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Preface

This volume contains papers presented at WLPE 2003, the 13th Interna-
tional Workshop on Logic Programming Environments. The aim of WLPE is to
provide an informal meeting for researchers working on tools for development
and analysis of logic programming. This year, the emphasis is on the presenta-
tion, pragmatics and experiences of such tools.

WLPE 2003 takes place in Tata Institute of Fundamental Research, Mum-
bai, India on December 8 and is a part of a bigger event, ICLP 2003, the 19th
International Conference on Logic Programming, holding in conjunction with
ASIAN 2003, the Eighth Asian Computing Science Conference, and FSTTCS
2003, the 23rd Conference on Foundations of Software Technology and Theor-
etical Computer Science. This workshop continues the series of successful in-
ternational workshops on logic programming environments held in Ohio, USA
(1989), Eilat, Israel (1990), Paris, France (1991), Washington, USA (1992),
Vancouver, Canada (1993), Santa Margherita Ligure, Italy (1994), Portland,
USA (1995), Leuven, Belgium and Port Jefferson, USA (1997), Las Cruces,
USA (1999), Paphos, Cyprus (2001) and Copenhagen, Denmark (2002).

We would like to express our gratitude to the ICLP organisers for hosting the
workshop. Special thanks go to R.K.Shyamasundar for taking care of the many
organisational matters, in particular, printing these proceedings. Also we would
like to thank the program committee members for reviewing and discussing the
submissions as well as the authors for submitting their work.

Out of 9 submissions the program committee has selected 5 works for present-
ation. In addition, Jan Wielemaker (University of Amsterdam, The Netherlands)
was invited to present a number of typical problems Prolog users are faced with
and illustrate how tools developed in SWI-Prolog may help to find them.

Fred Mesnard
Alexander Serebrenik
Mumbai, December 2003
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An Overview of the SWI-Prolog Programming
Environment

Jan Wielemaker

Social Science Informatics (SWI),
University of Amsterdam,

Roetersstraat 15, 1018 WB Amsterdam, The Netherlands,
jan@swi.psy.uva.nl

Abstract. The Prolog programmer’s needs have always been the focus
for guiding the development of the SWI-Prolog system. This article ac-
companies an invited talk about how the SWI-Prolog environment helps
the Prolog programmer solve common problems. It describes the central
parts of the graphical development environment as well as the command
line tools which we see as vital to the success of the system. We hope
this comprehensive overview of particularly useful features will both in-
spire other Prolog developers, and help SWI-Prolog users to make more
productive use of the system.

1 Introduction

SWI-Prolog has become a popular Free Software implementation of the
Prolog language. Distributed freely through the internet, it is difficult to
get a clear picture about its users, how these users use the system and
which aspects of the system have contributed most to its popularity. Part
of the users claim the programmer’s environment described in this article
is an important factor.

The majority of the SWI-Prolog users are students using it for their as-
signments. The community of developers, however, expend effort on large
portable Prolog applications where scalability, (user-) interfaces, network-
ing are often important characteristics. Compared to the students, who
are mostly short-term novice users, we find many expert software de-
velopers in the research and development community.

The material described in this paper is the result of about 18 years
experience as a Prolog programmer and developer of the SWI-Prolog
system. Many of the described tools are features not unique to SWI-Prolog
and can be found in other Prolog implementations or other programming
language environments. Experiments are yet to be performed to evaluate
the usefulness of features and therefore the opinions presented are strictly
based on our own experiences, observations of users, and E-mail reactions.
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After describing the SWI-Prolog user community in Sect. 2 we de-
scribe some problems Prolog programmers frequently encounter in Sect. 3.
In Sect. 4 we describe the command line tools, and in Sect. 5 the graphical
tools written in SWI-Prolog’s XPCE GUI toolkit [10].

2 User profiles

Students having to complete assignments for a Prolog course have very
different needs from professionals developing large systems. They want
easy access to common tasks as closely as possible to the conventions
they are used to. Scalability of supporting tools is not an important
issue as the programs do not require many resources. Visualization of
terms and program state can concentrate their contribution to explan-
ation and disregard, for example, the issue that most graphical repres-
entations scale poorly. The SWI-Prolog-Editor1 shell for MS-Windows by
Gerhard Röhner makes SWI-Prolog much more natural to a student who
is first of all familar with MS-Windows.

SWI-Prolog comes from the Unix and Emacs tradition and targets the
professional programmer who uses it frequently to develop large Prolog-
based applications. As many users in this category have their existing
habits, and a preferred set of tools to support these, SWI-Prolog avoids
presenting a single comprehensive IDE (Integrated Development Environ-
ment), but instead provides individual components that can be combined
and customised at will.

3 Problems

Many problems that apply to programming in Prolog also relate the pro-
gramming in other languages. Some, however, are Prolog specific. Prolog
environments can normally be used interactively and changed dynamic-
ally.

3.1 Problem areas

– Managing sources
Besides the normal problems such as locating functions and files, Pro-
log requires a tool that manages consistency between the sources and
running executable during the interactive test-edit cycle. Section 4.1
and Sect. 5.1 describe the SWI-Prolog support to manage sources.

1 http://www.bildung.hessen.de/abereich/inform/skii/material/swing/indexe.htm
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– Entering and reusing queries
Interaction through the Prolog top level is vital for managing the pro-
gram and testing individual predicates. Command line editing, com-
mand completion, do what I mean (DWIM) correction, history, and
storing the values of top level variables reduces typing and speed up
the development cycle.

– Program completeness and consistency
SWI-Prolog has no tradition in rigid static analysis. It does provide a
quick completeness test as described in Sect. 4.6 which runs automat-
ically during the test-edit cycle. A cross-referencer is integrated into
the built-in editor (Sect. 5.1) and provides immediate feedback to the
programmer about common mistakes while editing a program.

– Error context
If an error occurs, it is extremely important to provide as much context
as possible. The SWI-Prolog exception handling differs slightly from
the ISO standard to improve such support. See Sect. 4.10.

– Failure/wrong answer
A very common and time consuming problem are programs producing
the wrong (unexpected) answer without producing an error. Although
research has been carried out to attribute failure and wrong answers
to specific procedures [3, 9], none of this is realised in SWI-Prolog.

– Determinism
Although experience and discipline help, controlling determinism in
Prolog programs to get all intended solutions quickly is a very common
problem. The source-level debugger (Sect. 5.3) displays choicepoints
and provides immediate graphical feedback on the effects of the cut,
greatly simplifying this task and improving understanding for novices.

– Performance bottlenecks
Being a high level language, the relation between Prolog code and
required resources to execute it is not trivial. Profiling tools cannot fix
poor overall design, but do provide invaluable insight to programmer.
See Sect. 5.4.

– Porting programs from other systems
Porting Prolog programs has been simplified since more Prolog sys-
tems have adopted part I of the ISO standard. Different extensions
and libraries cause many of the remaining problems. Compiler warn-
ings and static analysis form the most important tools to locate the
problem areas quickly. A good debugger providing context on errors
together with support for the test-edit cycle improve productivity.
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4 Command line Tools

4.1 Supporting the edit cycle

Prolog systems offer the possibility to interactively edit and reload a pro-
gram even while the program is running. There are two simple but very
frequent tasks involved in the edit-reload cycle: finding the proper source,
and reloading the modified source files. SWI-Prolog supports these tasks
with two predicates:

make
SWI-Prolog maintains a database of all loaded files with the file
last-modified time stamp when it was loaded and —for the sake of
modules— the context module(s) from which the file was loaded. The
make/0 predicate checks whether the modification time of any of the
loaded files has changed and reload these file into the proper module
context. This predicate has proven to be very useful.

edit(+Specifier)
Find all entities with the given specifier. If there are multiple entities
related to different source-files ask the user for the desired one and
call the user-defined editor on the given location. All entities implies
(loaded) files, predicates and modules. Both locating named entities
and what is required to call the editor on a specific file and line can
be hooked to accomodate extensions (e.g. XPCE classes) and differ-
ent editors. Furthermore, SWI-Prolog maintains file and line-number
information for modules and clauses. Below is an example:

?- edit(rdf_tree).
Please select item to edit:

1 class(rdf_tree) ’rdf_tree.pl’:27
2 module(rdf_tree) ’rules.pl’:460

Your choice? 2

SWI-Prolog’s completion and DWIM described in Sect. 4.4 and
Sect. 4.3 improve the usefulness of these primitives.

4.2 Autoloading and auto import

Programmers tend to be better at remembering the names of library pre-
dicates than the exact library they belong to. Similar, programmers of
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large modular applications often have a set of personal favourites and
application specific goodies. SWI-Prolog supports this style of program-
ming with two mechanisms, both of which require a module system. The
SWI-Prolog module system is very close to the Quintus and SICStus Pro-
log module systems [2].

Auto import tries to import undefined predicates from the module’s
import module. The module system contains all built-in predicates, user
all global predicates and all other modules import from user as illustrated
in Fig. 1. This setup allows programmers to define or import commonly
used predicates into user and have them available without further actions
from the interactive top level and all modules.

System

User

System
Module 1

System
Module 2

System
Module-N

User
Module 1

User
Module 2

User
Module-N

Fig. 1. Modules and their auto-import relations

Library auto loading avoids the need for explicit use module/[1,2]
declarations. Whenever the system encounters an unknown predicate it
examines the library index. If the predicate appears in the index the
library is loaded using use module/2, only importing the missing pre-
dicate.

The combination of auto import, auto loading and a structuring mod-
ule system has proven to support both sloppy programming for rapid pro-
totyping and the use of more maintainable explicit module relations. The
predicate list autoload/0 as described in Sect. 4.6 supports a smooth
transition.

4.3 DWIM: Do What I Mean

DWIM (Do What I Mean) is implemented at the top level to quickly fix
mistakes and allow for underspecified queries. It corrects the following
errors:
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– Simple spelling errors
DWIM checks for missing, extra and transposed characters that result
from typing errors.

– Word breaks and order
DWIM checks for multi-word identifiers using different conventions
(e.g. fileExists vs. file exists) as well as different order (e.g. exists file
vs. file exists)

– Arity mismatch
Of course such errors cannot be corrected.

– Wrong module
DWIM adds a module specification to predicate references that lack
one or replaces a wrong module specification.

DWIM is used in three areas. Queries typed at the top level are
checked and if there is a unique correction the system prompts whether
to execute the corrected rather than the typed query. Especially adding
the module specifier improves interaction from the top level when using
modules. If there is no unique correction the system reports the missing
predicates and all close candidates. Queries of the development system
such as edit/1 and spy/1 provide alternative matches one-by-one. Spy/1
and trace/1 act on the specified predicate in any module if the module
is omitted. Finally, if a predicate existence error reaches the top level the
DWIM system is activated to report likely candidates.

4.4 Command line editing

Developers spend a lot of time entering commands for the development
system and (test-)queries for (parts of) their application under develop-
ment. SWI-Prolog provides the following features to support this:

– Using (GNU-)readline
Emacs-style editing is supported in the Unix version based on the
GNU readline library and in Windows using our own code. This facil-
itates quick and natural command reuse and editing. In addition, com-
pletion is extended with completion on alphanumerical atoms which
allow for fast typing of long predicate identifiers and atom arguments
as well as inspect the possible alternative (using Alt-?). The comple-
tion algorithm uses the builtin completion of files if no atom matches,
which ensures that quoted atoms representing a file path is completed
as expected.
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– Command line history
SWI-Prolog provides a history facility that resembles the Unix csh
and bash shells. Especially viewing the list of executed commands is
a valuable feature.

– Top level bindings
When working at the Prolog top level, bindings returned by previous
queries are normally lost while they are often required for further
analysis of the current Prolog state or to test further queries. For
this reason SWI-Prolog stores the resulting bindings from top level
queries, provided they are not too large (default ≤ 1000 tokens) in
the database under the name of the used variable. Top level query
expansion replaces terms of the form $Var ($ is a prefix operator)
into the last recorded binding for this variable. New bindings do to
backtracking or new queries overwrite the old value.
This feature is particularly useful to query the state of data stored in
related dynamic predicates and deal with handles provided by external
stores. Here is a typical example using XPCE that avoids typing or
copy/paste of the object reference.

?- new(X, picture).

X = @12946012
?- send($X, open).

4.5 Compiler

An important aspect of the SWI-Prolog compiler is its performance. Load-
ing the 21 Mb sources of WordNet [7] requires 6.6 seconds from the source
and 1.4 seconds from precompiled virtual machine code (Multi-threaded
SWI-Prolog 5.2.9, SuSE Linux on dual AMD 1600+ using one thread).
Fast compilation is very important during the interactive development of
large applications.

SWI-Prolog supports the commonly found set of compiler warnings:
syntax errors, singleton variables, predicate redefinition, system predicate
redefinition and discontiguous predicates. Messages are processed by the
hookable print message/2 predicate and where possible associated with
a file and line number. The graphics system contains a tool that exploits
the message hooks to create a window with error messages and warnings
that can be selected to open the associated source location.
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4.6 Quick consistency check

The library check provides quick tests on the completeness of the loaded
program. The predicate list undefined/0 searches the internal database
for predicate structures that are undefined (i.e. have no clauses and are
not defined as dynamic or multifile). Such structures are created by the
compiler for a call to a predicate that is not yet defined. In addition the
system provides a primitive that returns the predicates referenced from a
clause by examining the compiled code. Figure 2 provides partial output
running list undefined/0 on the chat 80 [8] program:

1 ?- [library(chat)].
% ...
% library(’chat/chat’) compiled into chat 0.18 sec, 493,688 bytes
% library(chat) compiled into chat 0.18 sec, 494,756 bytes

Yes
2 ?- list_undefined.
% Scanning references for 9 possibly undefined predicates
Warning: The predicates below are not defined. If these are defined
Warning: at runtime using assert/1, use :- dynamic Name/Arity.
Warning:
Warning: chat:ditrans/12, which is referenced by
Warning: 5-th clause of chat:verb_kind/6

Fig. 2. Using list undefined/0 on chat 80 wrapped into the module chat. To save
space only the first of the 9 reported warnings is included. The processing requires
0.25 sec. on a 733 Mhz PIII.

The list autoload/0 predicate lists undefined predicates that can be
autoloaded from one of the libraries. It is illustrated in Fig. 3.

3 ?- list_autoload.
% Into module chat (library(’chat.pl’))
% display/1 from library(edinburgh)
% last/2 from library(lists)
% time/1 from library(statistics)
% Into module user
% prolog_ide/1 from library(swi_ide)

Fig. 3. Using list autoload/0 on chat 80
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4.7 Help and explain facility

The help facility uses outdated but still effective technology. The LATEX
maintained source is translated to plain text. A generated Prolog index
file provides character ranges for predicate descriptions and sections in
the manual. Each predicate has, besides the full documentation, a ±
40 character summary description used for apropos search as well as to
provide a summary string in the editor as illustrated in Fig. 4.

The explain facility examines the database to gather all information
known about an identifier (atom). Information displayed includes predic-
ates with that name and references to the atoms, compound terms and
predicates with the given name. Here is an example:

explain(setof).
"setof" is an atom

Referenced from 1-th clause of chat:decomp/3
system:setof/3 is a built-in meta predicate imported from module

$bags defined in
/staff/jan/lib/pl-5.2.9/boot/bags.pl:59
Summary: ‘‘Find all unique solutions to a goal’’
Referenced from 6-th clause of chat:satisfy/1
Referenced from 7-th clause of chat:satisfy/1
Referenced from 1-th clause of chat:seto/3

The graphical front end is described in Sect. 5.5.

4.8 File commands

Almost too trivial to name, but the predicates ls/0, cd/1 and pwd/0
are used very frequently.

4.9 Debugging from the terminal

SWI-Prolog comes with two tracers, a traditional 4-port debugger [1] to
be used from the terminal and a graphical source level debugger which is
described in Sect. 5.3. Less frequently seen features of the trace are:

– Single keystroke operation
If the terminal supports it, commands are entered without waiting for
return.

– List choicepoints
The tracer can provide a list of active choicepoints, similar to the goal
stack, to facilitate choicepoint tuning and debugging.
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– The ‘up’ command
The ‘up’ command is like the traditional ‘skip’ command, but skips
to the exit or failure of the parent goal rather than the current goal.
It is very useful to stop tracing the details of failure driven control
structures.

– Search
The system can search for a specific port and goal that unifies with
an entered term. The command /f foo(_, bar) will go into inter-
active debugging if foo/2 where the second argument unifies with bar
reaches the fail (f) port.

In addition to interactive debugging two types of non-interactive de-
bugging are provided. Using trace(Predicate, Ports), the system prints
all passes to the indicated ports of Predicate.

The library debug is a lightweight infrastructure to handle printing
debugging messages (logging) and assertions. The library exploits goal-
expansion to avoid runtime overhead when compiled with optimisation
turned on. Debug messages are associated to a Topic, an arbitrary Pro-
log term used to group debug messages. Normally the Topic is an atom
denoting some function or module of the application. Using Prolog uni-
fication of the active topics and the topic registered with the message
provides opportunity for creativity.

debug(+Topic, +Format, +Arguments)
Prints a message through the system’s print message/2 message
dispatching mechanism if debugging is enabled on Topic.

debug/nodebug(+Topic)
Enable/disable messages for which Topic unifies. Note that topics are
arbitrary Prolog terms, so debug( ) enables all debugging messages.

list debug topics
List all registered topics and their current enable/disable setting. All
known topics are collected during compilation using goal-expansion.

assume(:Goal)
Assume that Goal can be proven. Trap the debugger if Goal fails.
This facility is derived from the C-language assert() macro defined
in <assert.h>, renamed for obvious reasons. More formal assertion
languages are described in [6, 5].

4.10 Exception context

On exception handling, the ISO standard dictates ‘undo’ back to the state
at entry of a catch/3 before unifying the ball with the catcher. SWI-
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Prolog however uses a different technique. It walks the stack searching
for a matching catcher without undoing changes. If it finds a matching
catch/3 call or when reaching a call from foreign code that indicates
it is prepared to handle exceptions it performs the required ‘undo’ and
executes the handler. The advantage is that if there is no handler for
the exception the entire program state is still intact. The debugger is
started immediately and can be used to examine the full context of the
exception.2

5 Graphical Tools

5.1 Editor

PceEmacs is an Emacs clone written in XPCE/Prolog. It has two features
that make it of special interest. It can be programmed in Prolog and there-
fore has transparent access to the environment of the application being
developed, and the editor’s buffer can be opened as a Prolog I/O stream.
Based on these features, the level of support for Prolog development is
far beyond what can be achieved in a stand-alone editor. Whenever the
user pauses for two seconds the system performs a full cross-reference of
the editing buffer, categorising and colouring predicates, goals and gen-
eral Prolog terms. Predicates are categorised as exported, called and not
called. Goals are categorised as builtin, imported, auto-imported, locally
defined, dynamic, (direct-)recursive and undefined. Goals have a menu
that allows jumps to the source, documentation (builtin), and listing of
clauses (dynamic). Singleton variables are highlighted. If the cursor ap-
pears inside a variable all other occurrences of this variable in the clause
are underlined. Figure 4 shows a typical screenshot.

5.2 Prolog Navigator

The Prolog Navigator provides a hierarchical overview of a project direct-
ory and its Prolog files. Prolog files are categorised as one of loaded or not
loaded and are expanded to the predicates defined in them. The defined
predicates are categorised as one of exported, normal, fact and unrefer-
enced. Expanding predicates expands the call tree. The Navigator menus
provide loading and editing files and predicates as well as the setting of
trace- and spy-points. See Fig. 5.
2 These issues have been discussed on the comp.lang.prolog newsgroup, April 15-18

2002, subject “ISO catch/throw question”.
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Fig. 4. PceEmacs in action

Fig. 5. The Prolog Navigator

dtai
12



5.3 Source-level Debugger

The SWI-Prolog debugger calls a hook (prolog trace interception/4) be-
fore reverting to the built-in command line debugger. The built in pro-
log frame attribute/3 provides the infrastructure to analyse the Pro-
log stacks, providing information on the goal-stack, variable bindings and
choicepoints. These hooks are used to realise more advanced debuggers
such as the source-level debugger described in this section. The source-
level debugger provides three views (Fig. 6):

– The source
An embedded PceEmacs (see Sect. 5.1) running in read-only mode
shows the current location, indicating the current port using colour
and icons. PceEmacs also allows the setting of breakpoints at a spe-
cific call in specific clause. Breakpoints provide finer and more intu-
itive control where to start the debugger than traditional spy-points.
Breakpoints are realised by replacing a virtual machine instruction
with a break instruction which traps the debugger, finds the instruc-
tion it replaces in a table and executes this instruction.

– Variables
The debugger displays a list of variables appearing in the current
frame with their name and current binding in the top-left window. The
representation of values can be changed using the familiar portray/1
hook. Double-clicking a variable-value opens a separate window show-
ing the variable binding. This window uses indentation to make the
structure of the term more explicit and has a menu to control the
layout.

