and only if all queries in Sa
terminate with respect to Pa.

5 Conclusion

In this paper we have identified a class of CLP programs such that a linear level
mapping is sufficient to prove their termination. We have seen that membership
to this class is decidable and suggested a decision technique. We have further
extended this class by considering tuples of linear functions. We have seen that
membership to this class is also decidable. Finally, we have discussed piecewise
level mappings.

The basic idea of identifying decidable and undecidable subsets of logic pro-
grams goes back to [4, 5, 14]. We generalise the class of programs considered
to constraint logic programming (recall that logic programming can be seen as
constraint logic programming over the domain of Herbrand terms). The restric-
tion we pose is not syntactic. We have seen that llm-recurrency is a decidable
condition sufficient for termination for all the domains considered. This condi-
tion can be automatically verified by cTI [12].

The idea of using mappings to domains more general than the natural num-
bers originated in early works on termination analysis [6, 8]. Tuple llm recur-
rency condition can be seen as a particular instance of this framework. Using
tuples has been motivated by [3, 10] that do not compare sizes of atoms but
sizes of arguments of these atoms. In [3, 10] a local approach to termination has
been suggested, i.e. termination proof was based on a (locally verified) property
of the computation abstraction. We follow a global approach to termination, i.e.,
require the existence of a function (level mapping) decreasing along all possible
computation paths. A related technique of using two level-mappings has been
recently investigated in [11]. The main difference is that Martin and King use
the two level mappings separately for two different goals, i.e. proving decrease
and boundedness, while we use a lexicographic combination of level mappings
to achieve both goals at the same time.

The adornments method presented above has been first presented in context
of the numerical computations [16] and in its turn is related to the previous
work on splitting predicates [17]. This technique can be seen as a variant of
multiple specialisation [18]. However, to the best of our knowledge none of the
existing specialisation tools considered constraint logic programming.

A number of interesting questions are considered as future work. First of
all, we would like to understand whether the adornments technique is complete
for piecewise llm recurrent programs. On a more practical side, we would like
to implement these extensions in the termination analyser cTI [12] and evaluate
our approach experimentally.

References

1. K. R. Apt and M. Bezem. Acyclic programs. New Generation Computing, 9(3/4):335–364,
1991.

2. M. Codish. TerminWeb. Collection of benchmarks available at:
http://lvs.cs.bgu.ac.il/∼mcodish/suexec/terminweb/bin/terminweb.cgi?command=examples.

3. M. Codish and C. Taboch. A semantic basis for termination analysis of logic programs.
Journal of Logic Programming, 41(1):103–123, 1999.

4. D. De Schreye, K. Verschaetse, andM. Bruynooghe. A practical technique for detecting non-
terminating queries for a restricted class of Horn clauses, using directed, weighted graphs.
In D. H. Warren and P. Szeredi, editors, Logic Programming, Proceedings of the Seventh
International Conference, pages 649–663. MIT Press, 1990.

5. P. Devienne, P. Lebègue, and J.-C. Routier. Halting problem of one binary horn clause is
undecidable. In P. Enjalbert, A. Finkel, and K. W. Wagner, editors, STACS 93, 10th Annual
Symposium on Theoretical Aspects of Computer Science, Würzburg, Germany, February 25-
27, 1993, Proceedings., volume 665 of Lecture Notes in Computer Science, pages 48–57.
Springer Verlag, 1993.

6. R. W. Floyd. Assigning meanings to programs. In J. Schwartz, editor,Mathematical Aspects
of Computer Science, pages 19–32. American Mathematical Society, 1967. Proceedings of
Symposium in Applied Mathematics; v. 19.

7. J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic Pro-
gramming, 19/20:503–582, May/July 1994.

8. S. Katz and Z. Manna. A closer look at termination. Acta Informatica, 5:333–352, 1975.
9. V. Lagoon, F. Mesnard, and P. J. Stuckey. Termination analysis with types is more accu-
rate. In C. Palamidessi, editor, Logic Programming, 19th International Conference on Logic
Programming, pages 254–269. Springer Verlag, 2003.

10. N. Lindenstrauss and Y. Sagiv. Automatic termination analysis of logic programs. In
L. Naish, editor, Proceedings of the Fourteenth International Conference on Logic Program-
ming, pages 63–77. MIT Press, July 1997.

11. J. C. Martin and A. King. On the inference of natural level mappings. In M. Bruynooghe and
K.-K. Lau, editors, Program Development in Computational Logic, volume 3049 of Lecture
Notes in Computer Science. Springer Verlag, 2004.

12. F. Mesnard and U. Neumerkel. Applying static analysis techniques for inferring termina-
tion conditions of logic programs. In P. Cousot, editor, Static Analysis, 8th International
Symposium, SAS 2001, volume 2126 of Lecture Notes in Computer Science, pages 93–110.
Springer Verlag, 2001.

13. F. Mesnard and S. Ruggieri. On proving left termination of constraint logic programs. ACM
Transaction on Computational Logic, 4(2):207–259, 2003.

14. S. Ruggieri. Decidability of logic program semantics and applications to testing. Journal of
Logic Programming, 46(1–2):103–137, November/December 2000.

15. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
16. A. Serebrenik and D. De Schreye. Inference of termination conditions for numerical loops

in Prolog. Theory and Practice of Logic Programming, 2004. to appear.
17. K. Sohn and A. Van Gelder. Termination detection in logic programs using argument sizes.

In Proceedings of the Tenth ACM SIGACT-SIGART-SIGMOD Symposium on Principles of
Database Systems, pages 216–226. ACM Press, 1991.

18. W. Winsborough. Multiple specialization using minimal-function graph semantics. Journal
of Logic Programming, 13(2/3):259–290, 1992.