– The stack
The top-right window shows the stack as well as the recent active
choicepoints. Any node can be selected to examine the context of that
node. The stack view allows one to quickly examine choicepoints left
after a goal succeeded. Besides showing the location of the choicepoint
itself, the ‘up’ command can be used to examine the parent frame
context of a choicepoint.

5.4 Execution Profiler

The Execution Profiler builds a call-tree at runtime and ticks the number
of calls and redos to each node in this call-tree. The time spent in each
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Fig. 6. The Source-level Debugger

node is established using stochastic sampling.3 Recording the call-tree is
complicated by three factors.

– Last call optimisation
Due to last call optimisation exit ports are missing from the execution
model. This problem is solved by storing the call-tree node associated
with a goal in the environment stack, providing the exit with a ref-
erence to the node exited. Recording an exit can now exit all nodes
until it reaches the referenced node.

– Redo
Having a reference from each environment frame to the call-tree node
also greatly simplifies finding the proper location in the call-tree on a
redo.

– Recursion
To avoid the uncontrolled expanding of the call-tree the system must
record recursive calls. The problem lies in the definition of recursion.
The most näıve definition is that recursion happens if there is a par-
ent node running the same predicate. In this view meta predicates
will often appear as unwanted ‘recursive predicates’ as will predicates
called in a totally different context. The system provides noprofile/1
to indicate some predicates do not create a new node and their time is
included with their parent node. Examples are call/1, catch/3 and
call cleanup/2. Calls are now regarded recursive if the parent node

3 Using SIGPROF on Unix and using a separate thread and a multi-media timer in
MS-Windows.
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runs the same predicate (direct recursion) or somewhere in the parent
nodes of the call-tree we can find a node running the same predicate
with the same immediate parent.

Prolog primitives are provided to extract all information from the re-
corded call-tree. A graphical Prolog profiling tool presents the information
interactively similar to the GNU gprof [4] tool (see Fig. 7).

Fig. 7. The Profiler

5.5 Help System

The GUI front end to the help functionality described in Sect. 4.7 adds
hyperlinks and hierarchical context to the command line version as illus-
trated in Fig. 8.

Fig. 8. Graphical front end to the help system

6 Conclusions

In this paper we have described commonly encountered tasks which Pro-
log programmers spend much of their time on, which tools can help solv-
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ing them as well as an overview of the programming environment tools
provided by SWI-Prolog. Few of these tools are unique to SWI-Prolog
or very advanced. The popularity of the environment can possibly be
explained by being complete, open, portable, scalable and free.
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Abstract

This paper is a presentation of TCLP: a prescriptive type checker for
Prolog/CLP(X ). Using parametric polymorphism, subtyping and overload-

ing, TCLP can be used with practical constraint logic programs that may use

meta-programming predicates, coercions between constraint domains (like FD
and B) and constraint solver definitions, including the CHR language. It also

features type inference for variables and predicates, so the user can get rid of
numerous type declarations.

1 Introduction

Traditionally, the class CLP(X ) of constraint logic programs, introduced
by Jaffar and Lassez [11], is untyped. One of the advantages of being
untyped is programming flexibility. For example, -/2 can be used as
the classical arithmetic operator as well as a constructor for pairs. On
the other hand, type checking allows the static detection of some pro-
gramming errors, like for example calling a predicate with an illegal
argument.

Several type systems have been created for (constraint) logic pro-
gramming. The type system of Mycroft and O’Keefe [12, 15] is an adap-
tation of the Damas-Milner type system [6] to logic programming. It
has been implemented in Gödel [10] and Mercury [19]. This type system
uses parametric polymorphism, that is, parameters (i.e. type variables)
are allowed as and in types. For example the type list has an argu-
ment to specify the type of elements occurring in the list. However this
type system is not flexible enough to be used with meta-programming
predicates, such as arg/3, =../2 or assert/1.

Subtyping is a fundamental concept introduced by Cardelli [2] and
Mitchell [14]. The power of subtyping resides in the subtyping rule which
states that an expression of type τ can be used instead of an expression
of type τ ′ provided that τ is a subtype of τ ′:

(Sub)
U ! t : τ , τ ≤ τ ′

U ! t : τ ′

Subtyping can be used to deal with meta-programming by the introduc-
tion of a type term as a supertype of all types. For example, the subtype
relation list(α) ≤ term, allows to type check the query arg(N,[X|L],T),
using the type int × term× term → pred for arg/3, although the second
argument is a list. Subtyping can also be used for coercions between
constraint domains. For example, it is possible to share variables be-
tween CLP(B), with type boolean , and CLP(FD), with type int , simply

1
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by adding the subtyping relation boolean < int . This way B variables
can be used with FD predicates.

Most of the type systems with subtyping that where proposed for
constraint logic programs are descriptive type systems, i.e. they aim to
describe the set of terms for which a predicate is true. On the other hand,
there where only few prescriptive type systems with subtyping for logic
programming [1, 7, 13, 16, 18]. Moreover, in these systems, subtyping
relations between type constructors with different arities, as in list(α) <
term, are not allowed. Algorithms to deal with such subtyping relations,
called non-structural non-homogeneous subtyping, can be found in [17,
20] in the case where the subtyping order forms a lattice, or in [4] for
the case of quasi-lattices.

The combined use of subtyping and parametric polymorphism thus
offers a great programming flexibility. Still, it can not address the first
example given in this paper, that is -/2 being viewed sometimes as the
arithmetic operator and sometimes as a constructor of pairs (as in the
predicate keysort/2). The solution to this problem resides in overload-
ing. Overloading consists in assigning multiple types to a single symbol.
This notion has already been used in numerous languages, such as C,
to deal with multiple kinds of numbers in arithmetic operations. With
overloading, -/2 can have both type int expr× int expr → int expr and
type α× β → pair (α,β).

In this paper, we describe TCLP, a type checker for Prolog/CLP(X ),
written in SICStus Prolog with Constraint Handling Rules (CHR) [9].
The type system of TCLP combines parametric polymorphism, subtyp-
ing and overloading in order to keep the flexibility of the traditionally
untyped CLP(X ) languages, yet statically detecting programming er-
rors. Section 2 shows examples of how the type system takes advantage
of these three features. Section 3 presents the type system of TCLP. In
section 4, we describe the basic type declarations and output of TCLP,
while section 5 shows how the type system can be extended to han-
dle constraint solver programming, like new CLP(FD) constraints or
CHR rules. Some benchmarks are presented in section 6 and section 7
concludes.

2 Motivating examples

The aim of the TCLP type checker is to introduce a typing discipline in
constraint logic programs in order to find programming errors, while of-
fering enough flexibility for practical programming. That means dealing
with Prolog/CLP(X ) programming facilities like meta-programming or
the simultaneous use of multiple constraint solvers. This goal is achieved
using a combination of parametric polymorphism, subtyping and over-
loading. In the rest of this section, we give examples of how they are
used in TCLP.

2.1 Prolog examples

A first use of parametric polymorphism is the typing of structures that
may be used with any type of data. For example, using the type list(α)
for lists allows typing [1,2] with the type list(int) and [’a’,’b’] with
the type list(char ). A consequence is the use of polymorphic types for
predicates manipulating these data structures in a generic way. For
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example, the type of the predicate append/3 for concatenating lists is
list(α)× list(α)× list (α) → pred . Of course, some other predicates may
use non generic types when manipulating the data inside structures, like
sum list/2 having type list(int) × int → pred .

Another use of parametric polymorphism is for constraints or pred-
icates that can be used on any term, the best example being =/2 with
type α × α → pred . This type simply express that the two arguments
of =/2 must have the same type. Another example resides in term com-
parison predicates like ’@=<’/2, which also has type α× α → pred .

On the other hand, predicates for manipulating terms cannot be
typed using only parametric polymorphism. An example is the predi-
cate =../2 for decomposing terms. Indeed T=..L unifies L with the list
constituted by the head constructor of T and the arguments of T. This
means that L is an non-homogeneous list. Subtyping provides a solution
for typing this predicate, through the introduction of the type term as
the supertype of all types, that is for all types τ , τ ≤ term. Using the
type term × list(term) → pred for =../2, it is possible to type check a
query like [1] =.. [’.’,1,[]] with type list(int) for [1], atom for
’.’, int for 1, list(α) for [] and list(term) for [’.’,1,[]].

Subtyping is also interesting when typing programs that use dynamic
predicates, using assert/1. The type of assert/1 is clause → pred and
the type of ’:-’/2 is pred × goal → clause. This allows typing queries
like assert((p(X) :- X<1)). However, without subtyping, queries like
assert(p(1)) are not correctly typed because p(1) would be typed
pred , while assert/1 expects the type clause. Using subtyping with
pred < clause, p(1) is seen with the type clause and the query is well-
typed.

The operator -/2, as showed in the introduction, provides a good
example of the use of overloading, with types int expr × int expr →
int expr , float expr × int expr → float expr , int expr × float expr →
float expr , float expr ×float expr → float expr and α×β → pair (α,β).
This example shows the more classical overloading of -/2 with respect
to the different kinds of number as well as its use as a coding for pairs.
In this case, subtyping can also be used to deal with the different kind
of numbers, with int expr < float expr , using the type α× α → α,α ≤
float expr . However, in the Prolog dialects that we considered, the
unification 1=1.0 fails. This led us to choose overloading instead of
subtyping for dealing with numerical expressions, thus making a clear
distinction in types between integers and floats. An other example is
=/2. It is used both as the equality constraint and to build pairs of
the form Name=Var in an option of the predicate read term/3. Thus
is has both types α × α → pred and atom × term → varname. Other
examples include options shared by several different predicates or ’,’/2
used both as the conjunction and as a constructor for sequences.

2.2 Combining constraint domains

A first example is the combination of the Herbrand domain CLP(H) with
an other domain, such as CLP(FD). Prolog is mainly used to handle
data structures and for posting constraints. However there can be a
stronger interaction when defining, e.g., predicates for labelling. The
type used to represent FD is int , already present in the type hierarchy
of CLP(H). This way FD variables can be also used as Prolog variables
when needed.
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Another interesting example is combining CLP(FD) and CLP(B).
Indeed, variables can be shared between the two constraint solvers. This
is possible when B is represented as the set {0,1}. In this case 0 and 1
have type boolean and boolean < int . In this way, B variables can also
be used with FD constraints.

A last example is reified constraints. This represent a combination
of CLP(H), CLP(FD) and CLP(B). Constraints like ’#<=>’/2 accept
other constraints as arguments. In order to handle these cases, FD
constraints are typed with type fd constraint . The subtype relations
fd constraint < pred and fd constraint < boolean expr allows these
constraints to be used both in boolean expressions and as predicates
in Prolog clauses.

3 The type system

3.1 CLP(X ) programs

CLP programs are built upon a denumerable set V of variables, a finite
set S of symbols, given with their arity, a set F ⊆ S of function symbols
and a set P ⊆ S of predicate and constraint symbols. P is supposed to
contain the equality constraint symbol =/2. Terms are built upon F∪V .
An atom is of the form p(t1, . . . , tn), where p/n ∈ P and t1, . . . , tn are
terms. A query is a finite sequence of atoms. When it is necessary to
distinguish predicate atoms (built using a predicate symbol) and con-
straint atoms (built with a constraint symbol), queries are noted c | α
where c is the constraint part of the query and α is the predicate part
of the query. A clause is an expression A ← Q where A is a predicate
atom and Q is a query. A constraint logic program is a set of clauses
and queries.

The execution model we consider for constraint logic programs is the
CSLD rewriting relation :
Definition 1 Let P be a CLP(X ) program. The rewriting relation
−→CSLD over queries is defined as the smallest relation satisfying the
following CSLD rule:

p(N1, . . . , Nk) ← c′ | A1, . . . , An ∈ θ(P )
X |= ∃(c ∧ M1 = N1 ∧ . . . ∧ Mk = Nk ∧ c′)

c | α, p(M1, . . . , Mk),α′ −→CSLD

c, M1 = N1, . . . , Mk = Nk, c′ | α, A1, . . . , An,α′

where θ is a renaming of the clause with fresh variables.

3.2 Types

Types are (possibly infinite) terms built upon a signature of type con-
structors, denoted by κ, and type variables also called parameters, noted
α,β, . . .. Types are noted τ and the set of types is noted T . The subtyp-
ing order ≤ on types is induced by an order <K on type constructors and
a relation ικ1,κ2 between the argument positions of each pair (κ1,κ2) of
type constructors. For all type constructors κ1,κ2, ικ1,κ2 is an injec-
tive partial function and ι−1

κ1,κ2
= ικ2,κ1 . For all κ1≤Kκ2≤Kκ3, ικ1,κ3 =

ικ2,κ3 ◦ ικ1,κ2 . For two types τ = κ(τ1, . . . , τm) and τ ′ = κ′(τ ′1, . . . , τ ′n),
τ ≤ τ ′ if and only if κ≤Kκ′ and for all i, j ∈ ικ,κ′ , τi ≤ τ ′j . Moreover
the type order is supposed to form a quasi-lattice, that is a partial or-
der where the existence of a lower (resp. upper) bound to a non-empty

dtai
20



set of types implies the existence of a greatest lower bound (resp. least
upper bound) for this set. A type substitution is a mapping from type
variable to types, extended the usual way into a mapping from types to
types. A type substitution Θ is ground if for all type variable α, Θ(α)
is ground.

Ground types are interpreted as sets of terms, while non ground types
are interpreted as mappings from ground substitutions to sets of terms.
For example, the type list(int) is interpreted as the set of the lists of
integers, while the infinite type list(list(. . .)) is interpreted as the set of
lists that contain only lists that contain only lists ... 1. The subtyping
relation is interpreted as the inclusion of these sets of terms. A more
formal description of types and of the subtyping relation can be found
in [4].

To each functor f/n is associated a set types(f/n) of type schemes
of the form ∀α1 . . .∀αnτ1 × . . .× τn → τ , (abbreviated ∀τ1 × . . .× τn →
τ), where {α1, . . . ,αn} is the set of variables appearing in τ1 × . . . ×
τn → τ . We assume the existence of a particular type pred for the type
of predicates: for all predicate and constraint symbols p/n ∈ P , it is
supposed that there is at least one type scheme ∀τ1 × . . . × τ2 → τ ∈
types(p/n) such that τ ≤ pred . On can note that some symbols may
be overloaded both as function symbols and predicates symbols, such as
=/2 with types ∀α.α× α → pred and atom × term → varname.

3.3 Well typed programs

The typing rules of TCLP, given in Table 1, allow to deduce type judg-
ment of the form U ! typed expression, where U is a typing environment,
that is a mapping from V to T . A clause p(t1, . . . , tn) ← Q is well-typed
if for all type schemes ∀τ1 × . . . × τn → τ ∈ types(p/n) with τ ≤ pred ,
there exists a typing environment U such that U ! p(t1, . . . , tn) ←
Q Clauseτ1×...×τn . A program is well-typed if all its clauses are well-
typed. A query Q is well-typed if there exists a typing environment U
such that U ! Q Query.

Basically, the type system of TCLP adds the subtyping rule [2, 14]
to the rules of Mycroft and O’Keefe [15]. Overloading is handled in the
side condition of rules (Func), (Atom) and (Head) by considering all
possible type schemes for each occurrence of overloaded symbols. The
type annotations appearing in the rules (Head) and (Clause) are used to
keep track of the type used for the head of the clause. The distinctions
between rules (Head) and (Atom) express the principle of definitional
genericity [12], that the type of the head of a clause must be equivalent
up-to renaming to the type of the predicate defined by this clause. This
condition of definitional genericity is useful for the correctness properties
(“subject reduction”) of the type system [3, 8]. The rule (Head), used
for typing heads of clauses, thus allows only renaming substitutions of
the type declared for the predicate.
Theorem 1 (subject reduction) [3] Let P be a well-typed program
and Q a well typed query, i.e. U ! Q Query for some typing environment
U . If Q −→CSLD Q′ then there is a typing environment U ′ such that
U ′ ! Q′ Query.

1this does not mean that the terms in this set are infinite: for example [], [[]] and [[],[]]
are in this set.
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(Var) {x : τ, . . .} ! x : τ

(Func) U!t1:σ1 σ1≤τ1Θ ... U!tn:σn σn≤τnΘ
U!f(t1,...,tn):τΘ

where Θ is a type substitution
and τ1 × . . . × τn → τ ∈ types(f/n)

(Atom) U!t1:σ1 σ1≤τ1Θ ... U!tn:σn σn≤τnΘ
U!p(t1,...,tn) Atom

where Θ is a type substitution
and τ1 × . . . × τn → τ ∈ types(p/n), with τ ≤ pred .

(Head) U!t1:σ1 σ1≤τ1Θ ... U!tn:σn σn≤τnΘ
U!p(t1,...,tn) Headτ1×...×τn

where Θ is a renaming substitution
and τ1 × . . . × τn → τ ∈ types(p/n), with τ ≤ pred .

(Query) U!A1 Atom ... U!An Atom
U!A1,...,An Query

(Clause)
U!Q Query U!A Head τ1×...×τn

U!A←Q Clauseτ1×...×τn

Table 1: The TCLP typing rules with overloading.

It is worth noting that the CSLD resolution is an abstract execution
model, which proceeds only by constraint accumulation. The theorem
above does not hold for more concrete execution models that perform
substitution steps. Let us consider the predicates p/1 and q/1, with
int → pred ∈ types(p/1) and byte → pred ∈ types(q/1). Let us suppose
that p/1 is defined by p(500). The query p(X),q(X) is well typed with
X : byte. A step of CSLD resolution produces the query X=500,q(X).
A substitution step produces the query p(500), which is not well typed
since 500 does not have type byte. This can be viewed as a weakness
of the type system, but we believe this is the price to pay for flexibility.
Moreover, it is possible to keep the type of variables at run-time in order
to get stronger subject reduction theorem [8] for an execution model that
performs substitution steps.

3.4 Type checking

The typing rules of Table 1 are syntax directed. Without overloading,
the type checking algorithm, given a typing environment U and the type
of symbols, basically collects subtype inequalities along the derivation
of the expression to check and then check the satisfiability of collected
subtyping constraints, using the algorithm described in [4]. This type
checking algorithm can be extended to infer a typing environment U
for which the expression is well-typed, simply by replacing the type of
variables appearing in the expression to type check by parameters. Then
checking the satisfiability of the resulting subtyping constraint system
determines the existence of a typing environment U .
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Overloading introduces non-determinism in the rules (Func) and
(Atom). For type checking expressions, subtype inequalities are first
collected along the derivation by replacing the type of overloaded sym-
bols by type variables. Then the possible typings for each occurrence of
overloaded symbols are enumerated by checking the satisfiability of the
subtype constraint system. In order to remain efficient, the enumeration
proceeds with the Andorra principle. This principle, first introduced for
the parallelization of Prolog [5], consists in delaying choice points until
time where all deterministic goals have been executed. This strategy
proves to be sufficient to deal with overloading in TCLP, mainly be-
cause in most cases the type information coming from the context of an
expression is sufficient to disambiguate the type of overloaded symbols
in this expression.

The type checking algorithm used in TCLP is simply the combination
of the type inference for variables with the enumeration of possible types
for overloaded symbols.

3.5 Type inference for predicates

In a prescriptive type system, type reconstruction can be used to omit
type declarations and still type check the program by inferring the type
of undeclared predicates using their defining clauses [12], if it exists,
and raising an error otherwise. Since in TCLP, a predicate can accept
any argument of a subtype of the type of declared predicate, the type
term × . . . × term → pred is always a possible type. Because this type
is not very informative, we use a heuristic type inference algorithm [8].
Basically it tries to combine the different type informations taken from
the functors and variables appearing the head of the defining clauses to
deduce a more informative type. In the presence of overloaded symbols,
several heuristic types can be found by enumerating the possible types
for these symbols. The current implementation uses only the first one in
the typing of the remaining part of the program. This choice was made
to avoid the multiplication of overloaded predicates. The enumeration
proceeds by first choosing the last declared type for each overloaded
symbol. This enumeration strategy proves to be right most of the time,
because the last declared type for an overloaded symbol usually corre-
spond to the currently defined predicate.

4 Standard use of TCLP

4.1 Type declarations

We now introduce the concrete syntax of TCLP type declarations. These
declarations take the form of Prolog directives. They can be placed
either in the program source or in a separated file with the suffix .typ.
They consist in type constructor declarations, type order declarations
and type scheme declarations.

Type constructor declarations are done using any one of the following
two syntaxes:

:- type t/n. :- type t(A1,...,An).

Both directives declare a a type constructor t with n arguments. For
example the type constructor list can be declared by
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:- type list/1.

Type order declarations are done using the directive order:

:- order t(A1,. . .,Am) < u(B1,. . .,Bn).

which declares that t<Ku. The relation ιt,u is deduced from the variables
appearing as arguments: if Ai = Bj then (i, j) ∈ ιt,u. For example:

:- order assoc(A,B) < tree(B).

declares that assoc<Ktree and that ιassoc,tree = {(2, 1)}.

The syntax for declaring type schemes is:

:- typeof f(t1,. . .,tn) is t.

where ti and t are types. This declares that the type scheme ∀t1 × . . .×
tn → t is in types(f/n). For example:

:- typeof append(list(A),list(A),list(A)) is pred.

declares that ∀α.list(α) × list(α) × list(α) → pred ∈ types(append/3).
Overloaded symbols simply have several declarations (one per type
scheme).

Type constructor and type scheme syntax can also be combined:

:- type list(A) is [ [] , [ A | list(A) ] ].

is syntactic sugar for

:- type list/1.

:- typeof [] is list(A).

:- typeof [ A | list(A) ] is list(A).

In addition to explicit declarations, TCLP implicitly adds default
declarations. For every declared type constructor κ, the declaration that
κ <K term is added to ensure that it is still a supertype of all types.
Numbers are implicitly declared to have either type byte, int or float . All
non-numeric constants are declared to have type atom except for char-
acters, which are declared to have type char with char <K atom. Still,
thanks to overloading, non-numeric constants may also have other types
corresponding to their use in specific situations. For example, write/0
has both the type atom and the type io mode. Using these types, the
following query, for opening a file named “write” in writing mode, is
well typed: open(write,write,Stream), the first occurrence of write
being typed as atom and the second as io mode. Finally any func-
tor f/n that has no declared type scheme has the default type scheme
term × . . . × term → term.

4.2 TCLP invocation

TCLP can be used either as a stand-alone executable (by typing tclp
file.pl in the shell) or as a library for SICStus Prolog. When invoked,
TCLP determines and loads a standard type library, usually named
stdlib.typ. This library contains the type definitions and types for
built-in predicates of the selected Prolog dialect, currently either ISO,
GNU or SICStus Prolog. In the case of SICStus Prolog, type files for
each library are automatically loaded when encountering the correspond-
ing use module directive.
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When invoked on a source file, TCLP prints the types inferred for
undeclared predicates using the syntax for type scheme declarations.
This allows to reuse the types inferred by TCLP for type checking other
libraries or same file after some modifications. For example, the type
inference of the predicate append/3:

append([],L,L).
append([X|L],L2,[X|R]) :- append(L,L2,R).

produces the following output:

:- typeof append(list(A),list(A),list(A)) is pred.

If a type error is encountered, TCLP prints it and exits immediately.
Here we give examples of ill-typed queries and clauses with the error
message displayed by TCLP:

• Illegal type for an argument

:- X is Y << 3.5 .

! Incompatible type : 3.5 has type float but is
required to have type int_expr

• No type can be found for a variable

:- length(N,L), member(a,L).

! Incompatible types for L : int and list(top)

• Violation of definitional genericity

:- typeof p(list(A)) is pred.
p([1]).

! Incompatible type : 1 has type byte but is
required to have type A

• Error on an overloaded symbol

:- X is 3 << (2 - 3.5).

! Can’t find a good type for (-)/2

5 Advanced definitions

An interesting feature of TCLP is the possibility to extend the typing
rules. The aim is the type checking of phrases that are similar to clauses
from the type checking point of view. This extension uses declarations
that specify how these phrases must be cut into sets of heads and bod-
ies. The heads are type checked using rules similar to the (Head) rule
and the bodies are type checked as queries. Note, however, that a new
subject reduction theorem must be proved in order to ensure the cor-
rectness of the system thus obtained. We show two examples of type
system extensions, one for primitive CLP(FD) constraints definitions in
SICStus Prolog and another for the CHR language [9].
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5.1 CLP(FD) primitive constraints

In SICStus, primitive constraints can be declared using ’+:’/2, ’-:’/2,
’+?’/2 and ’-?’/2. In order to type check these declarations one may
want to introduce new typing rules. This is achieved using the declara-
tion
:- tclp__define_clause_op(BinOp,Type).

where BinOp is the binary operator that separates the head and the
body and Type is the type of the head. For example, the declaration
:- tclp__define_clause_op(’+:’,fd_constraint).

adds the following typing rule:

U ! H Head ′ U ! B Query
U ! H +: B Clause

where U ! H Head ′ is derived using the rule (Head ′), which differ from
(Head) only by the side condition: τ ≤ pred becomes
τ ≤ fd constraint in (Head ′).

5.2 CHR rules

There are three kinds of CHR rule: C ==> Q (propagation rule),
C <=> Q (simplification rule) and C1 \ C2 <=> Q (simpagation rule,
i.e. both a simplification rule and a propagation rule). C, C1 and C2

are sequences of CHR constraints. Q is either a query or Q1 | Q2 where
Q1 and Q2 are queries. In order to handle these rules, the declaration
tclp define clause/5 is used. We refer to the TCLP documenta-
tion for the precise syntax of these declarations. The declarations for
CHR rules are given in appendix A. Here we give the typing rule for
propagation rules (other rules are similar). Type judgment of the form
U ! H Head ′′ are derived from a rule (Head ′′) similar to (Head) excepted
that the side condition τ ≤ pred is replaced by τ ≤ chr constraint .

U ! H1 Head ′′ . . . U ! Hn Head ′′ U ! B Query
U ! H1, . . . , Hn <=> B Clause

Type inference can still be used with the new type system, as shown
in the following example. This example consists in a constraint solver
for finding greatest common divisor and was taken from the CHR web
page. The CHR rules:
gcd(0) <=> true.
gcd(N) \ gcd(M) <=> N=<M | L is M mod N, gcd(L).

produce the following output in TCLP
:- typeof gcd(int) is chr_constraint.

6 Experimental evaluation

The performance of the system has been evaluated on a GNU/Linux 2.4
system with an Intel Pentium 4 CPU at 2 GHz, 256 Mb of RAM using
SICStus 3.9.1 and a preliminary version of TCLP 0.4. Running times
for 16 SICStus Prolog libraries are shown in Table 2. The first column
indicates the name of the library. The remaining column are divided in
two groups: the first group indicates running times when using pure type
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checking, that is without type inference for predicates, while the second
group indicates running times using type inference for all predicates that
are not exported by the library. Each group contains three columns. The
first one, Overld, is the time consumed to solve ambiguous overloaded
symbols. The second one, T.check indicates the type checking time
(including type inference in the case of the second group). The last
column, Total, indicates the running total time, including loading type
libraries and building the resulting type order.

Pure type checking With predicate type inference
File Overld T.check Total Overld T.check Total
arrays 0.18 s 0.80 s 2.52 s 0.19 s 1.00 s 2.73 s
assoc 0.52 s 2.16 s 3.89 s 0.87 s 3.88 s 5.61 s
atts 0.75 s 1.92 s 3.72 s 1.35 s 3.26 s 5.04 s
bdb 0.84 s 3.14 s 6.08 s 1.07 s 4.19 s 7.06 s
charsio 0.07 s 0.40 s 1.99 s 0.09 s 0.43 s 2.00 s
clpr 29.10 s 47.05 s 49.68 s 97.60 s 142.49 s 145.76 s
fastrw 0.05 s 0.20 s 1.83 s 0.12 s 0.32 s 1.98 s
heaps 0.49 s 1.87 s 3.58 s 1.51 s 5.50 s 7.24 s
jasper 0.32 s 0.98 s 3.21 s 0.48 s 1.36 s 3.52 s
lists 0.96 s 1.86 s 3.44 s 1.23 s 2.63 s 4.24 s
ordsets 0.89 s 2.35 s 3.92 s 3.64 s 7.33 s 8.92 s
queues 0.12 s 0.44 s 2.14 s 0.17 s 0.55 s 2.26 s
sockets 0.82 s 1.83 s 4.02 s 0.77 s 2.12 s 4.15 s
terms 0.44 s 1.32 s 2.90 s 0.54 s 1.72 s 3.31 s
trees 0.27 s 0.79 s 2.47 s 0.32 s 1.17 s 2.89 s
ugraphs 7.39 s 14.17 s 16.28 s 11.20 s 31.97 s 34.04 s

Table 2: Running times

Running times prove that TCLP is fast enough to be used in practice,
the worst time being obtained for the clpr library which represents about
4400 lines of code and 527 inferred predicates. When running on small
files, most of the running time is used to compute all data structures
related to TCLP declarations. These computations usually take 2 to
3 s depending on declarations that are specific to each library. The
time used to solve overloaded symbols is very low, usually less than 50%
(68% in the worst case) of the total type checking time, thanks to the
enumeration strategy. The overhead of type inference w.r.t. pure type
checking can be explained by the fact that pure type checking considers
the program clauses one by one, while type checking with predicate type
inference considers clauses grouped by strongly connected components of
the call graphs, which leads to considerably larger subtyping constraint
systems and to a higher number of overloaded symbols to be treated at
once.

7 Conclusion

We presented TCLP, a prescriptive type checker for Prolog/CLP(X ),
which can be used with practical constraint logic programs. Thanks to
parametric polymorphism, subtyping and overloading, it can type check
queries and goals using generic data structures, term decomposition and
meta-programming predicates, overloaded symbols such as ’-’/2, or the
combination of multiple constraint solvers including reified constraints.
The possibility to extend the type system, makes it possible to use TCLP
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for constraint solver programming like extending CLP(FD) with new
constraints or using the CHR language. TCLP features type inference
for variables and for predicates, so the user can get rid of numerous
type declarations. The experimental evaluation of TCLP on 16 SICStus
Prolog libraries, including CLP(R), proved that the type checker is fast
enough to be used in practice. For these reasons, we believe that TCLP
is a good tool for type checking constraint logic programs.

As future work, we intend to develop a formalization of the extensions
of the type system. We also want to extend TCLP to other Prolog
dialects such as, e.g., Ciao Prolog or SWI Prolog.

Availability TCLP is distributed under the GNU Lesser General Pub-
lic License, and is available as sources, binaries for Linux/x86 and
MacOSX or as a library for SICStus Prolog. An online demo can be
found on the TCLP web site:
http://contraintes.inria.fr/~coquery/tclp
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A TCLP declarations for CHR rules

We use an auxiliary Prolog file, chrcore.pl, to decompose CHR rules
in sets of heads and bodies. The predicate chr heads/3 decomposes a
sequence of heads into a list of Head-Location-Type triplets, while the
predicate chr clauses/4 breaks a rule into a body and a list of heads.
In the last clause, the type chr constraint is specified, which leads TCLP
to use the rule (Head ′′).

The predicate user:arg location/2 is predefined in TCLP and is
used to provide the location of the different parts of the rule in the pro-
gram source code to TCLP, mainly for reporting errors in the right place.

myappend([],X,X).
myappend([X|L],L2,[X|R]) :- myappend(L,L2,R).

%% rule decomposition
chr__clause((HeadsDef <=> Body), Location,

Heads, [ Body - BodyLoc ]) :-
user:args_location(Location,[HeadsLoc, BodyLoc]),
chr__heads(HeadsDef, HeadsLoc, Heads).

chr__clause((HeadsDef ==> Body), Location,
Heads, [ Body - BodyLoc ]) :-
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user:args_location(Location,[HeadsLoc, BodyLoc]),
chr__heads2(HeadsDef, HeadsLoc, Heads).

%% sequence of heads to list
chr__heads((H1\H2), Location, Heads) :- !,

user:args_location(Location,[L1,L2]),
chr__heads2(H1,L1,Heads1),
chr__heads2(H2,L2,Heads2),
myappend(Heads1, Heads2, Heads).

chr__heads(H,L,Hds) :-
chr__heads2(H,L,Hds).

chr__heads2((H1,H2), Location, Heads) :- !,
user:args_location(Location,[L1,L2]),
chr__heads2(H1,L1,Heads1),
chr__heads2(H2,L2,Heads2),
myappend(Heads1, Heads2, Heads).

chr__heads2(H,L,[H-L-chr_constraint]).

The following code comes from the type declaration file for the CHR
library, chr.typ. The first directive loads the code from chrcore.pl.
The two last directives define, given a rule and its location, a list of heads
and a list of bodies, using chr clause/4 from chrcore.pl. Using these
directives, TCLP will decompose CHR rules in sets of heads and bodies,
heads being type checked with the rule (Head ′′), while bodies are type
checked as queries. The difference between the second and the third
directive is that the second directive discards the name of rules (names
are given to rules in CHR using the notation Name @ Rule).

%% load prolog code for parsing CHR rules
:- tclp__load_prolog(tclplib(’sicstus/chrcore.pl’)).

%% the declarations simply consist in the call to predicates
%% defined in chrcore.pl
:- tclp__define_clause((_ @ Rule), Location, Heads, Bodies,

(user:args_location(Location,
[_,RuleLoc]),

chr__clause(Rule, RuleLoc,
Heads, Bodies))).

:- tclp__define_clause(Rule, Location, Heads, Bodies,
chr__clause(Rule, Location,

Heads, Bodies)).
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Abstract
We have developed a PROLOG package VISUR/RAR for reasoning about various types of

source code, such as PROLOG rules, JAVA programs, and XSLT stylesheets. RAR provides
techniques for analyzing and improving the design of PROLOG programs, and it allows for
implementing software engineering metrics and refactoring techniques based on XML repre-
sentations of the investigated code. The obtained results are visualized by graphs and tables
using the component VISUR.

VISUR/RAR can significantly improve the development cycle of logic programming ap-
plications, and it facilitates the implementation of techniques for syntactically analyzing and
visualizing source code. In this paper we have investigated the dependency structure between
the different rules and the hierarchical structure of PROLOG software systems, as well as the
internal structure of individual predicate definitions.

For obtaining efficiency and for representing complex deduction tasks we have used tech-
niques from deductive database and non–monotonic reasoning.

Keywords. comprehension, refactoring, reasoning, visualization, PROLOG, XML

1 Introduction

For many programming languages, powerful integrated development environments (IDEs) have been
developed, such as IBM’s Eclipse for JAVA [12], and Together for JAVA, C++, Visual Basic, etc.
They contain tools such as editors with syntax highlighting, tracing and debugging and tools for
graphical programming. Advanced IDEs support programmers in managing large projects, e.g. by
facilitating the tasks of correcting, completing and reusing source code. In the logic programming
community, so far only few tools exist for comfortably programming and for analyzing source code,
cf., e.g., the IDEs for XPCE–PROLOG [20] and for Visual PROLOG, and the tool Cider [7] for the
functional–logic language Curry.
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The package VISUR/RAR [9] provides some essential functionality of an IDE for PROLOG. It
allows for the visualization of rules (VISUR: Visualization of Rules) together with the inference over
rule structures (RAR: Reasoning about Rules). VISUR/RAR is a part of the toolkit DISLOG, which
is developed under XPCE/SWI–PROLOG [20]. The functionality of DISLOG ranges from (non–
monotonic) reasoning in disjunctive deductive databases to applications such as the management
and visualization of stock information.

The goal of the system VISUR/RAR is to support the application of software engineering and
refactoring techniques, and the further system development. VISUR/RAR facilitates program com-
prehension and review, design improvement by refactoring, the extraction of subsystems, and the
computation of software metrics (such as, e.g., the degree of abstraction). It helps programmers in
becoming acquainted with source code by visualizing dependencies between different predicates or
source files of a project. It is possible to analyse source code customized to the individual needs of
a user, and to visualize the results graphically or in tables.

VISUR/RAR can be applied to various kinds of rule–based systems, including expert systems,
diagnostic systems, XSLT stylesheets, etc. In this paper we have applied VISUR/RAR to the source
code of the system DISLOG, which currently contains about 80.000 lines of code in SWI–PROLOG
in about 10.000 PROLOG rules. In previous papers [9, 10] we have shown how also JAVA source
code can be analysed using VISUR/RAR. For gaining sufficient performance on large programs such
as DISLOG we use techniques from the field of deductive databases.

The rest of the paper is organized as follows: In Section 2 we introduce our PROLOG library for
managing XML documents. In Section 3 we briefly describe the graph visualization tool VISUR. In
Sections 4 and 5 we investigate some typical problems and questions that might be asked about the
global and the local structure of PROLOG rules, respectively, and we show how we can solve these
problems using RAR.

2 Representation of Source Code

In VISUR/RAR complex structured objects, such as JAVA programs, PROLOG programs, and XSLT
stylesheets, are conceptually treated in two different XML notations; for handling these XML data
we use the library FNQUERY, which is part of the DISLOG unit xml [17].

Firstly, RAR uses a notation which is similar to RuleML [19] for representing PROLOG defin-
tions and rules; our DTD differs slightly from RuleML, and moreover we only use some of the
elements and attributes mentioned in RuleML. Secondly, VISUR transforms our XML representa-
tion of rules and our reportings into the Graph eXchange Language GXL [11]; we added some
additional attributes to the GXL notation for configuring the graph display.

2.1 PROLOG Programs in XML

The following PROLOG predicate tc/2 computes the transitive closure of the relation arc/2:

tc(U1, U2) :-
arc(U1, U3), tc(U3, U2).

tc(U1, U2) :-
arc(U1, U2).

dtai
32



We are representing PROLOG programs in XML according to a DTD (see appendix), which is
suitable for handling disjunctive logic programs with arbitrarily many head atoms. The arguments
of an atom are either terms or variables; constants are represented as terms without subterms, where
the constant is stored in the attribute functor. E.g., the PROLOG rules for the predicate tc/2 are
represented as follows:

<definition predicate="(user:tc)/2">
<rule file="transitive_closure">

<head>
<atom predicate="(user:tc)/2">

<var name="U1"/> <var name="U2"/> </atom>
</head>
<body>

<atom predicate="(user:arc)/2"> ... </atom>
<atom predicate="(user:tc)/2"> ... </atom>

</body>
</rule>
...

</definition>

We use the naming convention (Module:Predicate)/Arity for predicates. If a predicate
is not defined in a module, then it is automatically assigned to the global module user.

2.2 Complex Objects in PROLOG

A complex object can be represented as an association list [a1 : v1, . . . , an : vn], where ai is an
attribute and vi is the associated value; this representation is well–known from the field of artificial
intelligence. Using the field notation has got several advantages compared to ordinary PROLOG facts
”object(v1, . . . , vn)”. The sequence of attribute/value–pairs is arbitrary. Values can be accessed by
attributes rather than by argument positions. Null values can be omitted, and new values can be
added at runtime.

In the PROLOG library FNQUERY this formalism has been extended to the field notation for
XML documents: an XML element

〈Tag a1 = ”v1” . . . an = ”vn”〉 Contents 〈/Tag〉

with the tag “Tag” can be represented as a PROLOG term Tag :As :C, where As is an association list
for the attribute/value–pairs ai = ”vi” and C represents the contents, i.e., the subelements. E.g., for
the XML representation of the atom tc(U1, U2) we get:

atom:[predicate:’(user:tc)/2’]:[
var:[name:’U1’]:[], var:[name:’U2’]:[] ]

There exist several possibilities to access and update an object O in field notation using a binary
infix predicate “:=”, which evaluates its right argument and tries to unify the result with its left
argument. Given an element tag E and an attribute A, we use the call X := O^E to select the E–
subelement X of O, and we use Y := O@A to select the A-value Y of O; the application of selectors
can be iterated, cf. path expressions in XML query languages [1]. On backtracking all solutions to a
path expression can be obtained.
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?- Atom = atom:[predicate:’(user:tc)/2’]:[
var:[name:’U1’]:[], var:[name:’U2’]:[] ]

P := Atom@predicate, V := Atom^var,
findall( N,

N := Atom^var@name,
Ns ).

P = ’(user:tc)/2’, V = var:[name:’U1’]:[], Ns = [’U1’, ’U2’]

Yes

To change the values of attributes or subelements, the call X := O*As is used, where As
specifies the new elements or attribute/value–pairs in the updated object X:

?- Atom = atom:[predicate:’(user:tc)/2’]:[
var:[name:’U1’]:[], var:[name:’U2’]:[] ],

Atom_2 := Atom*[@predicate:’closure/2’].

Atom_2 = atom:[predicate:’closure/2’]:[
var:[name:’U1’]:[], var:[name:’U2’]:[] ]

Yes

The library FNQUERY also contains additional, more advanced methods, such as the selec-
tion/deletion of all elements/attributes of a certain pattern, the transformation of subcomponents
according to substitution rules in the style of XSLT, and the manipulation of path or tree expres-
sions.

3 Visualization of PROLOG Rules in VISUR

For visualizing the call structure of rule–based systems the concept of dependency graphs, which
is well–known from deductive databases [2], is used. DATALOG programs can be analysed using
diverse dependency graphs, e.g., the rule/goal graph and the goal graph.

All screenshots of dependency graphs that are shown in this paper have been obtained using our
system VISUR. We use a circle for ordinary predicates; the name and the arity of the predicate are
given below the symbol. For each rule, we use a box; the filename below the box gives the file in
which the rule is defined.

The Rule/Goal Graph. Given a PROLOG program P and a rule

r = A ← B1 ∧ . . . ∧ Bm ∈ P,

the concept of the rule/goal graph Grg
r = 〈V rg

r , Erg
r 〉 of r is well–known from literature:

V rg
r = { pA, r } ∪ { pBi | 1 ≤ i ≤ m },

Erg
r = { 〈pA, r 〉 } ∪ { 〈r, pBi 〉 | 1 ≤ i ≤ m },
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tc/2

transitive_closure

arc/2

transitive_closure

Figure 1: Rule/Goal Graph in VISUR

where pX is the predicate name of an atom X = p(t1, . . . , tn), i.e. pX = p. The rule/goal graph of
P is Grg

P =
⋃

r∈P Grg
r .

Meta–Call Predicates in PROLOG. Unfortunately, these graphs cannot handle practical applica-
tions of PROLOG properly, since they do not take into account meta–call predicates. Meta–call pred-
icates allow for higher–order programming; some well–known meta–call predicates are for instance
call/1, findall/3, forall/2, maplist/3, and checklist/2. E.g., the evaluation of
findall/3 within the following rule repeatedly calls the predicate calls_uu_pred/2 and
collects the results in the list Predicates:

calls_uu(Program, (Unit_1-Unit_2):N) :-
unit(Unit_1), unit(Unit_2),
Unit_1 =\= Unit_2,
findall( Predicate,

calls_uu_pred(Program, (Unit_1-Unit_2):Predicate),
Predicates ),

length(Predicates, N).

To treat meta–call predicates in PROLOG programs adequately, we will define extended depen-
dency graphs, which include the predicates called in the parameter list of a meta–call predicate.
Figure 2 contains the extended dependency graph of the rule generated by VISUR. We use a rhom-
bus as the symbol for meta–call predicates in order to distinguish them from ordinary predicates,
and we use a triangle as the symbol for built–in predicates.

In the rule/goal graph there would be no edge from findall/3 to calls_uu_pred/2. We
introduce the notation pB ≺ pA for expressing that an atom B with the predicate symbol pB is called
within an atom A with the predicate symbol pA. Thus, in our example we get

calls_uu_pred/2≺ findall/3.

In VISUR it is possible to define the relation ≺ customized to the individual user needs. E.g., if
the predicate symbol pB is constructed at runtime by appending some dynamic suffix p′′

B to a static
prefix p′B, i.e. pB = p′B ◦ p′′B, then we can specify that pB ≺ pA holds for all pB with the prefix p′B .
In Section 4 we will see such predicates, where p′

B = calls_ and p′′B ∈ { fp, uu }.
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The Extended Rule/Goal Graph. The extended rule/goal graph Gerg
P = 〈V erg

P , Eerg
P 〉 takes care

of the fact that an atom B can be called within another atom A. The node set V erg
P = ∪A∈HBP

V ≺
A

and the edge set Eerg
P = ∪A∈HBP

E≺
A are obtained by collecting the following node and edge sets

for the ground atoms A in the Herbrand base HBP :

V ≺
A = { pA } ∪ (∪pB≺pAV ≺

B ),
E≺

A = ∪pB≺pA( { 〈pA, pB 〉 } ∪ E≺
B ).

The extended rule/goal graph of Figure 2 visualizes most of the PROLOG rules of Section 4; the rule
for the predicate calls_uu/2, that is shown above, is one of them.

calls_uu_reduce/3

rar_graphs

findall/3

(>)/2

calls_uu/2

rar_graphs

findall/3

calls_uu_pred/2

rar_graphs

calls_fp/3

rar_graphs

defines_or_calls_fp/4

rar_graphs(:=)/2

defines_fp/3

rar_graphs

path_extract/3

(=\=)/2 length/2

unit/1

edges_to_reduced_graph/2

Figure 2: Extended Rule/Goal Graph in VISUR

Further graphs such as the goal graph, the file dependency graph, the module dependency graph,
and the unit dependency graph can be derived from the extended rule/goal graph.

4 Analysis of Dependency Graphs in RAR

In this section we present some PROLOG rules for extracting structural design information from
hierarchically structured PROLOG programs. We will demonstrate by some case studies how the
quality of the arrangement of the predicates in the source code files can be measured.

We have applied our analysis to the system DISLOG, which is hierarchically structured into
units, modules, and files; i.e., in DISLOG a module consists of serveral files, whereas in PROLOG a
module usually consists of a single file. Currently, the complete name (path) of a DISLOG source
file is of the form
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DisLog/sources/<unit>/<module>/<file>,

and the call path_extract(Type, Path, X) extracts X = <unit>, X = <module>,
and X = <file>, from such a path Path, where Type is one of unit, module, and file,
respectively.

4.1 Basic Dependencies between Files and Predicates

Given a program Program in field notation, the following predicate defines_fp/3 describes
that the predicate Predicate is defined (i.e., it occurs in the head of a rule) in the file File, and
calls_fp/3 describes that Predicate is called in the body of a rule in File:

defines_fp(Program, File, Predicate) :-
defines_or_calls_fp(Program, File, head, Predicate).

calls_fp(Program, File, Predicate) :-
defines_or_calls_fp(Program, File, body, Predicate).

defines_or_calls_fp(Program, File, Selector, Predicate) :-
Rule := Program^definition^rule,
File := Rule@file,
Predicate := Rule^Selector^atom@predicate.

The predicate defines_or_calls_fp/4, which extracts the common part of the two predicates
defines_fp/3 and calls_fp/3, uses the variable Selector in a path expression. E.g.,
calling defines_fp(Program, File, ’(user:calls_fp)/3’) for the representation
of the DISLOG system determines the file that defines ’(user:calls_fp)/3’:

File = ’DisLog/sources/databases/rar/rar_metrics’

4.2 Derived Dependencies between Units

A unit Unit_1 calls a unit Unit_2, if there exists a file File_2 in Unit_2 defining a predicate
Predicate that is called in a file File_1 in Unit_1. In practice it turned out that in DISLOG
there exist calls between most units, but there are great differences between the numbers of such
calls. The following predicate calls_uu/2 returns elements of the form (Unit_1-Unit_2):N
by counting the number N of predicate calls from Unit_1 to Unit_2:

calls_uu(Program, (Unit_1-Unit_2):N) :-
unit(Unit_1),
unit(Unit_2),
Unit_1 =\= Unit_2,
findall( Predicate,

calls_uu_pred(Program, (Unit_1-Unit_2):Predicate),
Predicates ),

length(Predicates, N).
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calls_uu_pred(Program, (Unit_1-Unit_2):Predicate) :-
calls_fp(Program, File_1, Predicate),
defines_fp(Program, File_2, Predicate),
path_extract(unit, File_1, Unit_1),
path_extract(unit, File_2, Unit_2).

In most situations where a unit calls another unit very few times, these calls are due to missplaced
predicate definitions; these predicate definitions could be moved to other places, such that the calls
disappear. In Figure 3 the remaining part of the unit dependency graph of DISLOG is shown.

Figure 3: Unit Dependency Graph of DISLOG in VISUR

Figure 3 suggests to partition the set of 8 DISLOG units into two levels: The lower level con-
sists of the units basic_algebra, interfaces, nm_reasoning, and xml; the higher level
consists of development, databases, stock_tool, and projects.

We have computed the reduction of the unit dependency graph of Figure 3 to strongly connected
components based on the standard library ugraphs.pl of SWI–PROLOG: [basic_algebra,
interfaces, nm_reasoning] is a strongly connected component. By joining the strongly
connected components into higher–level packages, we can obtain an acyclic package structure.

Extracting a Maximal Acyclic Unit Structure

Another alternative for improving the design of a system could be to identify a small set of predicates
that should be moved from one unit to another unit, such that the resulting unit dependency graph is
acyclic. This could be done by extracting a maximal acyclic subgraph of the unit dependency graph,
such that the neglected edges represent the smallest number of calls. Thus, the following program
derives a relation arc/2 that is a subset of the relation calls_uu/2.

arc(U1, U2) :-
calls_uu(U1, U2),
not(tc(U2, U1)).

tc(U1, U2) :-
arc(U1, U2).
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calls_uu/2

arc/2

rar_dlv

not/1

tc/2

rar_dlv

rar_dlv

Figure 4: Rule/Goal Graph in VISUR

tc(U1, U2) :-
arc(U1, U3), tc(U3, U2).

The program cannot be evaluated using PROLOG, since the recursion defining the predicate
arc/2 envolves negation, cf. Figure 4. Thus, we have used the disjunctive logic programming
system dlv [4] for evaluating the program. dlv is able to derive the so–called answer sets, which
are certain minimal sets of atoms satisfying the rules. Obviously, we can focus on the non–trivial
strongly connected component [basic_algebra, interfaces, nm_reasoning]. The
(partial) solutions obtained by answer set programming with dlv are given in Figure 5. They show
that we can obtain three different maximal acyclic unit structures.

The most reasonable one is given by the answer set M3, which indicates to neglect the edge
from basic_algebra to nm_reasoning in the unit dependency graph; in that case only 20
predicate defintions would have to be moved from one unit to another unit (obviously, this might not
always be possible). In comparison, M1 would neglect 187 calls, and M2 would neglect 191 calls.

Unit Unit Calls M1 M2 M3

basic_algebra nm_reasoning 20 ! !
interfaces basic_algebra 41 ! !
nm_reasoning interfaces 45 ! !

nm_reasoning basic_algebra 146 !

Figure 5: Answer Sets Computed by dlv

We have used dlv since we are planning to analyse disjunctive logic programs in the future as
well. Our current program above, however, is a normal logic program, and we could also evaluate it
using the answer set programming system Smodels, which is restricted to normal logic programs.
Both dlv and Smodels can compute optimal models; thus, it is possible to compute the optimal
answer set M3 without computing all answer sets.
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5 Analysis of the Internal Structure of Rules

In this section we analyze the internal structure of individual PROLOG rules or definitions. In
particular we compute software metrics, we search for design patterns, and we apply refactoring
techniques. The examples demonstrate the usefulness of our PROLOG library for handling XML
representations of source code.

As an example of PROLOG–specific software metrics, in Section 5.1 we show how the per-
centage of directly recursive predicates in DISLOG can be calculated, and we compare it with the
percentage of meta–call predicates.

In Section 5.2 we describe the detection and the refactoring of patterns. We detect directly
recursive predicates having a special form that could in fact be replaced using the meta–call predicate
maplist/3. Other patterns that one could look for are the accumulator pattern for traversing a
list – as it can be found in the predicate sumlist/2 of the library lists.pl of SWI–PROLOG.

5.1 Directly Recursive Rules vs. Meta–Call Predicates

The following predicate counts the number of directly recursive rules for each unit. The results are
a multiset Units consisting of pairs Unit:K, such that K is the number of directly recursive rules
in Unit, and an integer N, which is the overall number of directly recursive rules in all units.

directly_recursive_predicates(Program, Units, N) :-
findall( Unit,

( Definition := Program^definition,
Predicate := Definition@predicate,
Rule := Definition^rule,
Predicate := Rule^body^atom@predicate,
Path := Rule@file,
path_to_unit_name(Path, Unit) ),

Units_2 ),
list_to_multiset(Units_2, Units),
length(Units_2, N).

The predicate list_to_multiset/2 converts a list – with possibly multiply occurring ele-
ments – into a list of pairs Element:Multiplicity, which represents a multiset. Applying
the predicate directly_recursive_predicates/3 to DISLOG has shown that there are
1645 directly recursive rules in DISLOG. Figure 6 shows the percentage of such predicates per
module.

Sometimes, meta–call predicates, such as maplist/3 or checklist/2 can be used instead
of directly recursive calls. In many cases they are a better choice, since they are more readable.
Moreover, meta–call predicates are often implemented in the kernel, and they are faster than directly
recursive calls.

The distribution in Figure 6 shows, that in the units of level 1 often directly recursive calls are
used, whereas the distribution in Figure 7 shows, that in the units of level 2 meta–call predicates are
used more often; the only exception is the unit xml.
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Figure 6: Rules with Directly Recursive Predicates (in %)

Figure 7: Rules with Meta–Call Predicates (in %)

5.2 Detection of Patterns and Refactoring

The following two rules define the predicate vector_multiply/3 using direct recursion:

vector_multiply(F, [X|Xs], [Y|Ys]) :-
Y is F * X,
vector_multiply(F, Xs, Ys).

vector_multiply(_,[],[]).

Every list element X of the input list is multiplied by F to obtain a list element Y of the output list.
A more abstract – and more elegant – implementation of vector_multiply/3 can be obtained
using the meta–call predicate maplist/3:
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vector_multiply(F, Xs, Ys) :-
maplist( multiply(F),

Xs, Ys ).

multiply(F, X, Y) :-
Y is F * X.

The version using maplist/3 is shorter, since the predicate multiply/3 already exists in DIS-
LOG. For complex transformations – where the input element X is transformed into the output
element Y using a complex sequence of operations – the version using maplist/3 in most cases
is much more readable. The same holds for predicates with many parametric arguments such as F
in vector_multiply/3.

An alternative implementation is possible using the PROLOG library loops.pl, cf. [14], where it
is argued that the enhancement of PROLOG by concepts – such as logical loops – that are familiar
from other programming languages increases productivity and mantainability:

vector_multiply(F, Xs, Ys) :-
( foreach(X, Xs), foreach(Y, Ys) do

Y is F * X ).

Thus, we have implemented an automatic detection and refactoring of maplist patterns. The
following two important predicates are applied to a linear recursive rule for the predicate symbol
Predicate. list_argument/4 is applied to the head atom Atom of the rule; it detects a list
pattern X:Xs and returns its argument position N. variable_argument/4 is applied to a body
atom Atom of the rule; it checks if the argument at position N is Variable:

list_argument(Atom, Predicate, N, X:Xs) :-
Predicate := Atom@predicate,
Argument := Atom-nth(N)^_,
’.’ := Argument@functor,
X := Argument-nth(1)^var@name,
Xs := Argument-nth(2)^var@name.

variable_argument(Atom, Predicate, N, Variable) :-
Predicate := Atom@predicate,
Argument := Atom-nth(N)^_,
Variable := Argument@name.

Argument := Atom-nth(N)^_ selects the N–th argument of Atom, independently of its tag,
and, if Argument is a list (i.e., its functor is "."), then X := Argument-nth(1)^var@name
selects the head X of the list and Xs := Argument-nth(2)^var@name selects the tail Xs.
For our recursive rule we can apply these predicates to the head and the body atom, respectively,
with the predicate vector_multiply/2:

?- Atom_1 = atom:[predicate:’vector_multiply/3’]:[
var:[name:’F’]:[],
term:[functor:’.’]:[
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var:[name:’X’]:[], var:[name:’Xs’]:[]],
term:[functor:’.’]:[

var:[name:’Y’]:[], var:[name:’Ys’]:[]]],
Atom_2 = atom:[predicate:’vector_multiply/3’]:[

var:[name:’F’]:[],
var:[name:’Xs’]:[], var:[name:’Ys’]:[]],

list_argument(Atom_1, P, N, X:Xs),
variable_argument(Atom_2, P, N, Xs).

P = ’vector_multiply/3’, X = ’X’, Xs = ’Xs’, N = 2;
P = ’vector_multiply/3’, X = ’Y’, Xs = ’Ys’, N = 3

Yes

If we find a pair N,N’ of corresponding positions (above we found N = 2 and N’ = 3),
then further predicates have to check that there is no other recursive rule for Predicate, that the
list variables Xs and Ys don’t occur in the remaining body atoms (i.e., in "Y is F * X" in our
example), that the arguments in the other positions in the recursive atom in the head and the body, re-
spectively, are identical (i.e., the first argument F), and that the non–recursive rule for Predicate
is just an atom with "[]" in the positions N,N’ and underscore variables in the remaining positions.

It turned out that there exist 176 maplist patterns in the 4 basic level units of DISLOG; on the
other hand, we have computed that there are 78 calls to maplist/3 in these 4 units. In the 4
higher–level units, there exist 54 maplist patterns, and there are 388 calls to maplist/3.

6 Conclusions

VISUR/RAR can be used for analyzing and for refactoring source code; it can help to improve the
initial design of a system. By using an extended definition of dependency graphs it became possible
to treat meta–call predicates in PROLOG adequately. Our approach is based on heuristics; in general
it is not statically decidable which calls are to be actually done at run time in the presence of meta–
calls and rules that are asserted or retracted at runtime.

The integration of XML processing, visualization, and reasoning in the logic programming en-
vironment XPCE–PROLOG has created a powerful and flexible tool. The library FNQUERY, which
we are using for accessing the components of the XML representations of the source code, has also
been used in other projects. For example, in [8] it is shown how mathematical knowledge in XML
can be managed nicely using FNQUERY.

The predicates for analyzing dependency graphs of PROLOG programs of Section 4 can easily be
adapted to JAVA programs by redefining the basic predicates defines_fp/3 and calls_fp/3,
and by considering classes instead of files and methods instead of predicates. In [10] we defined
such predicates based on an XML representation of JAVA source code; in that paper we have also in-
vestigated some simple predicates for analyzing dependency graphs of PROLOG source code, which
are different from the predicates described in Section 4 of the present paper.

In the future, we will gradually extend VISUR/RAR with additional features. We intend to
implement sophisticated methods for program analysis from software engineering [3, 5, 6, 16], and
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we want to integrate further refactoring techniques for PROLOG and for JAVA code, which have been
developed in [18] for PROLOG.

References

[1] S. Abiteboul, P. Bunemann, D. Suciu: Data on the Web – From Relations to Semi–Structured
Data and XML, Morgan Kaufmann, 2000.

[2] S. Ceri, G. Gottlob, L. Tanca: Logic Programming and Databases, Springer, 1990.

[3] S. Diehl (Ed.): Software Visualization: International Seminar, Dagstuhl Castle, Germany,
Springer LNCS 2269, 2002.

[4] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, F. Scarcello: A Deductive System for Non–Monotonic
Reasoning, Proc. Fourth Intl. Conf. on Logic Programming and Non–Monotonic Reasoning
LPNMR 1997, Springer LNAI 1265, 1997.

[5] H. Erdogmus, O. Tanir (Eds.): Advances in Software Engineering - Comprehension, Evalua-
tion, and Evolution, Springer, 2002.

[6] M. Fowler: Refactoring – Improving the Design of Existing Code, Addison–Wesley, 1999.

[7] M. Hanus, J. Koj: An Integrated Development Environment for Declarative Multi–Paradigm
Programming, Proc. Workshop on Logic Programming Environments WLPE 2001.

[8] B. Heumesser, D. Seipel, U. Güntzer: Flexible Processing of XML–Based Mathematical
Knowledge in a PROLOG Environment, Proc. Intl. Conf. on Mathematical Knowledge Man-
agement MKM 2003, Springer LNCS 2594.

[9] M. Hopfner, D. Seipel: Reasoning about Rules in Deductive Databases, Proc. 17th Workshop
on Logic Programming WLP 2002.

[10] M. Hopfner, D. Seipel, J. Wolff von Gudenberg: Comprehending and Visualising Software
based on XML Representations and Call Graphs, Proc. 11th IEEE International Workshop on
Program Comprehension IWPC 2003.

[11] R. Holt, A. Winter, A. Schürr: GXL: Towards a Standard Exchange Format, Proc. Working
Conference on Reverse Engineering WCRE 2000, http://www.gupro.de/GXL/

[12] IBM: The Integrated Development Environment ECLIPSE, http://www.eclipse.org/

[13] M. Kifer, G. Lausen: F–Logic: A Higher–Order Language for Reasoning about Objects, Proc.
ACM SIGMOD Conference on Management of Data, 1989.

[14] J. Schimpf: Logical Loops, Proc. Intl. Conference on Logic Programming ICLP 2002.

[15] A. Serebrenik, B. Demoen: Refactoring Logic Programs, Proc. Intl. Conference on Logic Pro-
gramming ICLP 2003 (Poster Session).

[16] J. Seemann, J. Wolff von Gudenberg: Pattern–Based Design Recovery of JAVA Software, Proc.
Intl. Symposium on the Foundations of Software Engineering 1998.

dtai
44



[17] D. Seipel: Processing XML Documents in PROLOG, Proc. 17th Workshop on Logic Program-
ming WLP 2002.

[18] R. Seyerlein: Refactoring in deduktiven Datenbanken am Beispiel des Informationssystems
Qualimed, Diploma Thesis, University of Würzburg, 2001.

[19] G. Wagner: How to Design a General Rule Markup Language, Proc. Intl. Workshop on XML
Technologies for the Semantic Web, XSW 2002.

[20] J. Wielemaker: SWI–PROLOG 5.0 Reference Manual, http://www.swi-prolog.org/
J. Wielemaker, A. Anjewierden: Programming in XPCE/PROLOG http://www.swi-prolog.org/

Appendix

We are representing PROLOG programs in XML according to the following DTD, which is suitable
for handling disjunctive logic programs with arbitrarily many head atoms:

<!ELEMENT program (definition*)>
<!ELEMENT definition (rule*)>
<!ELEMENT rule (head, body)>
<!ELEMENT head (atom*)>
<!ELEMENT body (atom*)>
<!ELEMENT atom ((term|var)*)>
<!ELEMENT term (term*)>

<!ATTLIST definition predicate CDATA #required>
<!ATTLIST rule file CDATA #required>
<!ATTLIST atom predicate CDATA #required>
<!ATTLIST term functor CDATA #implied>
<!ATTLIST var name CDATA #implied>

The arguments of an atom are either terms or variables; constants are represented as terms without
subterms, where the constant is stored in the attribute functor.
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Presentation of the Demonstration

Many debugging tools for finite domain solvers have been developed in order to
debug applications based on finite domain constraints resolution, for example,
Grace [2], the Oz Explorer [3], the Oz Constraint Investigator [4], the CHIP
global constraint visualizer [5], the S-box model [6], the Christmas Tree visual-
izer [7] and more DiSCiPl visualization tools [8].

In spite of their very interesting functionalities these tools have a major
drawback, they have a low degree of portability: they are implemented on a
specific platform and the work to port them from one platform to another may
require a tremendous effort. From an industrial point of view, one would like
to limit the efforts to port the tools when the same company develops applica-
tions with different solver platforms. From a research point of view, one would
like to experiment with different tools on different platforms without too much
re-engineering effort.

The previous drawback is all the most daunting that most of the tools are
general purpose oriented, i.e. they do not depend on a particular application and
they use quite the same kind of basic information collected in the course of
the program execution. From this information, more or less complex views are
generated. In the case of applications, specific animated views are frequently
proposed, but their animation itself depends on the same basic information.

It is one of the objectives of the OADymPPaC project [1] to realize such
a challenge: to allow several independently developed debugging tools to be
used on different solvers. For this purpose an observational semantics which
formalizes relevant aspects of constraint programming and solving has been
introduced. Then a generic trace schema has been derived which can be used to
then build tracers producing "generic traces" [9]. It is thus possible to develop
independently debugging tools whose input data are built from the generic trace.
! This work is partly supported by OADymPPaC [1], a French RNTL project.
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Several such tools have been independently developed by partners of the
OADymPPaC project to visualize very large dynamic structures of constraint
problems. In the meantime several tracers have been implemented whose trace
contains the generic trace events.

We will present in the form of a demonstration the versatility of the ap-
proach to analyze, debug and solve a constraint problem. The demonstration
will especially illustrate how the generic trace helps connect different visualiz-
ation tools (in particular adjacency matrices [10] and Ilog Discovery [11]) to
different platforms (in particular GNU-Prolog [12] and PaLM [13]).
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Abstract. Classic techniques for proving termination require the iden-
tification of a measure that maps program states to the elements of a
well-founded domain. Termination is guaranteed if this measure is shown
to decrease with each iteration of a loop in the program. This is a global
termination condition — there exists a measure which is shown to de-
crease over all of the loops in the program. In recent years, systems
based on local termination conditions are emerging. Here, termination
is guaranteed if for every loop there exists a measure which decreases
as execution follows through that loop. In this paper we question the
relationship between the two approaches. Reasoning locally is more con-
venient. But is the local approach really more powerful? We show that
for a large class of termination problems the two approaches are equally
powerful. To this end we demonstrate that given local conditions which
support a proof of termination, a corresponding global condition can al-
ways be constructed. On the one hand, the local conditions are simpler
and easier to find. Yet on the other hand, in the local approach one must
consider a closure operation on loops which may require to consider an
exponential number of local conditions.

1 Introduction

Classic techniques for proving termination require the identification of a measure
that maps program states to the elements of a well-founded domain. Termination
is guaranteed if this measure is shown to decrease with each iteration of a loop
in the program. Traditionally, the termination condition is global and loops are
characterized syntactically. Global, because there exists a single measure which
is shown to decrease over all of the loops in the program; and syntactic, because
loops are defined in terms of the simple cycles in a graph representing, or derived
from, the program. Namely, a path with no repeated vertices, except for the
initial and terminal vertex.
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In recent years, systems based on local termination conditions and which
characterize loops semantically are emerging. Local, because termination is guar-
anteed if for every loop there exists a (possibly different) measure which decreases
as execution follows through that loop; and semantic, because loops are charac-
terized in terms of program executions. In this approach a loop corresponds to
a pair of “program states” at which execution visits the same “program point”.

This paper investigates the relation between the global and local approaches
to proving termination. In theory, if there exist local measures to determine
termination then there must exist also a global measure. This follows from the
correctness of the local approach and from the completeness of the global ap-
proach. On the other hand, in practice, analyzers based on the local approach
can often prove termination for programs for which analyzers based on global
functions cannot. The question posed is how serious is the rift between the two
approaches?

We show that for termination analyzers based on the size change termination
principle [] or equivalently, on the description of loops in terms of monotonicity
constraints [], the two approaches are of equal power. To this end we illustrate
how to construct a global termination measure from a given finite set of local
measures.

We also show that the construction does not work when loops are described
in a richer language. Hence it is not clear, for the general case what is the relation
between local and global termination analysis.

In this paper we consider a general setting independently of any particular
programming language or paradigm. We assume some syntactic notion of a pro-
gram point and some semantic notion of a program state. A program point is a
node in the parse tree and represents the point just before (or after) the exe-
cution of a program statement. A program state associates values for program
variables at a given program point and represents a run-time situation when exe-
cution is at the given point. A computation (or program execution) is a, possibly
infinite, sequence of program states.

To clarify the terminology and to highlight the difference between the two
characterizations of loops consider the following example.

Example 1. Consider the following program fragment, on the left, where p0, p1, p2

and p3 are program points. The graph, given on the right, highlights the flow
of control between the program points. The simple cycles in the graph are
〈p1, p2, p1〉 and 〈p1, p3, p1〉. These are the syntactic loops in the program.

p0: int x = 1, y = 1;
p1: while (x + y > 0)

{
if (x > y)

p2: { x := x - 1; y := y + 2; }
else

p3: { y := y - 1; x := x + 2; }
}
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For the program above, execution iterates returning to point p1. The pair of
program states p1(1, 1) ! p1(3, 0) represents an execution loop because there
is a visit to p1 with x = 1, y = 1 and a subsequent visit with x = 3, y = 0.
Similarly, p1(3, 0) ! p1(2, 2) and p1(1, 1) ! p1(2, 2) are also execution loops.
The set of all execution loops for the given program is infinite.

In the semantic-based approach to termination analysis, abstract interpre-
tation is applied to provide a finite approximation of a program’s (semantic)
loops. A concrete semantics that is the basis for the termination analysis of logic
programs is given in [4]. In this semantics the semantic objects are pairs of ini-
tial and terminal program states in a computation. The special case where the
initial and terminal states are associated with the same program point indicates
a semantic loop. In the corresponding abstract semantics, loops are described by
abstract binary clauses of the form p(x̄) ← π, p(ȳ) where p(x̄) and p(ȳ) represent
the program states at point p before and after executing the loop, and π is a
constraint describing relations between the sizes of values of the variables of the
states.

Termination analyzers based on abstract interpretation differ depending on
the type of constraints allowed to appear in π. In [8] the authors use monotonicity
constraints which are binary relations on variables. An equivalent approach is
presented in [7] where the authors represent constraints using, so called, size
change graphs. In such a graph, nodes correspond to the sizes of the values in
the program states before and after execution of the loop, and labeled edges to
binary relations on variables.

Example 2. Consider the procedure (on the left) defining the Ackerman function
where four program points (acker0, . . . , acker3) are indicated using subscripts.

int acker0(int m, int n)
{ /* restricted for m,n >= 0 */

if (m == 0)
return n+1;

else if (n == 0)
return acker1(m-1,1);

else
return acker3(m-1,acker2(m,n-1));

}

!1 = acker0(x1, x2) ←
x1 ≥ 0, x2 ≥ 0, y1 ≥ 0, y2 ≥ 0,
x1 = y1, x2 > y2, acker0(y1, y2).

!2 = acker0(x1, x2) ←
x1 ≥ 0, x2 ≥ 0, y1 ≥ 0, y2 ≥ 0,
x1 > y1, acker0(y1, y2).

Each recursive call ackeri, with i > 0 gives rise to a loop when execution returns
to acker0. The two abstract binary clauses (on the right) approximate the infinite
number of concrete execution loops at program point acker0 (for arbitrary non-
negative initial values of m and n). The first abstract binary clause represents
concrete loops in which the size of the first argument is invariant and the size
of the second argument decreases. The second abstract binary clause represents
concrete loops in which the size of the first argument is decreasing.

The following example illustrates the global and local approaches to proving
termination. The formal justification of these are discussed in the next section.
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Example 3. The measures f1(acker0(x, y)) = y and f2(acker0(x, y)) = x from
Example 2 decrease respectively for the loop descriptions "1 and "2 in the ex-
ample. These are local measures, one for each of the two loops. This provides a
proof of termination by the local approach. A global measure can also be identi-
fied. Consider the function f(acker0(x, y)) = 〈f2(acker0(x, y)), f1(acker0(x, y))〉
which decreases for both loops with respect to the lexicographic ordering on
pairs. This provides a proof of termination by the global approach. "

Note that the local approach to proving termination is not necessarily correct
when loops are represented in the more classic syntactic approach. At least not
if we restrict attention only to the simple cycles in the graph.

Example 4. Consider the graph representation of the program from Example 1.
The measures f1(p(x, y)) = x and f2(p(x, y)) = y decrease respectively for the
two cycles in the graph. However the program does not terminate. A proof of
termination in the local approach would have to consider also the non-simple
loop p1p2p1p3p1 for which neither x nor y decreases.. "

Reasoning locally about loops does have advantages. Local termination mea-
sures are often simpler. They are easier to identify, by the human user as well as
when aiming for automated proofs. For example, there are many cases where
proofs based on local measures involve linear functions while corresponding
global measures involve tuples ordered lexicographically. As a consequence, an-
alyzers implemented to use linear techniques are more successful when based on
local instead of global termination conditions.

2 Preliminaries

This section presents the local approach to proving termination, recalls the clas-
sic justification for the global approach and explains why the justification of the
local approach is problematic.

To simplify the presentation, we assume that the (syntactic) loops of a pro-
gram P are given as abstract binary clauses, for example a program point p
(where the execution iterates) is described using p(x̄) ← π, p(ȳ), where x̄ is the
values of the program’s variables (a state) when entering the loop, ȳ is the state
when revisiting the loop, and π is the size-relations between the two states.
Formally speaking, (abstract) binary clauses are defined as follows.

Definition 1 (Abstract binary clauses). An abstract binary clause C is a
clause of the form p(x̄) ← π, p(ȳ) where x̄ and ȳ consists of distinct tuples of
variables and π are linear constrains over a well-founded domain D = 〈D,<〉
that involve only the variables of x̄ and ȳ only. Moreover, we assume that π
contains the implicit constraint {v ≥ 0|v ∈ vars(x̄) ∪ vars(ȳ)}.

Often, the constraint domain D that used to describe a binary clause, is fur-
ther restricted to contain only monotonicity constraints [8]. These are conjunc-
tions of binary relations (<,≤,=) between pairs of variables. This restriction,
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and in general the choice of D, is sometimes crucial to proving termination as
show in the following example.

Example 5. Consider the following binary clause p(x1, x2) ← π, p(y1, y2) where
π ≡ [y1 = 2 ∗ x2 + 1 ∧ x1 = 3 ∗ y2 + 2] and assume it is the only loop in the
program. It is easy to verify that f(a1, a2) = a1 + 3 ∗ a2 is decreasing for this
binary clause, i.e π |= f(y1, y2) > f(x1, x2), hence the program terminates. But,
restricting π to monotonicity constraints results in π′ ≡ [y1 > x2, x1 < y2], and
there is no f such that [y1 > x2, x1 < y2] |= f(y1, y2) > f(x1, x2). Therefore,
with this restriction we cannot prove termination.

Loop descriptions involving monotonicity constraints can also be represented
as size change graphs [7] where directed edge from x to y indicates a constraint
x > y, and non-directed edge indicates a constraint x ≥ y.

Example 6. Consider the loop descriptions from Example 2. These will be de-
picted by the size change graphs.

The vertices on the top of the graph correspond to those in the head of the binary
clause and those on the bottom to the variables in the body of the clause.

The correctness of the local approach to proving termination relies on the fact
that implicit loops are made explicit first, only then we can claim termination if
we find (possibly different) decreasing measures for each of these loops. Making
the implicit loops explicit is done by closing the set of (syntactic) binary clauses
under compositions, where the composition of two loops is defined as follows.

Definition 2 (Composing loops). Let "1 = p(x̄) ← π1, p(ȳ) and "2 = p(ȳ) ←
π2, p(z̄) be (renaming of) programs loops descriptions (which do not share vari-
ables except those in ȳ). The composition of "1 and "2 is defined as "1 ◦ "2 =
p(x̄) ← ∃ȳ. π1 ∧ π2, p(z̄).

The following example illustrates the composition of two loops. Note the
projection of the variables (by ∃ȳ).

Example 7 (Composing loops). Consider the loop descriptions "1 and "2 from
Example 2. Observe that "1 ◦ "1 = "1, "1 ◦ "2 = "2 ◦ "1 = "2, and "2 ◦ "2 = "2.
For example assuming that "1 = p(x1, x2) ← [x1 = y2, x2 > y2], p(y1, y2) and
"2 = p(y1, y2) ← [y1 > z1], p(z1, z2), then the composition "1 ◦ "2 results in
"1 = p(x1, x2) ← [x1 > z1], p(z1, z2) (which is a variant of "2) as illustrated in
the following diagram:
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It is important to note that closing a set of loop descriptions under compo-
sition can introduce an exponential number of additional descriptions [7].

The following proposition provides conditions when we can claim termination
based on the local approach.

Proposition 1. Let P be a logic program, p a program point at which the exe-
cution can loop, and Lp a closed set (under composition) of binary clauses con-
structed from the syntactic loops of p, then: If for each " ≡ p(x̄) ← π, p(ȳ) ∈ Lp

there exists a function f! which maps states to a well-founded domain D = (D,<)
such that π |= f(p(ȳ)) < f(p(x̄)) then p terminates. The set of all such functions
f! is denoted by Cp.

Before discussing the formal justification of the local approach, let us recall
that for the more classic, global approach. The global approach is the special
case where in Proposition 1 the set Cp consists of a single function f which
decreases for all of the loop descriptions associated with program point p. The
proof of correctness for this case is classic. In brief, consider that if there were
to exist an infinite computation for P then there would be a program point p
visited infinitely often in that computation. Denote the corresponding sequence
of visits at p as

p1 ! p2 ! · · · ! pk ! · · ·

Each pair pi ! pi+1 is a concrete loop described by one of the loop descriptions
for p and the function f decreases for that pair. But f maps states to a well
founded domain and cannot decrease infinitely often. Hence there cannot exist
an infinite computation.

For the local approach this argument no longer holds as pairs of states pi !

pi+1 may be associated with different functions and the pairs for which one
function decreases may cause another to increase.

In some cases it is easy to work around this type of problem, for example
when there is some regularity in the loops describing the corresponding transi-
tions from program point p to program point p. For instance, if we consider a
computation in which the concrete loops are described by "1 and "2 alternating
as illustrated (the transitions are labeled by the corresponding loop description):

p
!1
! p

!2
! p

!1
! p

!2
! p

!1
! p

!2
! p

!1
! p

!2
! · · ·

then we also have an infinite computation of the form

p
!1◦!2
! p

!1◦!2
! p

!1◦!2
! p

!1◦!2
! · · ·
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and there is a function f associated with the loop "1 ◦ "2 which cannot decrease
infinitely often.

But in general one cannot expect to always find such regularity, as for example
illustrated by the infinite computation of the form

p
!3
! p

!1
! p

!4
! p

!1
! p

!5
! p

!9
! p

!2
! p

!6
! · · ·

where the loop descriptions correspond to the digits of the constant Π.
A formal justification of the local approach to proving termination is pre-

sented in [5]. The proof is based on an application of Ramsey’s theorem [9]. We
present here the proof of correctness for termination reasoning about individual
loops. The proof is set as an application of Ramsey’s Theorem [9]. It is essen-
tially the same as that presented by Dershowitz et al.DLSS01 for logic programs
in [5].

Theorem 1. Let P be a program, and suppose we proved termination of P using
the local approach as described in Proposition 1. Then P terminates.

The proof is by contradiction as an application of Ramsey’s Theorem [9].

Ramsey’s Theorem: Let A =
{
〈a, b〉

∣∣a, b ∈ IN and a < b
}
, C be a finite set

of colors and let F : A-→C be a function associating the elements of A with
colors from C. Then, there is a color f∈C and an infinite set X ⊆ IN such that
F(〈a, b〉) = f for each a, b ∈ X for which a < b.

Proof. (of Theorem 1)
Assume in contradiction that P has an infinite computation. This implies that
there is a program point p which is visited infinitely often. Denote the corre-
sponding sequence of visits at p as

S = p1 ! p2 ! · · · ! pk ! · · ·

To apply Ramsey’s Theorem we should fix a finite set of colors C and a mapping
F of elements of A =

{
〈a, b〉

∣∣a, b ∈ IN and a < b
}

to colors. We take as colors
the set of functions Cp prescribed by Proposition 1. To fix the mapping F , we
note that each pair of visits pa and pb with a < b denotes a (semantic) loop at
p and is hence associated with a corresponding loop description and a function
fi ∈ Cp. Ramsey’s Theorem implies the existence of an infinite subsequence of S
of the form

S ′ = pi1 ! pi2 ! · · · ! pik ! · · ·

for X = {i1, i2, . . . , ik, . . .} such that the loop corresponding to any pair of visits
pia and pib with a < b decreases with respect to the same function f ∈ Cp. But
since f maps states to a well-founded domain, this is a contradiction. "
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3 When Local Meets Global

In this section we illustrate that for termination analysis based on monotonicity
constraints (or equivalently, on the size change principle), the local and global
approaches are of equivalent power. One direction of the argument is straight-
forward, as a global measure for termination is also a local measure. To show
the other direction, we show that if we can prove termination in the local ap-
proach then we can also construct a global termination condition. This provides
an alternative justification of the local approach, for the given class of case of
monotonicity constraints.

Finding local functions for termination is easy. In [8] the authors show that
if adding the “up arrows” in the graphs introduces a cycle (with at least one
strict decrease then there exists a function. in [4], the authors add to each π the
constraints xi < yi and check that the resulting constraint is inconsistent, and
in [7] the authors prove that it is sufficient to find a single down arrow in all size
change graphs that are idempotent (in the closure). The question is how to find
a suitable global function.

Example 8. Consider the three loop descriptions for i ∈ {1, 2, 3}

!i ≡ p(x1, x2, x3) ← πi, p(y1, y2, y3)

with π1 = x1 > y1, x2 > y1, π2 = x1 ≥ y2, x2 ≥ y2, x3 > y3 and
π3 = x1 ≥ y2, x2 > y2 where all of the variables are assumed to be non-negative.
In the local approach a proof of termination is obtained choosing the following
functions corresponding to the three loops: f1(p(x, y, z)) = x, f2(p(x, y, z)) = z
and f3(p(x, y, z)) = y. In the global approach a proof is obtained choosing a
global function f(p(x, y, z)) = 〈min(x, y), y, z〉 with the standard lexicographic
ordering.

Definition 3 (Monotonic functions for a set of loops). Let Lp be a finite
set of loop descriptions with corresponding functions Cp mapping states to well-
founded domains such that for each " = p(x̄) ← π, p(ȳ) ∈ Lp and corresponding
function f! : State → D it holds that π |= f(p(ȳ)) < f(p(x̄)). We say that Cp is
monotonic for L if for any composition " = "1 ◦ · · · ◦ "k of (a subset of) loops
from Lp, the function f! associated with the loop " satisfies: (1) ∀1 ≤ i ≤ k.πi |=
f!(p(x̄)) ≥ f!(p(ȳ)); and (2) ∃1 ≤ i ≤ k.πi |= f!(p(x̄)) > f!(p(ȳ)).

"

Example 9. Consider again the three loops from Example 8.

1. The set of functions f1(p(x, y, z)) = x, f2(p(x, y, z)) = z and f3(p(x, y, z)) =
y is note monotonic for these three loops. Observe that "3 ◦ "2 ◦ "1 = "1 and
f1 does not decrease (even weakly) for "2.

2. The single function f1(p(x, y, z)) = f2(p(x, y, z)) = f3(p(x, y, z)) = 〈min(x, y), y, z〉
is monotonic for the three loops.
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Theorem 2. Let Cp be a monotonic set of functions for loop descriptions L.
Then there exists an ordered tuple 〈f1, . . . , fk〉 of functions from Cp such that
the function f defined by f(s) = 〈f1(s), . . . , fk(s)〉 decreases globally for all of
the loop descriptions in Lp with respect to the corresponding lexicographic order.
Moreover, this ordered tuple can be constructed with time complexity O(|Lp|2).
"

The algorithm presented in Figure 1 constructs the required tuple of functions
from Cp and provides the proof. The basic idea is that if we compose a monotonic
set of local loop descriptions from Lp then we identify a function from Cp which
decreases when passing through at least one of the composed loops but never
increases when going through these loops. Hence this function may be placed to
the right of these functions in the tuple we are constructing.

(0) S = Lp and Π = ∅
(1) WHILE ( S %= ∅ ) DO
(2) ! = compose loops(S) \* compose in any order *\
(3) IF ( ! ∈ S ) THEN
(4) Π = Π.f!

(5) S = S \ {!}
(6) ELSE
(7) S = { p(x̄) ← π, p(ȳ) ∈ S | π %|= f!(p(x̄)) > f!(p(ȳ)) }
(8) \* remove from S all loops that decrease for f! *\
(9) DONE

Fig. 1. Constructing a global decreasing measure

The algorithm proceeds as follows: We start (at line 0) with S = Lp and an
empty tuple Π. At each iteration of the while loop (lines 1-9) we compose the
loops of S (line 2). If the result " is an element of S then we add it to the right in
the tuple Π (line 4) and remove it from S (line 5). Otherwise, if " 1∈ S, then (since
S is monotonic) there must be at least one loop "′ ≡ p(x̄) ← π, p(ȳ) ∈ S such
that π |= f!(p(x̄)) > f!(p(ȳ)). This means whenever traversing a loop described
by "′, both of the functions f!′ and f! decrease. Hence, we can remove any such
"′ from S (lines 7-8).

The correctness of the algorithm stems from the following: (1) At each step
we remove at least one loop from S so the algorithm terminates; (2) The fact
that S is monotonic together with lines 3-5 guarantees that whenever a function
fi (in the tuple) decreases, any function to its left either decreases or remains
invariant; and (3) lines 7-8 guarantees that for each loop description there is at
least one corresponding function in the tuple.

Since we remove at least one loop at each iteration, the complexity of the
algorithm is O(|Lp|2) – we count the number of times we compose two loops
(the basic step of compose loops) plus the operations on sets at lines 4, 7 and 8.
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Example 10. Consider the following abstract loop descriptions (where all of the
variables are assumed to be non-negative).

!1 = p(x1, x2, x3) ← x1 > y1, x2 > y2, p(y1, y2, y3).
!2 = p(x1, x2, x3) ← x1 = y1, x3 > y3, p(y1, y2, y3).
!3 = p(x1, x2, x3) ← x1 > y1, p(y1, y2, y3).

As local functions associated with "1, "2 and "3 we take f1(p(x, y, z)) = x,
f2(p(x, y, z)) = z, f3(p(x, y, z)) = x. The algorithm starts with S = {"1, "2, "3}
and proceeds as follows:

1. "1 ◦ "2 ◦ "3 = "3, so we take f3 as the first function in the tuple and remove
"3 from S.

2. "1 ◦ "2 = "3 and "3 is not in S. We see that f3 decreases on "1 (as well as on
"3), so we remove "1 from S.

3. "2 is the only remaining loop in S so we take f2 as the next function in the
tuple and remove "2 from S.

The function f(s) = 〈f3(s), f2(s)〉 decreases (globally) for all of the loops in the
original description. "

It still remains unclear how to find a suitable set of functions which is mono-
tonic for the given loops. For the special case where all binary constraints are
between the same arguments (xi with yi), the task is more simple.

Lemma 1. If all of the constraints occurring in the loop descriptions Lp are
monotonicity constraints of the form xi < yi or xi ≤ yi (namely between the
same argument positions) then Lp is a monotonic set of loops. "

To extend the result for the full class of monotonicity constraints we need
to consider all local functions of the form mini∈I(xi), maxi∈I(xi), sumi∈I(xi)
for I a subset of the arguments in the state. In addition, we do not want to
fix from the start a set of functions which is monotonic for the full set of loop
descriptions, but rather at each stage in the algorithm of Figure 1 we need a set
of functions monotonic for the loops in the set S (those which still remain in
the game). Finally, consider the ith iteration of the algorithm and assume that
the set of functions F have already been introduced to the tuple Π and that the
loop descriptions left are in S. Hence, by the construction the functions in F
remain invariant for the loops in S (otherwise they would have been removed in
a previous stage of the algorithm). We may take this into account when looking
for the monotonic set of functions in the next iteration for S.

4 The General Case

Theorem 2 does not hold for the general case for example, when loops are de-
scribed are expressed using linear constraints (but not necessarily monotonicity
constraints). We illustrate this by example.
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In the following example, loop descriptions are given in a richer domain al-
lowing linear constraints. In this case it is not obvious to detect a global function
with which to prove termination. Existing analyzers based on the global approach
do not succeed to provide the proof.

Example 11. Consider the following three loop descriptions where the variables
xi, yi, zi are assumed to be non-negative:

!1 ≡ p(x1, y1, z1, k1, l1) ←
[k1 = k2, l1 = l2, x1 > x2, k1 = 0, l1 = 0],
p(x2, y2, z2, k2, l2).

!2 ≡ p(x1, y1, z1, k1, l1) ←
[k1 = k2, l1 = l2, y1 > y2, x1 > x2 + k1, k1 + l1 = 0],
p(x2, y2, z2, k2, l2).

!3 ≡ p(x1, y1, z1, k1, l1) ←
[k1 = k2, l1 = l2, z1 > z2, x1 = x2 + l1, k1 = l1],
p(x2, y2, z2, k2, l2).

With the local approach we can prove termination taking f!1(p(x, y, z, k, k)) = x,
f!2(p(x, y, z, k, l)) = y and f!3(p(x, y, z, k, l)) = z. Composing any two (differ-
ent) loops results in "1. So, the set of abstract binary clauses is closed un-
der composition. But there is no permutation 〈fi1 , fi2 , fi3〉 such that f(s) =
〈fi1(s), fi2(s), fi3(s)〉 is guaranteed to decrease globally on all three loops. "

5 Conclusion

This paper poses a question concerning the relation between the global and local
approaches to proving termination. We show that in many cases we can combine
local termination conditions into a tuple of functions ordered such that the tuple
function decreases globally with respect to the lexicographic ordering.

While the results of the paper strengthen our belief that reasoning with local
conditions has clear practical advantages, still, we lack the hard evidence that
the local approach is more powerful than the global one or not. This is the effort
of our ongoing research.

The very elegant result of Theorem 1 is not well known and is due to Der-
showitz et al. [5]. It has subsequently been worked out independently by others
working on the analysis of termination using local conditions as described in [3],
[1] and [6].

Ben-Amram in [2] presents a transformation so that any program P for which
the local approach works based on monotonicity constraints (or the size change
principle) is transformed to a semantically equivalent program P ∗ with the same
termination behavior for which termination can be identified in terms of lexico-
graphic descent. This is the case handled by the special case of Lemma 1.
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Abstract. Verifying termination is often considered as one of the most import-
ant aspects of program verification. In this paper we present Hasta-La-Vista—an
automatic tool for analysing termination of logic programs. To the best of our
knowledge, Hasta-La-Vista is unique in being able to prove termination of pro-
grams depending on integer computations.

1 Introduction

Proving termination is often considered as an important aspect of program veri-
fication. Logic programming languages, allowing us to program declaratively,
increase the danger of non-termination. Therefore, termination analysis received
considerable attention in logic programming (see, e.g., [8, 14, 27]). Unfortu-
nately, most work on termination analysis is restricted to pure logic programs
and thus many interesting real-world examples are left out of consideration. Ar-
itmetic is a case in the point: while almost every real-world program contains
a numerical part, most other works modelled it by 0 and the successor func-
tion. Therefore, in order to bridge the gap between programming practice and
existing termination analysers, real-world programming techniques should be
considered.

In this paper we present Hasta-La-Vista1 — a powerful tool for analysing
termination of logic programs with integer computations. While such programs
are very common in real-world programming, until recently they mostly re-
mained a terra incognita for the termination research community. In fact, none
of the existing termination analysers we are aware of (TermiLog [22], Termin-
Web [8], TALP [28], and cTI [26]) is powerful enough to prove termination even
of the simplest integer computations such as the following program:
Example 1.

p(X)← X < 7, X1 is X+1, p(X1).

1 Hasta la vista, baby! The Terminator in [6]
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Assuming the left-to-right selection rule of Prolog, this program terminates for
queries p(X), for all integer values of X . !
Our approach is based on transforming a program in a way that allows integ-
rating and extending techniques originally developed for analysis of numer-
ical computations in the framework of query-mapping pairs [15] with the well-
known framework of acceptability [14].

Furthermore, our approach is not limited to proving termination, but can
also infer termination. More precisely, we will be inferring conditions that, if
imposed on the queries, will ensure that the queries will terminate. Inference of
termination conditions was studied in [18, 26]. Unlike termination conditions in-
ferred by these approaches, stated in terms of groundness of arguments (calls to
append terminate if either the first or the third argument is ground), our tech-
nique produces conditions based on numerical domains of the arguments as
shown in Example 2. Combining the approaches to infer both kinds of con-
ditions is considered as a future work.

Example 2. Consider the following program.

q(X ,Y )← X > Y, Z is X−Y, q(Z,Y ).

Queries of the form q(arg1,arg2), where arg1 and arg2 are integers, terminate
with respect to this program if either arg1 ≤ arg2 or arg1 > arg2 and arg2 > 0.
This is exactly the termination condition we will infer. !

The rest of the paper is organised as follows. In the next section we present
a general overview of the system. The presentation is kept on the intuitive level,
more formal results can be found in [33]. Section 3 contains detailed discussion
of an experimental evaluation of the method. In Section 4 we discuss further
extensions, such as proving termination of programs depending on numerical
computations as well as symbolic ones. We summarise our contribution in Sec-
tion 5, review related work and conclude.

2 System architecture

In this section we present an overview of the system architecture and illustrate
the working of main components by analysing Example 2.

Conceptually, Hasta-La-Vista consists of three main parts: transformation,
constraint generation and constraint solving. As a preliminary step, given a pro-
gram and a set of atomic queries, type analysis of Janssens and Bruynooghe [20]
computes the call set. We opted for a very simple type inference technique that
provides us only with information whether an argument is integer or not. More
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refined analysis can be used. For instance, the technique presented in [21] would
have allowed us to know whether some numerical argument belongs to a certain
interval. Alternatively, the integer intervals domain of Cousot and Cousot [11]
might have been used. For our running example type analysis establishes that
all calls that will be generated are of the form q(int, int).

Based on the results of the type analysis the system approximates whether
termination of the given program can be dependent on the integer computation.
It should be noted that there are programs, such as quicksort, that use arithmetic
but whose termination behaviour is not dependent on their arithmetic part. This
is not the case, however, for Example 2, since the integer assignment operator
(is) is used to produce a value in the recursive call to q.

If Hasta-La-Vista suspects that termination depends on arithmetic, the ad-
orning transformation [33] is applied. The aim of the transformation is to split
the domain of calls in order to allow each one of the cases to be analysed separ-
ately. In this way we discover bounded integer arguments and make the bounds
explicit. Intuitively, we are interested in bounded arguments, since if, for ex-
ample, a variable x is known to be bounded from above by n, then n−x is always
positive and thus, it can be used as a basis for a definition of a level-mapping
(a function from the set of atoms to the naturals). Similarly, if a variable x is
bounded from below by n, x− n is always positive and thus, can be used as a
basis for a definition of a level-mapping. To illustrate the transformation con-
sider the following example.

Example 3. We are interested in proving termination of the set of queries {p(n) |
n is an integer} with respect to the following program:

p(X)← X > 1, X < 100, X1 is −X2, p(X1).
p(X)← X <−1, X >−100, X1 is X2, p(X1).

Let arg1 denote the first argument. The first clause is applicable, i.e., the
clause is selected and the test is passed, if the constraint c1 ≡ 1 < arg1 < 100
holds for p(X). Similarly, the second clause is applicable if c2≡−100< arg1 <
−1 holds for p(X). Thus, termination of p(X) for c3 ≡ (arg1 ≤ −100∨−1 ≤
arg1 ≤ 1∨ arg1 ≥ 100) is trivial. We call c1,c2 and c3 adornments and denote
the set of adornments Ap. In general, adornments are constructed as (disjunc-
tions of) conjunctions of comparisons appearing in the bodies of the clauses.
Formally, Ap, computed by Hasta-La-Vista, is the set of all conjunctions ∧ni=1di,
where di is either a conjunction of comparisons appearing in the body of a clause
or its negation.

It should be noted that if c1 holds and the first clause is applied, then either
c2 or c3 hold for the recursive call. We use this observation and specialise the
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program with respect to c1,c2 and c3 (cf. [39]). The following program is ob-
tained:

pc1(X)← X > 1, X < 100, X1 is −X2, −100< X1, X1<−1, pc2(X1).
pc1(X)← X > 1, X < 100, X1 is −X2,

(X1≤−100;(−1≤ X1, X1≤ 1);X1≥ 100), pc3(X1).
pc2(X)← X <−1, X >−100, X1 is X2, 1< X1, X1< 100, pc1(X1).
pc2(X)← X <−1, X >−100, X1 is X2,

(X1≤−100;(−1≤ X1, X1≤ 1);X1≥ 100), pc3(X1).

Observe that in our example there are no clauses defining pc3 in the specialised
program since c3 is not consistent with tests in the clauses.

For the specialised program the following holds. In case c1, arg1 is bounded
by 1 and 100, in case c2, it is bounded by −100 and −1. This information is
essential for proving termination. !

Similarly, Hasta-La-Vista discovers that there are two adornments relevant
for q in Example 2: arg1 ≤ arg2 and arg1 > arg2. In the former case the pro-
gram clause is not applicable and termination is trivially established. In the lat-
ter case termination has to be proved. Observe that the second argument of q is
bounded from above by its first argument, and thus arg1−arg2 is a natural num-
ber. Extending the constraints-based approach of Decorte et al. [14] we define a
level-mapping for q(t1, t2) asWq1>q2 · (t1− t2) if t1 > t2 and as zero, otherwise,
whereWq1>q2 is a parameter ranging over a finite domain of natural numbers. In
general, a level mapping is a linear combination of differences corresponding to
inequalities appearing in adornments.

In order to prove termination, the acceptability condition requires the level-
mapping to decrease from the call unified with the head of the clause to the cor-
responding call to the recursive body subgoal. This condition can be translated
into a set of constraints over two kinds of variables: parameters and numerical
variables. For our example the following constraint is obtained:

Wq1>q2 · (X−Y ) >Wq1>q2 · ((X−Y )−Y ),

that is, Wq1>q2 ·Y > 0 should hold. In [14] variables such as X and Y above
should be interpreted as sizes of terms ranging over the naturals. In our case,
they correspond to the integer variables of the program, so we do not know a
priori that they are natural numbers.

This set of constraints is solved with respect to the parameters. If one can
find the parameter values such that the set of constraints is satisfied for all pos-
sible values of the numerical variables, termination is reported for all queries.
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If for some parameter values one can find additional constraints on the numer-
ical variables corresponding to the query arguments such that the original set
of constraints is satisfied, we infer termination for queries satisfying these addi-
tional constraints. Finally, if none of the previous cases is applicable possibility
of non-termination is suspected. In our case, to conclude the proof we observe
that sinceWq1>q2 ≥ 0, then we have Y > 0 andWq1>q2 > 0. Variable Y appears
in the head of the clause, i.e., Y > 0 can be viewed as a constraint on the query.
This completes the analysis for the case arg1 > arg2. Recalling our earlier ob-
servations we report termination for (arg1 ≤ arg2)∨ (arg1 > arg2 ∧ arg2 > 0).
Formally, the algorithm is sketched in Figure 1.

Let P be a homogeneous program, let S be a single predicate set of atomic queries and let q be
rel(S).

1. For each p( q construct a guard-tuned set Ap.
2. Adorn P with respect to q and

⋃
p(qAp.

3. Let A= {c | c∈Aq, for all p such that qc * p: p is not recursive in Pa}. Let cond1 =
∨
c∈A c.

Let cond2 =
∨
c∈Aq,c +∈A c.

4. Let S′ be {c(Q)∧Qc | c ∈ Aq,c +∈ A,c(Q)∧Qc ∈ Sa}.
5. Define the symbolic counterparts of level mappings and interargument relations.
6. Let Σ be a set of constraints on the symbolic variables, following from rigid acceptability of

S′ with respect to Pa and the validity of interargument relations.
7. Solve Σ with respect to the symbolic variables.

(a) Solution of Σ doesn’t produce extra constraints on variables.
Report termination for true.

(b) Solution of Σ produces extra constraints on integer variables, appearing in the heads of
the clauses.

Conjunct these constraints to termination condition cond2.
Report termination for cond1∨ cond2.

(c) There are no solutions or integer variables, constrained by the solution of Σ, do not
appear in the heads of the clauses

Report termination for cond1.

Fig. 1. The Termination Inference Algorithm

One can show that for our running example the termination condition in-
ferred is optimal, i.e., if it is not satisfied the computation will proceed infin-
itely. However, the undecidability of the termination problem implies that no
automatic tool can always guarantee optimality.

Example 4. Consider the following program.

q(X ,Y )← X > Y, Z is X−Y, Y1 is Y +1, q(Z,Y1).
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We would like to study termination of this program with respect to {q(z1,z2) |
z1,z2 are integers}. Our algorithm infers the following termination condition:
arg1 ≤ arg2∨ (arg1 > arg2∧arg2 ≥ 0). This is a correct termination condition,
but it is not optimal as q(z1,z2) terminates, in fact, for all values of z1 and z2,
i.e., the optimal termination condition is true. !

3 Experimental evaluation

We have tested our system on a number of examples. First of all, we considered
integer examples from two textbooks’ chapters dedicated to programming with
arithmetic, namely, Chapter 8 of Sterling and Shapiro [37] and Chapter 9 of
Apt [1]. These results are summarised in Table 1. We can prove termination of
all the examples presented for all possible values of the integer arguments, that
is, the termination condition inferred is true. Next, we’ve collected a number of
programs from different sources: mostly from textbooks and benchmark collec-
tions. Table 2 presents timings and results for these programs. Again, termina-
tion of almost all programs can be shown for all possible values of the integer
arguments. We believe that the reason for this is that most textbooks authors aim
to teach how to write good software and always keep termination in mind. Fi-
nally, Table 3 demonstrates some of the termination conditions inferred by our
system. We can summarise our results by saying that the system turns out to be
powerful enough to analyse correctly a broad spectrum of programs, while the
time spent on the analysis never exceeds 0.30 seconds. In fact, for almost 90%
of the integer programs results were obtained in less than 0.10 seconds. Observe
that for some examples the time needed to perform the analysis was too small
to be measured exactly. These cases are indicated by 0.00 in the Time column.

The core part of the implementation was done in SICStus Prolog (version
3.10.0), using its CLP(FD) and CLP(Q) libraries. The type inference of Janssens
and Bruynooghe [20] was implemented in MasterProLog (release 4.1i). Tests
were performed on Intel R©Pentium R©4 with 1.60GHz CPU and 260Mbmemory,
running 2.4.20-pre11 Linux.

In Tables 1–3, the following abbreviations are used:

– Ref: reference to the program;
– Name: name of the program;
– Queries: atomic queries of interest, where the arguments are denoted

• c, if the argument is a character;
• i, if the argument is an integer;
• li, if the argument is a list of integers;
• lp, if the argument is a list of pairs of integers;
• t, if the argument is a binary tree, containing integers;
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Table 1. Examples from [37, 1]

Ref Queries Time Ref Queries Time
Examples of Sterling and Shapiro [37] Examples of Apt [1]

8.1 greatest common divisor(i, i, v) 0.01 between between(i, i, v) 0.02
8.2 factorial(i, v) 0.01 delete delete (i, i, v) 0.03
8.3 factorial(i, v) 0.02 factorial fact(i, v) 0.01
8.4 factorial(i, v) 0.02 in tree in tree(i, t) 0.00
8.5 between(i, i, v) 0.02 insert insert(i, t, v) 0.01
8.6a sumlist(li, v) 0.00 length1 length(li, v) 0.00
8.6b sumlist(li, v) 0.01 maximum maximum(li, v) 0.00
8.7a inner product(li, li, v) 0.00 ordered ordered(li) 0.01
8.7b inner product(li, li, v) 0.01 quicksort qs(li, v) 0.06
8.8 area(lp, v) 0.02 quicksort acc qs acc(li, v) 0.05
8.9 maxlist(li, v) 0.02 quicksort dl qs dl(li, v) 0.08
8.10 length(v, li) 0.01 search tree is search tree(t) 0.03
8.11 length(li, v) 0.01 tree minimum minimum(t, v) 0.01
8.12 range(i, i, v) 0.02

• v, if the argument is a variable;
– Time: time (in seconds) needed to analyse the example;
– T (in Table 2): termination behaviour:

• T means that the termination condition inferred is true, i.e., computa-
tion of any query from the specified set with respect to a given program
terminates;

• N+ means that the termination condition inferred is false and indeed
computation of a query from the specified set with respect to a given
program does not necessarily terminate;

• T∗ means that the termination condition inferred is true, but a transform-
ation was required as a preliminary step (see further);

– Condition (in Table 3): termination condition (other than true and false) in-
ferred by the system.

A surprising result was the discovery of non-terminating examples in Prolog
textbooks. The first one, by Coelho and Cotta [9], should compute an nth power
of a number.

exp(X ,0,1).
exp(X ,Y,Z)← even(Y ), R is Y/2, P is X ∗X , exp(P,R,Z).
exp(X ,Y,Z)← T is Y −1, exp(X ,T,Z1), Z is Z1∗X .

even(Y )← R is Y mod 2, R= 0.

The termination condition inferred by our system is false. Indeed, this is the
only termination condition possible, since, for any query exp(arg1,arg2,arg3)
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Table 2. Various examples

Name Ref Queries Time T
dldf [3] depthfirst2(c, v, i) 0.03 T
exp [9] exp(i, i, v) 0.05 N+
fib [5] fib(i, v) 0.12 T
fib [12] fib(i, v) 0.27 T
fib [29] fib(i, v) 0.03 T∗
forwardfib [3] fib3(i, v) 0.02 T
hanoi [16] hanoi(i,v,v,v) 0.18 T
interval [35] interval(i,i,v) 0.02 T
money [5] money(v, v, v, v,v, v, v, v) 0.13 T
mortgage [24] mortgage(i,i,i,i,v) 0.02 T∗
oscillate Example 3 p(i) 0.15 T
p [15] p(i) 0.01 T
p32 [19] gcd(i, i, v) 0.03 T
p33 [19] coprime(i, i) 0.04 T
p34 [19] totient phi(i, v) 0.08 T
primes [7] primes(i, v) 0.03 T
pythag [7] pythag(v, v, v) 0.03 N+
r [15] r(i, v) 0.01 T
triangle [25] triangle(i, v) 0.02 N+

Table 3. Examples of inferring termination conditions

Name Ref Queries Time Condition
q Example 2 q(i, i) 0.01 q1 ≤ q2∨ (q1 > q2∧q2 > 0)
q Example 4 q(i, i) 0.02 q1 ≤ q2∨ (q1 > q2∧q2 ≥ 0)
gcd [3] gcd(i,i,v) 0.05 gcd1 = gcd2∨ (gcd1 > gcd2∧gcd2 ≥ 1)
loop [35] loop(i,i,i,i,i) 0.03 loop1 > 0

such that arg1 and arg2 are integers, the LD-tree of this program and this query
is infinite due to the infinite traversal of the third clause.

In their book [25] McDonald and Yazdani suggest an exercise that can be
seen as computing ∑n

i=1 i for a given parameter n. The next program is the solu-
tion provided by the authors:

triangle(1,1).
triangle(N,S)←M is N−1, triangle(M,R), S is M+R.

Once more, the termination condition inferred by our system is false, and it
is the only possible one. This example and the previous one demonstrate that
Hasta-La-Vista can be used for error detection.

Unlike these examples, non-termination of pythag [7] is intentional. This
program is supposed to compute all Pythagorean triples, i.e., triples of positive

dtai
67



integers a, b and c, such that a2 + b2 = c2 holds. Since it is well-known that
there are infinitely many different Pythagorean triples, computation necessarily
will produce infinitely many answers, i.e., it will be infinite.

Marriott and Stuckey [24] proposed the following CLP program, serving
since then as a benchmark for different CLP-analyses.

mortgage(P,T, I,R,B)← T = 0, B= P.
mortgage(P,T, I,R,B)← T ≥ 1, NT = T −1,

NP= P+P∗ I−R, mortgage(NP,NT, I,R,B).

As a preprocessing step, we transform this program into the non-CLP form by
replacing the two equality constraints in the second clause with is-assignments:

mortgage(P,T, I,R,B)← T = 0, B= P.
mortgage(P,T, I,R,B)← T ≥ 1, NT is T −1,

NP is P+P∗ I−R, mortgage(NP,NT, I,R,B).

Such a replacement can be performed automatically, provided that variables
T,P, I,R are ground and variables NT and NP are free prior to constraints ap-
plication. Termination of the transformed program can be shown by our system.

Finally, O’Keefe [29] suggested a more efficient way to calculate Fibonacci
numbers, by performing O(n) work each time it is called, unlike the versions
of [5] and [12] which perform an exponential amount of work each time.

fib(1,X)←!, X = 1.
fib(2,X)←!, X = 1.
fib(N,X)← N > 2, fib(2,N,1,1,X).

fib(N,N,X2, ,X)←!, X = X2.
fib(N0,N,X2,X1,X)← N1 is N0+1,

X3 is X2+X1, fib(N1,N,X3,X2,X).

Termination of goals of the form fib(i,v) with respect to this example depends
on the cut in the first clause of fib/5. If it is replaced with N0 += N in the second
clause termination can be proved. This fact is denoted T∗ in Table 2. Note that
this replacement does not affect the complexity of the computation.

Clearly, since the halting problem is undecidable we cannot expect our al-
gorithm to compute precise termination condition for any given example in a
finite time. Termination proofs of many contrived examples, like Takeuchi’s
function, require sophisticated argumentation. Moreover, termination of certain
numerical computations, such as the 3n+1 problem attributed to L. Collatz, is
still an open problem in mathematics.
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4 Further extensions

In this section we review briefly possible extensions of the Hasta-La-Vista sys-
tem. First of all, as suggested in [32], an adapted version of the technique
proposed can be applied to infer termination of programs using floating point
numbers. The major difference with the basic Hasta-La-Vista algorithm is that
rounding functions, specified in IEEE standard 754, should be taken into ac-
count. For instance, “X1 is −X2” can no longer be understood as x1 = −x2 as
in the integer case, but should be interpreted as x1= round(−(round(x2))).

Next, while Hasta-La-Vista was originally developed for definite programs,
i.e., programs without negation, it can be extended to analyse normal programs,
i.e., programs that contain negation in bodies of their clauses. The simplest way
to do is to require that the size of a negative literal measured by a given level
mapping should be equal to the size of the corresponding positive literal. This
approach would allow us to prove termination of a number of examples, such as
primes [7] and Goldbach’s conjecture [19].

We also can use the ideas of adornment to prove termination of symbolical
computations, i.e., computations on terms. Two possible directions seem to be
promising. First, a number of modern approaches to termination analysis of
logic programs [8, 27] abstract a program to CLP(N) and then infer termination
of the original program from the corresponding property of the abstract one.
Unfortunately, techniques used to prove termination of numerical programs are
often restricted to the use of the identity function as the only level-mapping,
which results in failure to prove termination in many interesting examples. In
some cases a CLP(N) program can be seen as a Prolog program with numerical
computation. For these programs our technique can be applied to improve the
precision of the analysis. Alternatively, one can try and avoid transformation by
using the ideas of adorning directly on the symbolical program [34].

Finally, observe that in real-world programs, numerical computations are
sometimes interleaved with symbolical ones, as illustrated by the following ex-
ample. This example collects leaves of a tree with a variable branching factor,
which is a common data structure in natural language processing [30].
Example 5.

collect(X , [X |L],L)← atomic(X).
collect(T,L0,L)← compound(T ), functor(T, ,A), (1)

process(T,0,A,L0,L).
process( ,A,A,L,L).
process(T, I,A,L0,L2)← I < A, I1 is I+1, arg(I1,T,Arg), (2)

collect(Arg,L0,L1), process(T, I1,A,L1,L2).
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To prove termination of {collect(t,v, [])}, where t is a tree and v is a variable,
three decreases should be shown: between a call to collect and a call to process
in (1), between a call to process and a call to collect in (2) and between two calls
to process in (2) . The first two can be shown only by a symbolic level mapping,
the third one—only by the numerical approach. !
Thus, our goal is to combine the existing symbolic approaches with the numer-
ical one presented so far. One of the possible ways to do so is to combine two
level mappings, | · |1 and | · |2, by mapping each atom A ∈ BEP either to a natural
number |A |1 or to a pair of natural numbers (|A |1, |A |2). Then we prove ter-
mination by showing decreases via orderings on (N∪N2) as suggested in [13].

Example 6. Example 5, continued. Define ϕ : BEP→ (N∪N2) as: ϕ(collect(t, l0,
l)) = ‖t‖ and ϕ(process(t, i,a, l0, l)) = (‖t‖,a− i), where ‖ · ‖ is a term-size
norm. The decreases are satisfied with respect to>, such that A1 >A2 if and only
if ϕ(A1)2 ϕ(A2), where 2 is defined as follows: n2m if n>N m; n2 (n,m) if
true; (n,m1)2 (n,m2) if m1 >N m2; (n1,m)2 n2 if n1 >N n2, where >N is the
usual order on the naturals.

Indeed, collect(t, l0, l)> process(t,0,a, l0, l), since ϕ(process(t,0,a, l0, l))=
(‖t‖,a), ϕ(collect(t, l0, l)) = ‖t‖, and ‖t‖ 2 (‖t‖,a) by definition of 2. Simil-
arly, process(t, i,a, l0, l2) > collect(arg, l0, l1), since ϕ(process(t, i,a, l0, l2)) =
(‖t‖,a− i),ϕ(collect(arg, l0, l1)) = ‖arg‖, ‖t‖ >N ‖arg‖ by the predefined se-
mantics of the built-in predicate arg and (‖t‖,a− i)2 ‖arg‖ by definition of 2.
Finally, process(t, i,a, l0, l2) > process(t, i1,a, l1, l2), since ϕ(process(t, i,a, l0,
l2)) = (‖t‖, a− i),ϕ(process(t, i1,a, l1, l2)) = (‖t‖,a− i1), a− i>N a− i1 (since
i1= i+1) and (‖t‖,a− i)2 (‖t‖,a− i1) by definition of 2. !

This integrated approach allows one to analyse correctly examples such as
ground, unify, numbervars [37] and Example 6.12 in [15].

5 Conclusion

We have presented Hasta-La-Vista, a termination analyser for logic programs
with integer computations. This functionality is lacking in currently available
termination analysers for Prolog, such as TerminWeb [8], cTI [26], TALP [28],
and TermiLog [22]. The main contribution of this work is in integrating termin-
ation analysis for numerical computations in the automatic termination analyser
of [14]. It was shown that our approach is robust enough to prove termination
for a wide range of numerical examples. To the best of our knowledge, Hasta-
La-Vista is unique in being able to prove termination of programs depending on
integer computations. This work plays a complementary role with respect to [33]
as it highlights the implementation aspects of the system and provides detailed

dtai
70



discussion of experimental evaluation. In the subsequent papers [32, 34] we in-
vestigate how the adornment technique can be applied to domains other than
the domain of the integers, namely, the floating point numbers and the Herbrand
domain.

Termination of numerical computations was studied by a number of au-
thors [1, 2, 15]. In [1] it was suggested that arithmetic computations should be
simply ignored. Apt et al. [2] provided an important theoretical characterisa-
tion of strong termination, but it seems to be difficult to integrate the approach
with automatic tools. Moreover, there are programs that terminate only for some
queries, such as Example 2. Alternatively, Dershowitz et al. [15] extended the
query-mapping pairs formalism of [22] to deal with numerical computations.
However, this approach inherited the disadvantages of [22], such as a high com-
putational price, which is inherent to this approach due to the repetitive fixpoint
computations. In contrast to their work which was restricted to the verification
of termination, Hasta-La-Vista can infer termination conditions. It is not clear
whether and how [15] can be extended to infer such conditions.

More research has been done on termination analysis for constraint logic
programs. Since numerical computations in Prolog should be written in a way
that allows a system to verify their satisfiability we can see numerical computa-
tions of Prolog as an ideal constraint system. Thus, all the results obtained for
ideal constraint systems can be applied. Unfortunately, the research was either
oriented towards theoretical characterisations [31] or restricted to domains iso-
morphic to N [26], such as trees and terms. Recently, in the journal revision [27]
of [26] and [31], a possibility is mentioned of using abstraction functions other
than combinations of term-size norm, list-length norm, identity function and
null-function. However, the question of how these functions should be inferred
automatically is not considered, and the cTI implementation is restricted to the
term-size norm as an abstraction function.

Numerical computations have also been analysed in the early works on
termination analysis for imperative languages [17]. However, our approach to
automation differs significantly from these works. Traditionally, the verifica-
tion community considered automatic generation of invariants, while automatic
generation of ranking functions (level mappings, in the logic programming par-
lance) just started to emerge [10]. The inherent restriction of automatically gen-
erated ranking functions is that they have to be linear. Moreover, in order to per-
form the analysis of larger programs, such as mergesort, in a reasonable amount
of time, the ranking functions were further restricted so that they depend on one
variable only. Our approach doesn’t suffer from such limitations.

The idea of splitting a predicate into cases was first mentioned by Ullman
and Van Gelder [38]. However, neither in this paper, nor in the subsequent
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one [36] was the proposed methodology presented formally. To the best of our
knowledge, the first formal presentation of splitting in the framework of ter-
mination analysis is due to Lindenstrauss et al. [23]. Unlike in their work, a
numerical and not a symbolic domain was considered in the current paper. Dis-
tinguishing different subsets of values for variables, and deriving norms and
level mappings based on these subsets, links our approach to the ideas of using
type information in termination analysis for symbolic computations [4]. Indeed,
adornments can be seen as types, refining the predefined type integers. Unlike
these works, our work does not start with a given set of types, but for each
program derives a collection of types relevant to this program.
Acknowledgement.We are very grateful to Gerda Janssens for making her

type analysis system available to us.
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Abstract. We have presented before a Fuzzy Prolog Language that models interval-
valued Fuzzy logic and we have provided an implementation using CLP(R ).
Now, in this work, we describe a sound method for combining crisp and fuzzy
logic in one Prolog compiler. The result is a powerful fuzzy Prolog library with
an intuitive semantics that works in a constructive way even with negative queries.
The implementation is incredibly simple because we are using Prolog’s resolution
so it is a useful tool for introducing uncertainty in crisp logic programs.

Keywords Fuzzy Prolog, Modeling Uncertainty, Logic Programming, Constraint Pro-
gramming Application, Implementation of Fuzzy Prolog, Logic Negation, Constructive
Negation.

1 Introduction

In [17] we have presented a Fuzzy Prolog Language that models interval-valued Fuzzy
logic and we have presented an implementation using CLP(R ) [5]. This Fuzzy Prolog
uses the original inference mechanism of Prolog, and it uses constraints and operations
provided by CLP(R ) to handle the concept of partial truth. In this paper we extend the
implementation to combine fuzzy and crisp predicates in the same code. The imple-
mentation, as syntactic extension of Prolog, provides a useful tool to allow the mixing
of fuzzy predicates with Prolog predicates in the same body clause. We have had to
solve some semantics problems using a constructive implementation of Logic Nega-
tion, which avoids getting unsound results.

The rest of the paper is organized as follows. Section 2 summarizes the syntax
and semantics of our fuzzy Prolog system (presented in [17]). Section 3 deals with the
new operational semantics considered for this work. The next two sections give us an
intuition about the problem. Section 4 introduces the necessity of combining crisp and
fuzzy logic in the definition of predicates and how this leads us to fuzzify predicates.
In Section 5 we explain the importance of giving constructive answers and how to get
them using a constructive implementation of Logic Negation. Finally, we conclude and
discuss some future work (Section 6).
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2 Fuzzy Prolog

The Language There is no agreement on which fuzzy logic should be used. Most of
fuzzy systems use min-max logic (for modeling the conjunction and disjunction oper-
ations), but other systems just use Lukasiewicz logic [6]. Furthermore, logic program-
ming is considered a useful tool for implementing methods for reasoning with uncer-
tainty in [19]. There is also an extension of constraint logic programming [1], which can
model logics based on semiring structures. This framework can model min-max fuzzy
logic, which is the only logic with a semiring structure.

Recently, a theoretical model for fuzzy logic programming without negation, which
deals with many-value implications, has been proposed by Votjas in [18]. Over the
last few years several papers have been published by Medina et all. ([9, 10, 8]) about
multi-adjoint programming, which describe a theoretical model, but no means of im-
plementation.

In [17], we have proposed another approach more general in some respects:

1. A truth value will be a finite union of sub-intervals on [0,1]. An interval is a partic-
ular case of union of one element, and a unique truth value is a particular case of
having an interval with only one element.

2. A truth value will be propagated through the rules by means of an aggregation
operator. The definition of aggregation operator is general in the sence that it sub-
sumes conjunctive operators (triangular norms [7] like min, prod, etc.), disjunctive
operators [16](triangular co-norms, like max, sum, etc.), average operators (like
arithmetic average, quasi-linear average, etc) and hybrid operators (combinations
of the above operators [14]).

3. The declarative and procedural semantics for Fuzzy Logic programs are given and
their equivalence is proven.

4. An implementation of the proposed language is presented.

A fuzzy program is a finite set of fuzzy facts and fuzzy clauses and we obtain in-
formation from the program through fuzzy queries. They are defined as usual but hand-
ling truth values in B([0,1]) (the Borel Algebra over the real interval [0,1] that yields
with unions of intervals) represented as constraints. We refer, for example, to expres-
sions as: (v ≥ 0.5 ∧ v ≤ 0.7) ∨ (v ≥ 0.8 ∧ v ≤ 0.9) to represent a truth value in
[0.5,0.7]

⋃
[0.8,0.9].

Examples These definitions of fuzzy sets entail different degrees of fuzziness. Figure
1 shows the concept of youth with four different interpretations.

The level of fuzziness increases from the crisp function or the simple fuzzy function,
where every age has only one real number representing its youth, to one where an
interval represents, for example, the concept of youth of a group of people with slightly
different definitions of the borders of the function. However, if we ask two different
groups of people, for example, people from two different continents, we might get a
representation like the last one. The truth value of youth for 45 years has evolved from
the value 0 in the crisp model, to the value 0.5 in the simple fuzzy definition, later to
the interval [0.2,0.5] and, finally, to the union of intervals [0.2,0.5]

⋃
[0.8,1].
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Fig. 1. Uncertainty level of a fuzzy predicate

There are many everyday situations that can only be represented by this general
representation of truth value. Here, we provide some simple examples with their rep-
resentation in our fuzzy language:

– Example 1: My father is 45 years old. If someone asked me how young he was, I
would assignV ∈ [0.2,0.5], but if someone asked him how young he was, he would
assign himselfV ∈ [0.8,1]. So we can say that he is young withV ∈ ([0.2,0.5]

⋃
[0.8,1]).

– Example 2: My sons are 10 and 18 years old. My neighbour’s daughter, Jane, is the
same age as one of my sons, but I cannot remember which one. If I consider the
third fuzzy definition of truth, then I can say that Jane is young with a truth value
V ∈ ([0.3]

⋃
[0.9]) &= [0.6]. That is:

young(jane) :- [0.3] v [0.9].

– Example 3: New Laptop is a computer company producing a laptop model. This
model is very slow when running graphic applications, but is very fast when run-
ning office applications. If a customer buys a New Laptop computer, the truth value
of its speed will beV ∈ ([0.02, 0.08]

⋃
[0.75, 0.90]). Depending on the use to which

it is put, however, its speed could be the lowest, the highest or even an average.
fast(newLaptop) :∼ [0.02, 0.08] v [0.75, 0.90].

where each truth value is a union of intervals. The intervals in the first example represent
the particular case of intervals consisting of only one element.

Fuzziness versus Uncertainty We canmodel many real problems thanks to this power-
ful notation and it is interesting to note that we can handle both uncertainty and fuzzi-
ness at the same time with this truth value representation.
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Let us go back to Example 2 of section 2. We will represent now the truth value of
the concept of youth as an interval as in the third representation in Figure 1, instead of
using real numbers. We can say that, in this case, Jane is young with a truth value V ∈
([0.2,0.5]

⋃
[0.6,0.8]). It is a union of intervals which represents uncertainty, because

we do not know which of the two intervals represents the how young Jane is (we do not
know which one of the two possible values, 10 or 18, is her age).

Example 1 presented above shows the truth value of youth as a union of intervals as
in the fourth representation in Figure 1 for 45 years of age which is [0.1,0.4]

⋃
[0.8,1]. It

is a union of intervals, which, in this case, is representing fuzziness, because the concept
of youth is represented with the maximum level of fuzziness. We know that the age is
45 (there is no uncertainty about the age) but the truth value that represents its youth is
fuzzy (lack of precision).

Although both representations (fuzziness and uncertainty) are semantically differ-
ent, they are handled using the same syntax in a sound way as it was described in [17].

The Implementation We decided to implement our interpreter as a syntactic extension
of a CLP(R ) system. Particularly, we have written a library (or package in the Ciao
Prolog terminology) called fuzzy which implements the interpreter of our fuzzy Prolog
language using the CLP(R ) library of the Ciao Prolog system1.

Each Fuzzy Prolog clause has an additional argument in the head that represents its
truth value in terms of the truth values of the subgoals of the body of the clause. A fact
A← v is represented by a Fuzzy Prolog fact that describes the range of values of v with
a union of intervals (that can be an interval or even a real number in particular cases).
The following examples illustrate the concrete program syntax:

youth(45) ← [0.2,0.5]
⋃

[0.8,1] youth(45,V) :∼ [0.2,0.5] v [0.8,1].
tall( john) ← [0.8,0.9] tall(john,V) :∼ [0.8,0.9].
swi f t( john) ← 0.7 swift(john,0.7) :∼.
good player(X) ←min tall(X), good player(X,V) :∼ min tall(X,V1),

swi f t(X) swift(X,V2).

These clauses are expanded at compilation time to constrained clauses that are man-
aged by CLP(R ) at run time. Predicates . = ./2, . < ./2, . <= ./2, . > ./2 and . >= ./2
are the Ciao CLP(R ) operators for representing constraint inequalities. For example,
the first fuzzy fact is expanded to these Prolog clauses with constraints

youth(45,V):- V .>=. 0.2, youth(45,V):- V .>=. 0.8,
V .<=. 0.5. V .<. 1.

and the fuzzy clause

good player(X) :∼ min tall(X), swift(X).

is expanded to

good_player(X,Vp) :- tall(X,Vq),
swift(X,Vr),

1 The Ciao system including our Fuzzy Prolog implementation can be downloaded from
http://www.clip.dia.fi.upm.es/Software.
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minim([Vq,Vr],Vp),
Vp .>=. 0,
Vp .=<. 1.

The predicate minim/2 is included as run time code by the library. Its function is to
add constraints to the truth value variables in order to implement the T-norm min. We
have implemented several aggregation operators as min, prod, max,luka (Lukasiewicz
operator [6]), etc. in a similar way, and any other operator can be added by the user to
the system without any effort.

It is possible to fuzzify crisp predicates. For example, to fuzzify p/2:

p_f :# fuzzy p/2.

and the program is expanded with a new fuzzy predicate p f/3 (the last argument is the
truth value) with truth value equal to 1 if p/2 succeeds and 0 otherwise. The internal
implementation of the fuzzified predicate is discussed in Section 4.1 and at the end of
Section 5.1.

We also provide the possibility of having the predicate that is the fuzzy negation
of a fuzzy predicate. For this predicate p f/3, we will define a new fuzzy predicate
called, for example, not p f/3 with the following line (note that “: #” is our way of
distinguishing a renaming rule from a fuzzy rule,”:∼”, and from a Prolog rule, “:−”):

notp_f :# fnot p_f/3.

that is expanded at compilation time as the common fuzzy negation:

notp_f(X,Y,V) :- p_f(X,Y,Vp),
V .=. 1 - Vp.

3 Operational Semantics

The procedural semantics is interpreted as a sequence of transitions between different
states of a system. We represent the state of a transition system in a computation as
a tuple 〈A,σ,S〉 where A is the goal, σ is a substitution representing the instantiation
of variables needed to get to this state from the initial one and S is a constraint that
represents the truth value of the goal at this state.

When computation starts, A is the initial goal, σ = /0 and S are true (if there are
neither previous instantiations nor initial constraints). When we get to a state where
the first argument is empty, then we have finished the computation and the other two
arguments represent the answer. If a constraint c has solution in the domain of real
numbers in the interval [0,1] then we say c is consistent, and we denote it as solvable(c).

A transition in the transition system is defined as:

1. 〈A∪a,σ,S〉 → 〈Aθ,σ ·θ,S∧ (µa = v)〉
if h← v is a fact of the program P, θ is the mgu of a and h, and µa is the truth
variable for a, and solvable(S∧ (µa = v)).
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2. 〈A∪a,σ,S〉 → 〈(A∪B)θ,σ ·θ,S∧ c〉
if h←F B is a rule of the program P, θ is the mgu of a and h, c is the constraint that
represents the truth value obtained applying the aggregator F on the truth variables
of B, and solvable(S∧ c).

3. 〈A∪a,σ,S〉 → 〈A∪a,σ, true〉
if neither of the above are applicable. The constraint is satisfied because there is no
limitation over the truth value (we do not have enough information to bound to it).

The success set SS(P) collects the answers to simple goals p(x) of P. It is defined as
follows: SS(P)= 〈B,V 〉= {〈p(x)σ,v〉|〈p(x), /0, true〉→∗ 〈 /0,σ,S〉 and v is the solution of S},
where B is the set of elements of the Herbrand Base that are instantiated and that have
succeeded, and V is the set of truth values of the elements of B, which is the union
of truth values that are obtained from the set of constraints provided by the program
P while query p(x) is computed. When S is true then the value of v is unlimited, e.g.
v ∈ {0..1} that means for us indefinite symbol, ⊥ (in the sense of lack of information).

The drawback of this representation is that it blocks the truth value propagation in
the sense that if v j is ⊥ then V (p(x̂)) = v1∪ ...∪ v j ∪ ...∪ vn = ⊥
but it does not introduce inconsistence, it is only a loss of precision because our main
goal is to introduce uncertainty and fuzziness in crisp logic programs and this interpret-
ation is compatible with Prolog as we see in the next section.

4 Combining Crisp and Fuzzy Logic

To use definitions of fuzzy predicates that include crisp subgoals, we must define their
semantics properly with respect to the Prolog Close World Assumption (CWA) [4].

Fuzzy clauses usually use crisp predicate calls as requirements to be satisfied by
data to verify the definition at a level higher than 0. For example, if we can say that
a teenage student is a student whose age is about 15, then we can define the fuzzy
predicate teenage student/2 as

teenage_student(X):˜ student(X),
age_about_15(X).

In this example, the goal teenage student(X ,V ) should output:

– V = 0 if the value of X is not the name of a student.
– The respective truth valueV if the value of X is the name of a student and we know
that his age is about 15 at some level.

– Unknown if the value of X is the name of a student, but we do not know anything
about his/her age.

Note that we run the risk of unsoundness, unless the semantics of crisp and fuzzy pre-
dicates is properly defined. CWA means that all information that is not explicitly true is
false. For example, if we have the predicate definition of student/1 as

student(john).
student(peter).
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then we have that the goal student(X) is successful with X = john or with X = peter,
but fails with any other value apart from these; for instance:

?- student(john).
yes

?- student(nick).
no

which means that john is a student and nick is not. This is the semantics of Prolog, and
it is the one we are going to adopt for crisp predicates because we want our system to be
compatible with conventional Prolog reasoning. But what about fuzzy predicates? We
have considered two main possibilities. For example, consider the case when we have
the definition of age about 15/2 as

age_about_15(john,1):˜ .
age_about_15(susan,0.7):˜ .

where the goal age about 15(X ,V ) is successful for X = john and V = 1 or for X =
susan andV = 0.7. If we want to work with CWA, like crisp predicates do, then we will
get V = 0 for any other value of X apart from john and susan. The meaning is that the
predicate is defined for all values and the membership value will be 0 if the predicate
is not explicitly defined with another value. In this example, we know that the age of
john is 15 and susan’s age is about 15 and, using CWA, we are also saying people are
not about 15. This semantics is equivalent to crisp definitions, but we think that our
meaning is usually different, i.e. in this case, we may mean that we know that john and
susan are about 15 and that we have no information about the age of the other people.
Therefore, we do not know whether or not the age of peter is about 15; and if we know
that nick’s age is not about 15, we can explicitly declare

age_about_15(nick,0):˜ .

We are going to work with this semantics for fuzzy predicates, because we think it
is the most akin to human reasoning. So, a fuzzy goal (asking for a crisp goal) can be
true (value 1), false (value 0) or have another membership value. We have added the
concept of unknown to represent no explicit knowledge in fuzzy definitions. This new
state can be very simply represented, using the common failure of Prolog. We give it
the meaning of unknown, considering that the meaning that it has in crisp logic is not
necessary here because it is represented with membership value 0 in fuzzy logic. For
example, with our definition of age about 15/2, we will get

?- age_about_15(john,X).
X = 1

?- age_about_15(nick,X).
X = 0

?- age_about_15(peter,X).
no

This means john’s age is about 15, nick’s age is not about 15 and we have no data about
peter’s age.
We expect the fuzzy predicate teenage student/2 to behave similarly, i.e.:
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?- teenage_student(john,V).
V .=. 1

?- teenage_student(susan,V).
V .=. 0

?- teenage_student(peter,V).
no

as john is a “teenage student” (he is a student and his age is about 15), susan is not
a “teenage student” (she is not a student) and we do not know the maturity value for
peter, because although he is a student, we do not know whether his age is about 15.
The way to do this is by overcoming the CWA behavior of the crisp predicate student/1
to get the truth value 0 for student(susan). The solution is to fuzzify crisp predicates
when they are in the body of fuzzy clauses.

For each crisp predicate in the definition of a fuzzy predicate, the compiler will
generate a fuzzy version to replace the original predicate in the body of the clause. For
the above example of crisp predicate student/1, the compiler will produce the predicate
f student/2, which is an equivalent fuzzy predicate to the crisp one. So, the definition
of teenage student/2 will be changed to

teenage_student(X):˜ f_student(X),
age_about_15(X).

Now the internal fuzzy solution is simple, sound and very homogeneous, because
we only consider fuzzy subgoals in the body of the clause. The only problem we now
have to solve is how to fuzzify crisp predicates. In the following section, we are going
to describe how we have done this.

4.1 Fuzzified Predicates

The first simple approach is to use the cut of Prolog to implement the respective fuzzi-
fied predicate. So, for a predicate student(X) we have:

f_student(X,V):- student(X),!,
V .=. 1.

f_student(X,0).

The result is that V = 1 if the crisp goal is successful and V = 0 otherwise. In this way,
we get the expected results, that retain the same meaning as the crisp predicates, for the
following calls

?- f_student(peter,V).
V .=. 1

?- f_student(susan,V).
V .=. 0

Nevertheless, we come across a problem with goals like:

?- f_student(X,1).
X = john

where the cut prevents backtracking, and it is impossible to get the entire solutions. This
problem is simply sorted out with the alternative transformation:

f_student(X,V):- if(student(X),V=1,V=0).
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It solves the backtracking problem because of the implementation of the i f/3 predicate
and returns

?- f_student(X,1).
X = john ? ;
X = peter ? ;
no

This is not only useful for giving constructive answers to goals of fuzzified predicates
but it is also the way to get constructive solutions to fuzzy queries of a fuzzy predicate
that is defined combining crisp and fuzzy logic. This is illustrated in Section 5.
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Fig. 2. Timetable 1, 2, 3 and 4

Example Another real example would be the problem of the compatibility of a couple
of shifts at a place of work, for example, teachers who work to different class timetables,
telephone operators, etc. Imagine a company where the work is divided in to shifts of
4 hours per week. Many workers have to combine a couple of shifts in the same week
and a predicate compatible/2 is needed to check if two shifts are compatible or to get
which couples of shifts are compatible. Two shifts are compatible when both are correct
(working days from Monday to Friday, hours between 8 and 18 hours, and there are no
repetitions of the same hour in a shift) and, in addition, when the shifts are disjoint.

compatible(T1,T2):- correct_shift(T1),
correct_shift(T2),
disjoint(T1,T2).

But there are so many compatible combinations of shifts that it would be useful to
define the concept of compatibility fuzzily instead of crisply, as defined above. This
would express that two shifts are incompatible if one of them is incorrect or if they are
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not disjoint, but also thatwhen they are compatible, they can be more or less compat-
ible. They can have a level of compatibility. Two shifts will be more compatible if the
working hours are concentrated (the employee has to go to work fewer days during the
week). Also, two shifts will be more compatible if there are fewer free hours between
the busy hours of the working days of the timetable.

0

1
few_days

days1 2 3 4 5
0

1
without_gaps

hours0 1 2 3 4 5 6 7 8

Fig. 3. Fuzzy predicates few days/2 and without gaps/2

Therefore, we are handling crisp concepts (correct shi f t/1, dis joint/2) and fuzzy
concepts (without gaps/2, f ew days/2) besides. Their definitions, represented in Fig-
ure 3, are simply expressed in our language as follows:

few_days :# fuzzy_predicate([(1,1),(2,0.8),(3,0.6),(4,0.3),(5,0)]).

without_gaps :# fuzzy_predicate([(0,1),(1,0.8),(5,0.3),(7,0.1),(8,0)]).

A simple implementation combining both types of predicates could be:

compatible(T1,T2):˜ min correct_shift(T1),
correct_shift(T2),
disjoint(T1,T2),
append(T1,T2,T),
number_of_days(T,D),
few_days(D),
number_of_free_hours(T,H),
without_gaps(H).

Whereas append/3 gives the total weekly 8-hour timetable as a result of joining
two shifts, number o f days/3 outputs the total number of working days of a weekly
timetable and number o f f ree hours/2 returns the number of free one-hour gaps in
the weekly timetable of working days. Looking at the timetables in Figure 2. We can
get the compatibility between the two shifts, T1 and T2, represented in each timetable
using the query compatible(T1,T2,V ). The result is V = 0.2 for timetable 1, V = 0.6
for timetable 2, and V = 0 for timetable 3, (because the shifts are incompatible).

5 Constructive answers

Queries of the truth value of a ground argument are important and useful, but the power
of a Fuzzy Prolog is more operational, because we can get constructive answers.
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Going back to the simple example of f student/2, we can ask not only whether or
not a person is a student but who the students are, as we shall see at the end of section 5.
And this constructive development of fuzzified crisp predicates is transmitted to fuzzy
predicates defined using these crisp predicates in the body of their clauses. For example:

?- teenage_student(X,1).
X = john

?- teenage_student(X,0).
X = susan

?- teenage_student(X,V).
V .=. 1, X = john ? ;
V .=. 0, X = susan ? ;
V .=. 0, X = nick ? ;
no

We can get constructive solutions to a query where we have constraints on the truth
value. The problem arises when we try to get constructive information for a query where
the truth value is zero. We often want to know which people are not students or which
clients give a bank no profits or, generally, which elements, X , do not satisfy a property,
p, at all; i.e. the goal p(X ,0). If the predicate for which we are asking, p/2 in this
case, is defined using crisp predicates in its body, q/1 for example, then the respective
fuzzified predicate, f q(X ,0) in this case, is going to be queried. The problem with this
is that none of the implementations that we have proposed in section 4.1 are able to
provide any constructive result. They include cuts in their implementations, and their
running, is unsound in Prolog. However, in our Fuzzy System the solutions are sound,
because we return only correct results. Also, when we get “no”, it means that the system
does not know the answer, because it has no information for the query. The problem is
that programs do have enough information to provide a result and we would like to get
a sound and complete answer even for queries including zero truth values.

The solution is to properly implement the fuzzification of a crisp predicate, instead
of using unsound Prolog tools. The sound formal implementation for our example will
be:

f student(X ,1) ← student(X)
f student(X ,0) ← ¬(student(X))

where ¬/1 is the logic negation that would provide the values of the variables that do
not satisfy the predicates that are the argument of the negation in Prolog, student/1 in
this case. This leads us to the old and complicated problem of how to implement logic
negation in Prolog.

5.1 Negation and Implementation

The fundamental idea behind Logic Programming is to use a computable subset of lo-
gic as a programming language. Probably, negation is the most significant aspect of
logic that was not included in the original design of Logic Programming. This is due to
the fact that dealing with negation involves significant additional complexity. However,
negation has an important role in knowledge representation, where many of its uses can-
not be simulated by positive programs. Declarative modeling of problem specifications
typically also include negative as well as positive characteristics of the domain of the
problem. Negation is also useful in the management of databases, program composition,
manipulation and transformation, default reasoning, etc.
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The perceived importance of negation has resulted in significant research and the
proposal of many alternative ways to understand and incorporate negation into Logic
Programming. The involved problems appears even at the semantic level and the dif-
ferent proposals (negation as failure, stable models, well founded semantics, explicit
negation, etc.) differ not only in expressiveness but also in semantics. Presumably as a
result of this, implementation aspects have received comparatively little attention. As a
consequence, the negation techniques supported by current Prolog compilers are rather
limited.

Recently, a negation system for Prolog has been designed and implemented to solve
this problem with logic negation. In [11], the most interesting existing proposals, are
systematically studied: negation as failure [4], use of delays to apply negation as failure
in a secure way , intentional negation [2] and constructive negation [15]. There not
exist a negation technique that offers soundness, completeness and efficiency at the
same time. A combination of all the above techniques is proposed in [12]. Information
provided by a static analysis of the program is used to reduce the cost of selecting
among the techniques.

The implementation of these techniques has been developed in the Ciao Prolog Sys-
tem [3] because it has all extensions of Prolog that are needed for the implementation.
Nevertheless it can be adapted to any other Prolog compiler.

In [13] we offer a predicate neg/1 which is an implementation of the logic negation
using a strategy of combination of different techniques. The novelty of this predicate is
that it manages disequality constraints and returns answers as equalities plus disequal-
ities as we can expect when working with negation. We will use also the disequality
between terms (the predicate =/= /2 that is described in [13].

For example we can obtain the following results using the well-known logic predic-
ate member/2:

?- neg(member(X,[1,2])).
X =/= 1, X =/= 2 ?;
no

?- neg((X =/= 0,member(X,[1,2]))).
X = 0 ?;
X =/= 0, X =/= 1, X =/= 2 ?;
no

We have taken advantage of the fact that we have implemented Fuzzy Prolog in the
Ciao Prolog System too and we have used the predicate neg/1 to fuzzify crisp predic-
ates in a sound way. Thanks to this, we have been able to get constructive answers to
any fuzzy query. The right implementation of our example would be:

f_student(X,V):-
student(X),
V .=. 1.

f_student(X,V):-
neg(student(X)),
V .=. 0.

Asking for people who are not students and asking for people who are not “teenage
students” can be examples of negative fuzzy queries.
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?- f_student(X,0).
X =/= john, X =/= peter

?- teenage_student(X,0).
X = nick ? ;
X =/= john, X =/= peter ? ;
no

This means that nobody except john and peter, are students or “teenage students”.
This includes nick and susan.

Example Going back to the example 4.1 regarding the compatibility of shifts in a
weekly timetable. We are going to ask some questions about the shifts T1 and T2 of
timetable 4 in Figure 2. One hour of T2 is not fixed yet.

We can note: the days of the week as mo, tu, we, th and f r; one-hour time slot as its
starting time from 8 a.m. to 5 p.m.; one hour of the weekly timetable as a pair of day
and hour and one shift as a list of 4 hours of the week.

If we want to fix the free hour of T2 in the 10-11 a.m.slot whose compatibility is
not null, we get that only Tuesday is incompatible.:

?- compatible([(mo,9),(tu,10),(we,8),(we,9)],
[(mo,8),(we,11),(we,12),(D,10)], V), V .>. 0 .

D =/= tu

If we want to know how to complete the shift T2 given a level of compatibility
higher than 70 %, we get the slice from 10 to 11 a.m. time sloth on Wednesday or
Monday morning.

?- compatible([(mo,9),(tu,10),(we,8),(we,9)],
[(mo,8),(we,11),(we,12),(D,H)], V), V .>. 0.7 .

V = 0.9, D = we, H = 10 ? ;
V = 0.75, D = mo, H = 10 ? ;
no

6 Conclusions and Future work

We have provided in [17] a Fuzzy Prolog Language and we have implemented it over
Prolog instead of implementing a new resolution system. The way of doing this ex-
tension to Prolog is interpreting fuzzy reasoning as a set of constraints and after that
translating fuzzy predicates into CLP(R ) clauses. The rest of the computation is re-
solved by the Prolog compiler. The advantage is simplicity and a good potential for
efficiency. We have also generality because we work with the definition of a general
aggregation operator that includes any of the operators used by other approaches and
we have got flexibility because new aggregation operators can be added with almost no
effort.

In this paper we explain how we have combined crisp and fuzzy logic in a Prolog
compiler. This is a great advantage because it lets us model many problems using fuzzy
programs. We have obtained constructive answers even for negative queries thanks to
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constructive logic negation. So we have extended the expressibility of the language and
the possibility of applying it to solve real problems.

For this work we have made the decision of using the Prolog’s mechanism to be able
to integrate our representation of the fuzzy knowledge into a Prolog compiler with the
advantages that this involves. But as future work we will change the representation of
the indefinite information. In this approach we are using the Prolog failure to represent
the total uncertainty, but another possibility is to consider the complete interval [0,1] to
represent this truth value, e.g. v ∈ {0..1} or the constraint 0≤ v∧ v≤ 1 that represents
the whole interval of possible truth values. The advantage is that it does not stop the
truth value evaluation, so if v j ∈ {0..1} then

V (p(x̂)) = v1∪ ...∪ v j ∪ ...∪ vn = v1∪ ...∪ v j−1∪ v j+1∪ ...∪ vn
that is, v j does not affect the evaluation of the truth value of p(x̂).
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12. S. Muñoz and J. J. Moreno-Navarro. Intelligent agent to implement logic negation. In
J. L. Perez de la Cruz and J. Pavon, editors, 4th Iberoamerican Workshop on Multi-Agent
Systems, IBERAGENTS’02, Malaga (Spain), 2002.

dtai
88
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